FUNDAMENTALS OF LINEAR ALGEBRA

- Linear combinations
- Span
- Subspaces spanned by a set
- Linear dependence or independence

Revision: Linear spaces

A linear space V is a non-empty set of objects, for which two operations are defined so that $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\forall c, d \in \mathbb{R}$:

- addition $(\mathbf{u} + \mathbf{v}) \in V$
- multiplication by scalars $(c \mathbf{u}) \in V$

and these operations obey the following axioms:

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
Consequences:(ii) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (ix) $\mathbf{0}$ is unique(iii) $\exists \mathbf{0}$: $\mathbf{u} + \mathbf{0} = \mathbf{u}$ (ix) $\mathbf{0}$ is unique(iv) $\exists (-\mathbf{u})$: $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ (xi) $(-\mathbf{u})$ is unique(iv) $\exists (-\mathbf{u})$: $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ (xi) $\mathbf{0} \cdot \mathbf{u} = \mathbf{0}$ (v) $1 \cdot \mathbf{u} = \mathbf{u}$ (xii) $(-\mathbf{u}) = (-1) \cdot \mathbf{u}$ (vi) $c (d \mathbf{u}) = (c d) \mathbf{u}$ (xiii) $c \cdot \mathbf{0} = \mathbf{0}$ (vii) $(c + d) \mathbf{u} = c \, \mathbf{u} + d \, \mathbf{u}$ (xiv) $\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v})$ (viii) $c (\mathbf{u} + \mathbf{v}) = c \, \mathbf{u} + c \, \mathbf{v}$ (we = u - v) if $\mathbf{w} + \mathbf{v} = \mathbf{u}$

Revision: Subspaces

Definition: A subspace H of a linear space V is a subset of elements with the following properties:

- H is closed under addition: $\forall (\mathbf{u}, \mathbf{v}) \in H, \ (\mathbf{u} + \mathbf{v}) \in H$
- H is closed under multiplication by scalars: $\forall \mathbf{u} \in H$ and $\forall c \in \mathbb{R}, c \mathbf{u} \in H$

Every subspace is a linear space and satisfies the axioms.

Property of any subspace: H includes the zero element of V (so if a set does not include the zero element, then it is not a subspace)

Linear combinations

Definition: Given a set of elements $\{\mathbf{v}_1, \mathbf{v}_2 \dots \mathbf{v}_m\} \in V$ and given scalars $\{c_1, c_2 \dots c_m\} \in \mathbb{R}$ (any real numbers including zero),

 $\mathbf{y} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots c_m \mathbf{v}_m$

is called a *linear combination* of the set $\{\mathbf{v}_1, \mathbf{v}_2 \dots \mathbf{v}_m\}$ with coefficients $\{c_1, c_2 \dots c_m\}$.

Example 1 (with vectors):

$$\mathbf{v}_{1} = \begin{bmatrix} 1\\ -1 \end{bmatrix} \text{ and } \mathbf{v}_{2} = \begin{bmatrix} 2\\ 1 \end{bmatrix}$$
$$\mathbf{y} = 2\mathbf{v}_{1} + 3\mathbf{v}_{2} = 2\begin{bmatrix} 1\\ -1 \end{bmatrix} + 3\begin{bmatrix} 2\\ 1 \end{bmatrix} = \begin{bmatrix} 8\\ 1 \end{bmatrix}$$

Linear combinations: examples

• Example 2: Given
$$\mathbf{p}_1(t) = 1$$
, $\mathbf{p}_2(t) = t^3$, and $\mathbf{p}_3(t) = 4 - t$:
 $\mathbf{p}_4(t) = t^3 + t + 3$

is a linear combination of the set $\{\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3\}$ because

$$\mathbf{p}_4 = 7\mathbf{p}_1 + \mathbf{p}_2 - \mathbf{p}_3$$

whereas

$$\mathbf{p}_5(t) = t^2 + 2$$

is not a linear combination of these polynomials.

• **Example 3:** Given the interval $x \in [0, 2\pi]$, function

$$f(x) = 2\sin x - 3\cos x$$

is a linear combination of the functions $\{\sin x, \cos x\}$, whereas

$$g(x) = 5\tan x + 4\cos x$$

is not a linear combination of those functions.

