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A linear space V is a non-empty set of objects, for which two
operations are defined so that ∀ u, v, w ∈ V and ∀ c, d ∈ R :

addition (u+ v) ∈ V

multiplication by scalars (cu) ∈ V

and these operations obey the following axioms:

(i) u+ v = v + u

(ii) (u+ v) +w = u+ (v +w)

(iii) ∃0 : u+ 0 = u

(iv) ∃ (−u) : u+ (−u) = 0

(v) 1 · u = u

(vi) c (du) = (c d)u

(vii) (c+ d)u = cu+ du

(viii) c (u+ v) = cu+ cv

Consequences:

(ix) 0 is unique

(x) (−u) is unique

(xi) 0 · u = 0

(xii) (−u) = (−1) · u
(xiii) c · 0 = 0

(xiv) u− v = u+ (−v)

(w = u− v if w + v = u)
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Definition: A subspace H of a linear space V is a subset of
elements with the following properties:

H is closed under addition: ∀ (u,v) ∈ H, (u+ v) ∈ H

H is closed under multiplication by scalars:
∀u ∈ H and ∀ c ∈ R , cu ∈ H

Every subspace is a linear space and satisfies the axioms.

Property of any subspace: H includes the zero element of V

(so if a set does not include the zero element, then it is not a subspace)
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Definition: Given a set of elements {v1, v2 . . . vm} ∈ V

and given scalars {c1, c2 . . . cm} ∈ R
(any real numbers including zero),

y = c1v1 + c2v2 + . . . cmvm

is called a linear combination of the set

{v1, v2 . . . vm} with coefficients {c1, c2 . . . cm} .

Example 1 (with vectors):

v1 =

[
1
−1

]
and v2 =

[
2
1

]

y = 2v1 + 3v2 = 2

[
1
−1

]
+ 3

[
2
1

]
=

[
8
1

]
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Example 2: Given p1(t) = 1 , p2(t) = t3 , and p3(t) = 4− t :

p4(t) = t3 + t+ 3

is a linear combination of the set {p1,p2,p3} because

p4 = 7p1 + p2 − p3

whereas
p5(t) = t2 + 2

is not a linear combination of these polynomials.

Example 3: Given the interval x ∈ [0, 2π] , function

f(x) = 2 sinx− 3 cosx

is a linear combination of the functions {sinx, cosx} , whereas

g(x) = 5 tanx+ 4 cosx

is not a linear combination of those functions.
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If A is an m× n matrix with columns a1 . . .an and if x ∈ Rn

then Ax is the linear combination of the columns of A :

Ax =


a11 a12 . . . a1n

a21
. . .

...
. . .

am1 . . .




x1
x2
...
xn

[
a1 a2 . . . an

]


x1
x2
...
xn

 = x1a1 + x2a2 . . .+ xnan

In general, Ax = b can be interpreted as a linear combination

x1a1 + x2a2 . . .+ xnan = b

as well as a system of linear equations for the unknowns xi .

This system can be solved by row-reducing the augmented matrix[
a1 a2 · · · an | b

]
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Example: can b be written as a linear combination of a1 and a2 :

a1 =

 1
−2
−5

 , a2 =

 2
5
6

 and b =

 7
4
−3


That is, are there scalars x1, x2 such that x1a1 + x2a2 = b

Solution: Equivalent formulations of the problem:

x1

 1
−2
−5

+ x2

 2
5
6

 =

 7
4
−3

 ⇔


x1 + 2x2 = 7

−2x1 + 5x2 = 4
−5x1 + 6x2 = −3

⇔

 1 2
−2 5
−5 6

[
x1
x2

]
=

 7
4
−3


3 equations for 2 unknowns, so it might easily have no solution
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The augmented matrix of the system is

 1 2 7
−2 5 4
−5 6 −3


Reduce to REF with R2 → R2 + 2R1 and then R3 → R3 + 5R1 1 2 7

0 9 18
0 16 32

 −→

 1 2 7
0 1 2
0 1 2

 −→

 1 0 3
0 1 2
0 0 0


So, there is a solution: x1 = 3 , x2 = 2 , which means

b = 3a1 + 2a2

and thus b can be presented as a linear combination of a1 and a2 .

