UNIVERSITY OF TECHNOLOGY SYDNEY School of Mathematical and Physical Sciences

37233 Linear Algebra

Tutorial 2

Question 1

Let

$$\mathbf{a} = \begin{bmatrix} -1\\2\\3 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 4\\-5 \end{bmatrix}, \qquad \mathbf{A} = \begin{bmatrix} 0 & 1\\3 & 2\\4 & 1 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 1 & 2 & -1\\3 & 0 & 1 \end{bmatrix}$$

Calculate by hand, where possible, or identify those calculations which are *not* possible:

$\mathbf{a} + \mathbf{b},$	$\mathbf{Aa},$	$\mathbf{Ab},$	$\mathbf{Ba},$	$\mathbf{Bb},$
$\mathbf{A} + \mathbf{B},$	$\mathbf{A} + \mathbf{B}^T,$	$\mathbf{AB},$	$\mathbf{BA},$	$\mathbf{A}\mathbf{B}^T$

Question 2

Using Gaussian elimination, find all solutions to the following systems (a)–(d). Indicate pivot positions, basic variables and free variables if any.

(a)

$$2x_{1} - 4x_{2} + x_{4} + 7x_{5} = 11$$

$$x_{1} - 2x_{2} - x_{3} + x_{4} + 9x_{5} = 12$$

$$-x_{1} + 2x_{2} + x_{3} + 3x_{4} - 5x_{5} = 16$$

$$4x_{1} - 8x_{2} + x_{3} - x_{4} + 6x_{5} = -2$$

(b)

x_1	$-x_2 - 3x_3 + 8x_4 =$	= -2
$3x_1$	$-3x_3 + 9x_4 =$	= -1
x_1	$+x_2 +x_3 - 2x_4$	= 1

(c)

$$-x_{1} + x_{2} + x_{3} = 9$$

$$2x_{1} + x_{2} - x_{3} = -10$$

$$3x_{1} - 2x_{3} = -19$$

$$-x_{1} + 2x_{2} - 3x_{3} = -10$$

Question 3

Consider the system of linear equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ where

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & 6 \\ 4 & 5 & 5 \\ 3 & 1 & -3 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

- (a) Find \mathbf{A}^{-1} by row reducing the augmented matrix $[\mathbf{A} | \mathbf{I}]$.
- (b) Use the inverse matrix to solve the system of equations.

Question 4

Using row-reduction to echelon form, find the determinant of the matrix

$$\mathbf{A} = \begin{bmatrix} -2 & 4 & -6 & 8\\ 4 & -8 & 2 & -7\\ -3 & 6 & -9 & 7\\ 5 & -9 & 18 & -13 \end{bmatrix}$$

Question 5

Assume that \mathbf{A} , \mathbf{B} and \mathbf{C} are different invertible matrices, with some of the relationships as shown in the table below. Based on that information:

$Product \mid R$	Result
AA	
(a) Fill in the missing entries in the table to the right. AB	
AC	
(b) Identify the identity matrix. BA	В
(c) Which matrix is the inverse of the matrix C ? BB	\mathbf{C}
BC	\mathbf{A}
(d) Use the table to obtain the result of BAC . CA	
CB	
$\mathbf{C}\mathbf{C}$	

Question 6

Find 2×2 real matrix with the property $\mathbf{A}^2 = -\mathbf{I}$, where \mathbf{I} is an identity matrix.

UNIVERSITY OF TECHNOLOGY SYDNEY School of Mathematical and Physical Sciences

37233 LINEAR ALGEBRA

Tutorial 2 continuation

Question 1

Describe and compare the solution sets for the homogeneous equation: $x_1 + 9x_2 - 4x_3 = 0$ and the corresponding inhomogeneous equation: $x_1 + 9x_2 - 4x_3 = 4$ Provide a geometric interpretations for the different solution versions.

Question 2

Write the general solution to the following $\mathbf{A}\mathbf{x} = \mathbf{b}$ system: $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 4 & 5 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$ as the sum of a particular solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ and the general solution to $\mathbf{A}\mathbf{x} = \mathbf{0}$.