Linear combinations and Ax = b

If A is an $m \times n$ matrix with columns $\mathbf{a}_1 \dots \mathbf{a}_n$ and if $\mathbf{x} \in \mathbb{R}^n$ then $\mathbf{A}\mathbf{x}$ is the linear combination of the columns of \mathbf{A} :

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \ddots & & \\ a_{11} & \mathbf{a}_{2} & \dots & \mathbf{a}_{n} \\ \vdots & & \ddots & \\ a_{m1} & \dots & & \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} = x_{1}\mathbf{a}_{1} + x_{2}\mathbf{a}_{2} \dots + x_{n}\mathbf{a}_{n}$$

In general, Ax = b can be interpreted as a linear combination

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2\ldots + x_n\mathbf{a}_n = \mathbf{b}$$

as well as a system of linear equations for the unknowns x_i .

This system can be solved by row-reducing the augmented matrix

$$egin{bmatrix} \mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ | \ \mathbf{b} \ \end{bmatrix}$$

Linear combinations and $\mathbf{A}\mathbf{x} = \mathbf{b}$

Example: can b be written as a linear combination of a_1 and a_2 :

$$\mathbf{a}_1 = \begin{bmatrix} 1\\ -2\\ -5 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} 2\\ 5\\ 6 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 7\\ 4\\ -3 \end{bmatrix}$$

That is, are there scalars x_1, x_2 such that $x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 = \mathbf{b}$

Solution: Equivalent formulations of the problem:

$$x_{1} \begin{bmatrix} 1\\ -2\\ -5 \end{bmatrix} + x_{2} \begin{bmatrix} 2\\ 5\\ 6 \end{bmatrix} = \begin{bmatrix} 7\\ 4\\ -3 \end{bmatrix} \quad \Leftrightarrow$$
$$x_{1} + 2x_{2} = 7$$
$$-2x_{1} + 5x_{2} = 4 \qquad \Leftrightarrow \qquad \begin{bmatrix} 1 & 2\\ -2 & 5\\ -5x_{1} + 6x_{2} = -3 \end{bmatrix} \begin{bmatrix} x_{1}\\ x_{2} \end{bmatrix} = \begin{bmatrix} 7\\ 4\\ -3 \end{bmatrix}$$

3 equations for 2 unknowns, so it might easily have no solution

Linear combinations and $\mathbf{A}\mathbf{x} = \mathbf{b}$

The augmented matrix of the system is
$$\begin{bmatrix} 1 & 2 & | & 7 \\ -2 & 5 & | & 4 \\ -5 & 6 & | & -3 \end{bmatrix}$$

Reduce to REF with $\mathsf{R}_2 \to \mathsf{R}_2 + 2\mathsf{R}_1$ and then $\mathsf{R}_3 \to \mathsf{R}_3 + 5\mathsf{R}_1$

$$\begin{bmatrix} 1 & 2 & | & 7 \\ 0 & 9 & | & 18 \\ 0 & 16 & | & 32 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & | & 7 \\ 0 & 1 & | & 2 \\ 0 & 1 & | & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & | & 3 \\ 0 & 1 & | & 2 \\ 0 & 0 & | & 0 \end{bmatrix}$$

So, there is a solution: $x_1 = 3$, $x_2 = 2$, which means

$$\mathbf{b} = 3\mathbf{a}_1 + 2\mathbf{a}_2$$

and thus b can be presented as a linear combination of a_1 and a_2 .

Note: vectors \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{b} formed the the augmented matrix $\begin{bmatrix} \mathbf{a}_1 \ \mathbf{a}_2 \ | \ \mathbf{b} \end{bmatrix}$

Definition: For elements $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p \in V$, the set of all their linear combinations is denoted by $\operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ (it can be called a subset of V spanned by $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$)

In other words, span is the collection of all elements produced as

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_p\mathbf{v}_p$$

with arbitrary scalars $c_1, c_2 \ldots c_p$ (possibly including zeros).