Note: vectors a1 , a2 , b formed the the augmented matrix
[
a1 a2 |b

]
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Definition: For elements v1,v2, . . . vp ∈ V , the set of all their
linear combinations is denoted by Span{v1,v2, . . . vp}
(it can be called a subset of V spanned by v1,v2, . . . vp )

In other words, span is the collection of all elements produced as

c1v1 + c2v2 + · · ·+ cpvp

with arbitrary scalars c1, c2 . . . cp (possibly including zeros).

Vectors: for a given vector b ∈ Rn and a set v1,v2, . . . vp ∈ Rn ,
the following statements are equivalent :

b ∈ Span{v1,v2, . . . vp}

b is a linear combination of v1,v2, . . . vp

Equation
[
v1 v2 · · · vp

]
x = b has a solution
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Example 1: check if b ∈ Span{a1,a2}

a1 =

 1
−2
3

 , a2 =

 5
−13
−3

 and b =

 −3
8
1



Solution: row-reduce the augmented matrix
[
a1 a2 | b

]
: 1 5 −3

−2 −13 8
3 −3 1

 −→

 1 5 −3
0 −3 2
0 0 −2


The bottom row in the REF shows an inconsistency 0

!
= −2 , so

there are no solutions and therefore b /∈ Span{a1,a2} , that is,
vector b is not a linear combination of vectors a1 and a2 .
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Example 2: Find h such that y ∈ Span{v1,v2,v3} in R3 , if

y =

 −4
3
h

 ; v1 =

 1
−1
−2

 , v2 =

 5
−4
−7

 , v3 =

 −3
1
0

 .

Solution: vector y ∈ Span{v1,v2,v3} if x1v1 + x2v2 + x3v3 = y

This vector equation corresponds to matrix equation 1 5 −3 −4
−1 −4 1 3
−2 −7 0 h

 →

 1 5 −3 −4
0 1 −2 −1
0 3 −6 h− 8

 →

 1 5 −3 −4
0 1 −2 −1
0 0 0 h− 5



which is only consistent if h = 5 , so then y =

−4
3
5

 .
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Continue reduction towards REF, taking into account h = 5 : 1 5 −3 −4
0 1 −2 −1
0 0 0 h− 5

 →

 1 5 −3 −4
0 1 −2 −1
0 0 0 0

 →

 1 0 7 1
0 1 −2 −1
0 0 0 0


which gives free variable x3 and x1 = 1− 7x3 , x2 = −1 + 2x3

Setting the free variable x3 = 0 , we get x1 = 1 and x2 = −1 .

Thus y = 1v1 − 1v2 + 0v3 = v1 − v2 , which is easily checked: −4
3
5

 =

 1
−1
−2

−

 5
−4
−7

 .

Note: it is also possible to choose x3 ̸= 0 , in which case the linear
combination will involve all the three vectors.
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Theorem:

For v1,v2, . . . vp ∈ V , H = Span{v1,v2, . . . vp} is a subspace of V .

H is called a subspace spanned (generated) by {v1,v2, . . . vp} .
(proof)

(a) Any two elements in H can be written as

u = c1v1 + · · ·+ cpvp and w = s1v1 + · · ·+ spvp

therefore their sum u+w ∈ H because

u+w = c1v1 + · · ·+ cpvp + s1v1 + · · ·+ spvp

= (c1 + s1)v1 + · · ·+ (cp + sp)vp

(b) For any c ∈ R element cu ∈ H because

cu = c(c1v1 + · · ·+ cpvp) = (cc1)v1 + · · ·+ (ccp)vp

Thus H is a subspace of V .

Needless to say, zero elements is in H : 0 = 0v1 + · · ·+ 0vp .



Subspaces spanned by a set 14

Example:

Let H be a set of all vectors of the form


a− 3b
b− a
a
b


where a, b are arbitrary scalars.

This can be rewritten as follows:
a− 3b
b− a
a
b

 = a


1

−1
1
0

+ b


−3
1
0
1

 ≡ av1 + bv2.

This rearrangement demonstrates that H = Span{v1,v2} .

Therefore, H is a subspace of R4 generated by v1 and v2 .
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Let v be a nonzero vector in R3 .
Then Span{v} = cv is the set of all scalar multiples of v .
This can be visualised as the line in R3 through v and 0 .

If u, v ∈ R3 are nonzero vectors with u not a multiple of v , then
Span{u,v} = c1u+ c2v is the plane in R3 that contains u,v,0 .
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A set of elements v1,v2, . . .vn ∈ V is said to span V :

Span{v1,v2, . . . ,vn} = V

if every element in V is a linear combination of v1,v2, . . . ,vn .

In particular, the columns of A span Rm if every b ∈ Rm

is a linear combination of the columns of A .

For m× n matrix A , the following statements are equivalent:

The columns of A span Rm

Ax = b has a solution ∀b ∈ Rm

Row-reduced A has a pivot position in every row
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Example 1: check if these vectors span R3 :

v1 =

 1
0
−1

 , v2 =

 −1
3
7

 , v3 =

 3
−2
−2

 .

Row-reduce
[
v1, v2, v3

]
and see if we get a pivot in every row.

R3 → R3 + R1 R3 → R3 − 2R2 1 −1 3
0 3 −2
−1 7 −2

 →

 1 −1 3
0 3 −2
0 6 1

 →

 1 −1 3
0 3 −2
0 0 5


So there is a pivot in every row and thus {v1,v2,v3} span R3 .

Any vector from R3 is a linear combination of these vectors.
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Example 2: Check if the system Ax = b is consistent for all b :

A =

 1 3 4
−4 2 −6
−3 −2 −7

 , b =

 b1
b2
b3

 .

Solution:

 1 3 4 b1
−4 2 −6 b2
−3 −2 −7 b3

 R2 → R2 + 4R1

R3 → R3 + 3R1 1 3 4 b1
0 14 10 4b1 + b2
0 7 5 3b1 + b3

 R3 → R3 −
1

2
R2

 1 3 4 b1
0 14 10 4b1 + b2
0 0 0 3b1 +

1
2 (−4b1 − b2) + b3


— only two pivots, therefore columns of A do not span R3 .
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So, the EF of the augmented matrix upon the reduction is: 1 3 4 b1
0 14 10 4b1 + b2
0 0 0 b1 − 1

2b2 + b3


The system is only consistent if: b1 − (1/2)b2 + b3 = 0 .

For consistency, the right-hand side must have the form b1
b2
b3

 =

 b1
b2

−b1 + (1/2)b2

 = b1

 1
0
−1

+ b2

 0
1

1/2



i.e. b ∈ Span


 1

0
−1

 ,

 0
1

1/2


This statement represents all the possible solutions for Ax = b .
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So any vector spanned by the columns of A must have the form b1
b2
b3

 where b1 −
1

2
b2 + b3 = 0

In particular, each column of A =

 1 3 4
−4 2 −6
−3 −2 −7


satisfies the same constraint as b1 − b2/2 + b3 = 0 :

First column: 1− (−4)/2− 3 = 0

Second column: 3− 2/2− 2 = 0

Third column: 4− (−6)/2− 7 = 0
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Geometrically, this relationship
defines a plane:

x1 −
1

2
x2 + x3 = 0

Span{a1, a2, a3 } =

Span


 1

0
−1

 ,

 0
1
1/2


The vector space spanned by the columns of A is generated by
only two vectors (corresponding to REF A having only two pivots).
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For this example, revisiting the equivalent statements reveals:

“ The columns of A span Rm ”

False: Columns of A only span a plane (not the entire R3 )

“ Ax = b has a solution ∀b ∈ Rm ”

False: System only has a solution if b1 − b2/2 + b3 = 0 .

“ Row-reduced A has a pivot position in every row ”

False: REF A has only 2 pivots, not 3.

The columns of A span a plane defined by two vectors: 1
0
−1

 and

 0
2
1


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A set {v1,v2, . . . vm} ∈ V is linearly independent if

c1v1 + c2v2 + . . .+ cmvm = 0

has only the trivial solution (with all ci = 0).

A set {v1,v2, . . . vm} ∈ V is linearly dependent if there are
weights c1, c2, . . . cm , not all equal to zero, such that

c1v1 + c2v2 + . . .+ cmvm = 0.

The above relation is a linear dependence relation.

Linear (in)dependence is the property of a whole given set.

Not every element must be a linear combination of the other ones.