<u>Vectors</u>: for a given vector $\mathbf{b} \in \mathbb{R}^n$ and a set $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p \in \mathbb{R}^n$, the following statements are equivalent :

•
$$\mathbf{b} \in \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$$

- ${f b}$ is a linear combination of ${f v}_1, {f v}_2, \ldots {f v}_p$
- Equation $\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_p \end{bmatrix} \mathbf{x} = \mathbf{b}$ has a solution

Span (examples with vectors)

Example 1: check if $\mathbf{b} \in \operatorname{Span}\{\mathbf{a}_1, \mathbf{a}_2\}$

$$\mathbf{a}_1 = \begin{bmatrix} 1\\ -2\\ 3 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} 5\\ -13\\ -3 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} -3\\ 8\\ 1 \end{bmatrix}$$

Solution: row-reduce the augmented matrix $[\mathbf{a}_1 \mathbf{a}_2 | \mathbf{b}]$:

$$\begin{bmatrix} 1 & 5 & -3 \\ -2 & -13 & 8 \\ 3 & -3 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 5 & -3 \\ 0 & -3 & 2 \\ 0 & 0 & -2 \end{bmatrix}$$

The bottom row in the REF shows an inconsistency $0 \stackrel{!}{=} -2$, so there are no solutions and therefore $\mathbf{b} \notin \text{Span}\{\mathbf{a}_1, \mathbf{a}_2\}$, that is, vector \mathbf{b} is not a linear combination of vectors \mathbf{a}_1 and \mathbf{a}_2 .

Span (examples with vectors)

Example 2: Find h such that $\mathbf{y} \in \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ in \mathbb{R}^3 , if

$$\mathbf{y} = \begin{bmatrix} -4\\ 3\\ h \end{bmatrix}; \quad \mathbf{v}_1 = \begin{bmatrix} 1\\ -1\\ -2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 5\\ -4\\ -7 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -3\\ 1\\ 0 \end{bmatrix}.$$

Solution: vector $\mathbf{y} \in \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ if $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{y}$

This vector equation corresponds to matrix equation

$$\begin{bmatrix} 1 & 5 & -3 & -4 \\ -1 & -4 & 1 & 3 \\ -2 & -7 & 0 & h \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 5 & -3 & -4 \\ 0 & 1 & -2 & -1 \\ 0 & 3 & -6 & h - 8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 5 & -3 & -4 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & h - 5 \end{bmatrix}$$

which is only consistent if h = 5, so then $\mathbf{y} = \begin{bmatrix} -4 \\ 3 \\ 5 \end{bmatrix}$.

Span (examples with vectors)

Continue reduction towards REF, taking into account h = 5:

$$\begin{bmatrix} 1 & 5 & -3 & -4 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & h-5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 5 & -3 & -4 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 7 & 1 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

which gives free variable x_3 and $x_1 = 1 - 7x_3$, $x_2 = -1 + 2x_3$

Setting the free variable $x_3 = 0$, we get $x_1 = 1$ and $x_2 = -1$.

Thus $\mathbf{y} = 1\mathbf{v}_1 - 1\mathbf{v}_2 + 0\mathbf{v}_3 = \mathbf{v}_1 - \mathbf{v}_2$, which is easily checked:

		1		5	
3	=	-1	—	-4	
5		-2		-7	

Note: it is also possible to choose $x_3 \neq 0$, in which case the linear combination will involve all the three vectors.

Subspaces spanned by a set

Theorem:

 $\label{eq:constraint} \mathsf{For}\ \mathbf{v}_1,\mathbf{v}_2,\ldots\,\mathbf{v}_p\in V,\quad H=\mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots\,\mathbf{v}_p\}\ \text{is a subspace of }V.$

H is called a subspace spanned (generated) by $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$.

(a) Any two elements in H can be written as

 $\mathbf{u} = c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p$ and $\mathbf{w} = s_1 \mathbf{v}_1 + \dots + s_p \mathbf{v}_p$

therefore their sum $\mathbf{u} + \mathbf{w} \in H$ because

$$\mathbf{u} + \mathbf{w} = c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p + s_1 \mathbf{v}_1 + \dots + s_p \mathbf{v}_p$$
$$= (c_1 + s_1) \mathbf{v}_1 + \dots + (c_p + s_p) \mathbf{v}_p$$

(b) For any $c \in \mathbb{R}$ element $c \mathbf{u} \in H$ because $c \mathbf{u} = c(c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p) = (cc_1) \mathbf{v}_1 + \dots + (cc_p) \mathbf{v}_p$

Thus H is a subspace of V.

Needless to say, zero elements is in H: $\mathbf{0} = 0\mathbf{v}_1 + \cdots + 0\mathbf{v}_p$.

(proof)

Subspaces spanned by a set

Example:

Let H be a set of all vectors of the form

$$\begin{bmatrix} a - 3b \\ b - a \\ a \\ b \end{bmatrix}$$

where a, b are arbitrary scalars.

This can be rewritten as follows:

$$\begin{bmatrix} a-3b\\b-a\\a\\b \end{bmatrix} = a \begin{bmatrix} 1\\-1\\1\\0 \end{bmatrix} + b \begin{bmatrix} -3\\1\\0\\1 \end{bmatrix} \equiv a\mathbf{v}_1 + b\mathbf{v}_2.$$

This rearrangement demonstrates that $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$.

Therefore, H is a subspace of \mathbb{R}^4 generated by \mathbf{v}_1 and \mathbf{v}_2 .

Geometric interpretation of span (\mathbb{R}^3 example)

Let v be a nonzero vector in \mathbb{R}^3 . Then $\operatorname{Span}\{v\} = cv$ is the set of all scalar multiples of v. This can be visualised as the line in \mathbb{R}^3 through v and 0.

If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ are nonzero vectors with \mathbf{u} not a multiple of \mathbf{v} , then $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\} = c_1 \mathbf{u} + c_2 \mathbf{v}$ is the plane in \mathbb{R}^3 that contains $\mathbf{u}, \mathbf{v}, \mathbf{0}$.

Spanning a linear (sub)space

A set of elements $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n \in V$ is said to span V :

$$\operatorname{Span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n\}=V$$

if every element in V is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$.

In particular, the columns of A span \mathbb{R}^m if every $\mathbf{b} \in \mathbb{R}^m$ is a linear combination of the columns of A.

For $m \times n$ matrix **A**, the following statements are equivalent:

- The columns of ${f A}$ span ${\Bbb R}^m$
- $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution $\forall \, \mathbf{b} \in \mathbb{R}^m$
- \bullet Row-reduced ${\bf A}$ has a pivot position in every row

Example 1: check if these vectors span \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1\\3\\7 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 3\\-2\\-2 \end{bmatrix}$$

Row-reduce $[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$ and see if we get a pivot in every row.

$$\mathsf{R}_3 \to \mathsf{R}_3 + \mathsf{R}_1 \qquad \qquad \mathsf{R}_3 \to \mathsf{R}_3 - 2\mathsf{R}_2$$

 $\begin{bmatrix} 1 & -1 & 3 \\ 0 & 3 & -2 \\ -1 & 7 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 3 \\ 0 & 3 & -2 \\ 0 & 6 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 3 \\ 0 & 3 & -2 \\ 0 & 0 & 5 \end{bmatrix}$

So there is a pivot in every row and thus $\{v_1, v_2, v_3\}$ span \mathbb{R}^3 . Any vector from \mathbb{R}^3 is a linear combination of these vectors.

.

Example 2: Check if the system Ax = b is consistent for all b:

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

Solution:
$$\begin{bmatrix} 1 & 3 & 4 & b_1 \\ -4 & 2 & -6 & b_2 \\ -3 & -2 & -7 & b_3 \end{bmatrix} \qquad \begin{array}{c} \mathsf{R}_2 \to \mathsf{R}_2 + 4\mathsf{R}_1 \\ \mathsf{R}_3 \to \mathsf{R}_3 + 3\mathsf{R}_1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 3 & 4 & b_1 \\ 0 & 14 & 10 & 4b_1 + b_2 \\ 0 & 7 & 5 & 3b_1 + b_3 \end{bmatrix} \qquad \mathsf{R}_3 \to \mathsf{R}_3 - \frac{1}{2}\mathsf{R}_2$$
$$\begin{bmatrix} 1 & 3 & 4 & b_1 \\ 0 & 14 & 10 & 4b_1 + b_2 \\ 0 & 0 & 0 & 3b_1 + \frac{1}{2}(-4b_1 - b_2) + b_3 \end{bmatrix}$$

— only two pivots, therefore columns of \mathbf{A} do not span \mathbb{R}^3 .