Linear dependence equation does not necessarily include all elements.
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Example 1: Find if the set {v1,v2,v3} is linearly dependent

v1 =

 1
2
3

 , v2 =

 4
5
6

 , v3 =

 2
1
0


To do so, we need to solve the equation x1v1 + x2v2 + x3v3 = 0

x1

 1
2
3

+ x2

 4
5
6

+ x3

 2
1
0

 =

 0
0
0


The augmented matrix can be reduced to REF as 1 4 2 0

2 5 1 0
3 6 0 0

 →

 1 4 2 0
0 −3 −3 0
0 −6 −6 0

 →

 1 0 −2 0
0 1 1 0
0 0 0 0


which indicates a nontrivial solution, so {vi} is linearly dependent.
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Now we can obtain an explicit form of the linear dependence

x1v1 + x2v2 + x3v3 = 0

seeing that x1 , x2 are basic, and x3 is a free variable: 1 0 −2 0
0 1 1 0
0 0 0 0

 ⇒


x1 = 2x3
x2 = −x3

∀x3 ∈ R

Any non-zero value for x3 yields a nontrivial solution; e.g. x3 = 1 :

2v1 − v2 + v3 = 0

This is a linear dependence equation for v1 , v2 , v3 .

Any other coefficients satisfying the above relations are suitable:

4v1 − 2v2 + 2v3 = 0

−2v1 + v2 − v3 = 0

· · ·
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Example 2: Given p1(t) = 1 , p2(t) = t , and p3(t) = 4− t ,

this polynomial set {p1,p2,p3} ∈ P is linearly dependent,

because p3 = 4p1 − p2 , that is, 4p1 − p2 − p3 = 0

Example 3: In F[0, 2π] (continuous functions on 0 ⩽ t ⩽ 2π )

the set {a sin t, b cos t} is linearly independent:

c1 sin t+ c2 cos t = 0 only has the trivial solution, as

there is no scalar c such that cos t = c sin t ∀ t ∈ [0, 2π] .

Example 4: {sin t cos t, sin 2t} ∈ F[0, π] is linearly dependent,

because sin 2t = 2 sin t cos t ∀ t ∈ [0, π] ,

so the linear dependence equation is 2 sin t cos t− sin 2t = 0 .
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Zero element is linearly dependent as the equation c · 0 = 0
has infinite number of non-trivial solutions.

One element {v} is linearly independent if and only if v ̸= 0
(because cv = 0 has only the trivial solution for v ̸= 0).

The columns of matrix A are linearly independent if and only
if the equation Ax = 0 has only the trivial solution.

This directly follows from the fact that homogeneous equation
Ax = 0 is equivalent to x1a1 + x2a2 + . . .+ xnan = 0 .

Any linear dependence relation between the columns of A
corresponds to a nontrivial solution of Ax = 0 .
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Example 5:

Check if the columns of this matrix are linearly independent: 0 1 4
1 2 −1
5 8 0

 →

 1 2 −1
0 1 4
0 −2 5

 →

 1 2 −1
0 1 4
0 0 13



The EF shows pivots in every row, there are no free variables

So each column has a pivot, then Ax = 0 only has the trivial
solution, therefore the columns of A are linearly independent.

In other words, equation x1a1 + x2a2 + x3a3 = 0 only has a trivial
solution, therefore vectors {ai} are linearly independent.
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For a set of two elements only, linear dependence is easy to check:

It is sufficient to check if they are multiples of each other. Proof:

Suppose there are scalars c ̸= 0 and d such that cv + du = 0 .
Then v = (−d/c)u , implying them to be multiples of each other.

Vice versa, if v = ku , then v + (−k)u = 0 , with at least one
non-zero coefficient, so the two elements are linearly dependent.

Example 6: v1 =

[
3
1

]
, v2 =

[
6
2

]
— linearly dependent

Example 7: v3 =

[
3
2

]
, v4 =

[
6
2

]
— linearly independent

Example 8: u =

 3
1
0

 , v =

 6
0
1

 — linearly independent
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(1) If w ∈ Span{u,v} then {u,v,w} is a linearly dependent set.

Proof: If w ∈ Span{u,v} then w = c1u+ c2v , which can be rewritten
as c1u+ c2v + c3w = 0 with non-trivial c3 = −1 . Therefore, the set
{u,v,w} is linearly dependent.