So, the EF of the augmented matrix upon the reduction is:

$$\begin{bmatrix} 1 & 3 & 4 & b_1 \\ 0 & 14 & 10 & 4b_1 + b_2 \\ 0 & 0 & 0 & b_1 - \frac{1}{2}b_2 + b_3 \end{bmatrix}$$

The system is only consistent if: $b_1 - (1/2)b_2 + b_3 = 0$.

For consistency, the right-hand side must have the form

$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ -b_1 + (1/2)b_2 \end{bmatrix} = b_1 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + b_2 \begin{bmatrix} 0 \\ 1 \\ 1/2 \end{bmatrix}$$

i.e. $\mathbf{b} \in \text{Span} \left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1/2 \end{bmatrix} \right\}$

This statement represents all the possible solutions for Ax = b.

So any vector spanned by the columns of ${\bf A}\,$ must have the form

$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \text{ where } b_1 - \frac{1}{2}b_2 + b_3 = 0$$

In particular, each column of
$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{bmatrix}$$

satisfies the same constraint as $b_1 - b_2/2 + b_3 = 0$:

First column: 1 - (-4)/2 - 3 = 0Second column: 3 - 2/2 - 2 = 0Third column: 4 - (-6)/2 - 7 = 0

Geometrically, this relationship defines a plane:

$$x_{1} - \frac{1}{2}x_{2} + x_{3} = 0$$

$$\operatorname{Span}\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\} =$$

$$\operatorname{Span}\left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1/2 \end{bmatrix} \right\}$$

$$x_{1}$$

$$x_{2}$$

The vector space spanned by the columns of \mathbf{A} is generated by only two vectors (corresponding to REF \mathbf{A} having only two pivots).

For this example, revisiting the equivalent statements reveals:

- " The columns of A span R^m"
 False: Columns of A only span a plane (not the entire R³)
- " $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution $\forall \mathbf{b} \in \mathbb{R}^m$ " False: System only has a solution if $b_1 - b_2/2 + b_3 = 0$.
- "Row-reduced A has a pivot position in every row " False: REF A has only 2 pivots, not 3.

The columns of ${\bf A}$ span a plane defined by two vectors:

$$\begin{bmatrix} 1\\0\\-1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 0\\2\\1 \end{bmatrix}$$

Linear dependence or independence

Linear dependence or independence: Definitions

• A set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\} \in V$ is linearly independent if

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\ldots+c_m\mathbf{v}_m=\mathbf{0}$$

has only the trivial solution (with all $c_i = 0$).

A set {v₁, v₂,... v_m} ∈ V is *linearly dependent* if there are weights c₁, c₂,... c_m, not <u>all</u> equal to zero, such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\ldots+c_m\mathbf{v}_m=\mathbf{0}.$$

The above relation is a linear dependence relation.

Linear (in)dependence is the property of a whole given set. Not every element must be a linear combination of the other ones. Linear dependence equation does not necessarily include all elements.

Example 1: Find if the set $\{v_1, v_2, v_3\}$ is linearly dependent

$$\mathbf{v}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 2\\1\\0 \end{bmatrix}$$

To do so, we need to solve the equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{0}$

$$x_1 \begin{bmatrix} 1\\2\\3 \end{bmatrix} + x_2 \begin{bmatrix} 4\\5\\6 \end{bmatrix} + x_3 \begin{bmatrix} 2\\1\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

The augmented matrix can be reduced to REF as

$$\begin{bmatrix} 1 & 4 & 2 & 0 \\ 2 & 5 & 1 & 0 \\ 3 & 6 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 2 & 0 \\ 0 & -3 & -3 & 0 \\ 0 & -6 & -6 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

which indicates a nontrivial solution, so $\{v_i\}$ is linearly dependent.

Now we can obtain an explicit form of the linear dependence

 $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{0}$

seeing that x_1 , x_2 are basic, and x_3 is a free variable:

$$\begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \implies \begin{cases} x_1 &= 2x_3 \\ x_2 &= -x_3 \\ \forall x_3 &\in \mathbb{R} \end{cases}$$

Any non-zero value for x_3 yields a nontrivial solution; e.g. $x_3 = 1$:

$$2\mathbf{v}_1 - \mathbf{v}_2 + \mathbf{v}_3 = \mathbf{0}$$

This is a linear dependence equation for \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 .

Any other coefficients satisfying the above relations are suitable:

$$4\mathbf{v}_1 - 2\mathbf{v}_2 + 2\mathbf{v}_3 = \mathbf{0} -2\mathbf{v}_1 + \mathbf{v}_2 - \mathbf{v}_3 = \mathbf{0}$$

- Example 2: Given $\mathbf{p}_1(t) = 1$, $\mathbf{p}_2(t) = t$, and $\mathbf{p}_3(t) = 4 t$, this polynomial set $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\} \in \mathbb{P}$ is linearly dependent, because $\mathbf{p}_3 = 4\mathbf{p}_1 - \mathbf{p}_2$, that is, $4\mathbf{p}_1 - \mathbf{p}_2 - \mathbf{p}_3 = 0$
- Example 3: In $\mathcal{F}_{[0,2\pi]}$ (continuous functions on $0 \le t \le 2\pi$) the set $\{a \sin t, b \cos t\}$ is linearly independent: $c_1 \sin t + c_2 \cos t = 0$ only has the trivial solution, as there is no scalar c such that $\cos t = c \sin t \quad \forall t \in [0, 2\pi]$.
- Example 4: $\{\sin t \cos t, \sin 2t\} \in \mathcal{F}_{[0,\pi]}$ is linearly dependent, because $\sin 2t = 2 \sin t \cos t \ \forall t \in [0,\pi]$,

so the linear dependence equation is $2 \sin t \cos t - \sin 2t = 0$.

Linear dependence or independence

- Zero element is linearly dependent as the equation $c \cdot \mathbf{0} = \mathbf{0}$ has infinite number of non-trivial solutions.
- One element $\{v\}$ is linearly independent if and only if $v \neq 0$ (because c v = 0 has only the trivial solution for $v \neq 0$).

• The columns of matrix A are linearly independent if and only if the equation Ax = 0 has only the trivial solution.

This directly follows from the fact that homogeneous equation Ax = 0 is equivalent to $x_1a_1 + x_2a_2 + \ldots + x_na_n = 0$.

Any linear dependence relation between the columns of ${\bf A}$ corresponds to a nontrivial solution of ${\bf A} {\bf x} = {\bf 0}$.

Example 5:

Check if the columns of this matrix are linearly independent:

$$\begin{bmatrix} 0 & 1 & 4 \\ 1 & 2 & -1 \\ 5 & 8 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 4 \\ 0 & -2 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 4 \\ 0 & 0 & 13 \end{bmatrix}$$

The EF shows pivots in every row, there are no free variables

So each column has a pivot, then Ax = 0 only has the trivial solution, therefore the columns of A are linearly independent.

In other words, equation $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{0}$ only has a trivial solution, therefore vectors $\{\mathbf{a}_i\}$ are linearly independent.

Easy check for a set of two elements

For a set of two elements *only*, linear dependence is easy to check: It is sufficient to check if they are multiples of each other. Proof:

Suppose there are scalars $c \neq 0$ and d such that $c\mathbf{v} + d\mathbf{u} = \mathbf{0}$. Then $\mathbf{v} = (-d/c)\mathbf{u}$, implying them to be multiples of each other.

Vice versa, if $\mathbf{v} = k\mathbf{u}$, then $\mathbf{v} + (-k)\mathbf{u} = 0$, with at least one non-zero coefficient, so the two elements are linearly dependent.

Example 6:
$$\mathbf{v}_1 = \begin{bmatrix} 3\\1 \end{bmatrix}$$
 $\mathbf{v}_2 = \begin{bmatrix} 6\\2 \end{bmatrix}$ — linearly dependentExample 7: $\mathbf{v}_3 = \begin{bmatrix} 3\\2 \end{bmatrix}$ $\mathbf{v}_4 = \begin{bmatrix} 6\\2 \end{bmatrix}$ — linearly independentExample 8: $\mathbf{u} = \begin{bmatrix} 3\\1\\0 \end{bmatrix}$ $\mathbf{v} = \begin{bmatrix} 6\\0\\1 \end{bmatrix}$ — linearly independent

Linear independence and span (three elements)

(1) If $\mathbf{w} \in \text{Span}\{\mathbf{u}, \mathbf{v}\}$ then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a linearly dependent set. Proof: If $\mathbf{w} \in \text{Span}\{\mathbf{u}, \mathbf{v}\}$ then $\mathbf{w} = c_1\mathbf{u} + c_2\mathbf{v}$, which can be rewritten as $c_1\mathbf{u} + c_2\mathbf{v} + c_3\mathbf{w} = \mathbf{0}$ with non-trivial $c_3 = -1$. Therefore, the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent.

(2) If ${\bf u}$ and ${\bf v}$ are linearly independent, but the set $\{{\bf u},{\bf v},{\bf w}\}$ is linearly dependent, then ${\bf w}\in {\rm Span}\{{\bf u},{\bf v}\}.$

Proof: If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent, then $c_1\mathbf{u} + c_2\mathbf{v} + c_3\mathbf{w} = \mathbf{0}$ with $c_3 \neq 0$ in this case (why?). Therefore $\mathbf{w} = -(c_1/c_3)\mathbf{u} - (c_2/c_3)\mathbf{v}$, implying $\mathbf{w} \in \text{Span}\{\mathbf{u}, \mathbf{v}\}$.

Linearly independent sets

Theorem:

- A set $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m}$ of two or more elements is linearly dependent if and only if at least one of the elements in S is a linear combination of the other elements in S.
- If S is a linearly dependent set, then some v_j is a linear combination of the preceding elements v₁, v₂,...v_{j-1}.

Proof follows the same logic as in the previous example with 3 elements.

Theorem:

• Any set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\} \in \mathbb{R}^n$ is linearly dependent if p > n. That is, if a set contains more vectors than there are entries in each vector, then the set is linearly dependent.

Proof: Compose $\mathbf{A} = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p}$, an $n \times p$ matrix. Then $\mathbf{Ax} = \mathbf{0}$ corresponds to n equations with p unknowns. If p > n, there are more variables than equations so there must be free variables and non-trivial solutions, so the columns of \mathbf{A} are linearly dependent.

Example 9:
$$\mathbf{v}_1 = \begin{bmatrix} 2\\1 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 4\\-1 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} -2\\2 \end{bmatrix}$$

must be linearly dependent because there are only two entries in each vector (n = 2) but there are 3 vectors (p = 3).

Indeed, if we compose the equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{0}$, upon reduction the corresponding matrix is

$$\left[\begin{array}{ccc} 2 & 4 & -2 \\ 1 & -1 & 2 \end{array}\right] \quad \rightarrow \quad \left[\begin{array}{ccc} 1 & 2 & -1 \\ 0 & -3 & 3 \end{array}\right] \quad \rightarrow \quad \left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & -1 \end{array}\right]$$

The basic variables are x_1 , x_2 and the free variable is x_3 .

Thereby $x_1 = -x_3$ and $x_2 = x_3$

An explicit linear dependence equation is e.g.: $\mathbf{v}_1 - \mathbf{v}_2 - \mathbf{v}_3 = \mathbf{0}$.

Consider a set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_6\}$ given by these columns:

$$\begin{bmatrix} 12 & 10 & -6 & -3 & 7 & 10 \\ -7 & -6 & 4 & 7 & -9 & 5 \\ 9 & 9 & -9 & -5 & 5 & -1 \\ -4 & -3 & 1 & 6 & -8 & 9 \\ 8 & 7 & -5 & -9 & 11 & -8 \end{bmatrix}$$

Upon row reduction, we find how \mathbf{v}_i are related.

The set is dependent, but we see pivots in columns 1, 2, 4, 6.

The REF form provides all the information on linear dependence:

$$\left[\begin{array}{ccccccccccccc} 1 & 0 & 2 & 0 & 2 & 0 \\ 0 & 1 & -3 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right]$$

Pivot columns (1, 2, 4, 6) are linearly independent.

Therefore \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_4 , \mathbf{v}_6 are linearly independent.

The dependence coefficients appear in the non-pivot columns.

$$\mathbf{v}_3 = 2\mathbf{v}_1 - 3\mathbf{v}_2$$
 and $\mathbf{v}_5 = 2\mathbf{v}_1 - 2\mathbf{v}_2 - \mathbf{v}_4$

Hence the examples of linear dependence equations:

$$2v_1 - 3v_2 - v_3 = 0$$
 and $2v_1 - 2v_2 - v_4 - v_5 = 0$

A long way to establish this relation runs by solving the system:

$$\begin{bmatrix} 1 & 0 & 2 & 0 & 2 & 0 \\ 0 & 1 & -3 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} -2x_3 & - & 2x_5 \\ 3x_3 & + & 2x_5 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} -2x_3 & - & 2x_5 \\ 3x_3 & + & 2x_5 \\ x_3 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix}$$
can be written as:
$$\begin{cases} x_1 = -2x_3 - 2x_5 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix}$$
can be written as:
$$\begin{cases} x_1 = -2x_3 - 2x_5 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix}$$

36

Using the solution in the form

$$\begin{cases} x_1 = -2x_3 - 2x_5 \\ x_2 = 3x_3 + 2x_5 \end{cases} \text{ and } \begin{cases} x_4 = x_5 \\ x_6 = 0 \end{cases}$$

we can rewrite the vector equation as follows:

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 + x_4\mathbf{v}_4 + x_5\mathbf{v}_5 + x_6\mathbf{v}_6 = \mathbf{0}$$
$$(-2x_3 - 2x_5)\mathbf{v}_1 + (3x_3 + 2x_5)\mathbf{v}_2 + x_3\mathbf{v}_3 + x_5\mathbf{v}_4 + x_5\mathbf{v}_5 + \mathbf{0}\cdot\mathbf{v}_6 = \mathbf{0}$$
$$x_3(-2\mathbf{v}_1 + 3\mathbf{v}_2 + \mathbf{v}_3) + x_5(-2\mathbf{v}_1 + 2\mathbf{v}_2 + \mathbf{v}_4 + \mathbf{v}_5) = \mathbf{0}$$

The latter relation must hold true for any x_3 and x_5 , therefore

$$\mathbf{v}_3=2\mathbf{v}_1-3\mathbf{v}_2$$
 and $\mathbf{v}_5=2\mathbf{v}_1-2\mathbf{v}_2-\mathbf{v}_4$

(as we have figured out already, analysing the REF matrix).

Linear independence: Summary

- A single element ${\bf v}$ is linearly dependent if and only if ${\bf v}={\bf 0}.$
- A set of two non-zero elements $\{u, v\}$ is linearly dependent if and only if one is a multiple of the other.
- A set $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m}$ of two or more elements is linearly dependent if and only if at least one of the elements in S is a linear combination of the other elements in S.
- If S is a linearly dependent set, then some v_j is a linear combination of the preceding elements v₁, v₂,...v_{j-1}.
- If a set contains $\mathbf{0}$, then the set is linearly dependent. (suppose $\mathbf{v}_i = \mathbf{0}$, then $0\mathbf{v}_1 + 0\mathbf{v}_2 + \ldots + 1\mathbf{v}_i + \ldots + 0\mathbf{v}_m = \mathbf{0}$ which demonstrates a linear dependence)
- Any set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\} \in \mathbb{R}^n$ is linearly dependent if p > n.

• Linear combinations and span

• Subspaces spanned by a set

• Linear dependence or independence

Class tests 2 are running this week at the tutorials

See you next week