(2) If u and v are linearly independent, but the set {u,v,w} is
linearly dependent, then w ∈ Span{u,v} .
Proof: If {u,v,w} is linearly dependent, then c1u+ c2v + c3w = 0
with c3 ̸= 0 in this case (why?). Therefore w = −(c1/c3)u− (c2/c3)v ,
implying w ∈ Span{u,v} .
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Theorem:

A set S = {v1,v2, . . . vm} of two or more elements
is linearly dependent if and only if at least one of the elements
in S is a linear combination of the other elements in S .

If S is a linearly dependent set, then some vj is a linear
combination of the preceding elements v1,v2, . . .vj−1 .

Proof follows the same logic as in the previous example with 3 elements.

Theorem:

Any set {v1, . . . vp} ∈ Rn is linearly dependent if p > n .
That is, if a set contains more vectors than there are entries in
each vector, then the set is linearly dependent.

Proof: Compose A = {v1,v2, . . . vp} , an n× p matrix. Then Ax = 0
corresponds to n equations with p unknowns. If p > n , there are more
variables than equations so there must be free variables and non-trivial
solutions, so the columns of A are linearly dependent.
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Example 9: v1 =

[
2
1

]
, v2 =

[
4

−1

]
, v3 =

[
−2
2

]
must be linearly dependent because there are only two entries in
each vector (n = 2) but there are 3 vectors (p = 3).

Indeed, if we compose the equation x1v1 + x2v2 + x3v3 = 0 , upon
reduction the corresponding matrix is[

2 4 −2
1 −1 2

]
→

[
1 2 −1
0 −3 3

]
→

[
1 0 1
0 1 −1

]
The basic variables are x1 , x2 and the free variable is x3 .

Thereby x1 = −x3 and x2 = x3

An explicit linear dependence equation is e.g.: v1 − v2 − v3 = 0 .
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Consider a set of vectors {v1,v2, . . . v6} given by these columns:
12 10 −6 −3 7 10
−7 −6 4 7 −9 5
9 9 −9 −5 5 −1

−4 −3 1 6 −8 9
8 7 −5 −9 11 −8


Upon row reduction, we find how vi are related.

→


1 0 2 0 2 0
0 1 −3 0 −2 0
0 0 0 1 −1 0
0 0 0 0 0 1
0 0 0 0 0 0


The set is dependent, but we see pivots in columns 1, 2, 4, 6.
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The REF form provides all the information on linear dependence:
1 0 2 0 2 0
0 1 −3 0 −2 0
0 0 0 1 −1 0
0 0 0 0 0 1
0 0 0 0 0 0


Pivot columns (1, 2, 4, 6) are linearly independent.

Therefore v1 , v2 , v4 , v6 are linearly independent.

The dependence coefficients appear in the non-pivot columns.

v3 = 2v1 − 3v2 and v5 = 2v1 − 2v2 − v4

Hence the examples of linear dependence equations:

2v1 − 3v2 − v3 = 0 and 2v1 − 2v2 − v4 − v5 = 0
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A long way to establish this relation runs by solving the system:


1 0 2 0 2 0
0 1 −3 0 −2 0
0 0 0 1 −1 0
0 0 0 0 0 1
0 0 0 0 0 0




x1

x2

x3

x4

x5

x6

 =


0
0
0
0
0
0



The solution


x1

x2

x3

x4

x5

x6

 =


−2x3 − 2x5

3x3 + 2x5

x3

x5

x5

0

 can be written as:

{
x1 = −2x3 − 2x5

x2 = 3x3 + 2x5

and

{
x4 = x5

x6 = 0
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Using the solution in the form{
x1 = −2x3 − 2x5

x2 = 3x3 + 2x5

and

{
x4 = x5

x6 = 0

we can rewrite the vector equation as follows:

x1v1 + x2v2 + x3v3 + x4v4 + x5v5 + x6v6 = 0

(−2x3 − 2x5)v1 + (3x3 + 2x5)v2 + x3v3 + x5v4 + x5v5 + 0 · v6 = 0

x3(−2v1 + 3v2 + v3) + x5(−2v1 + 2v2 + v4 + v5) = 0

The latter relation must hold true for any x3 and x5 , therefore

v3 = 2v1 − 3v2 and v5 = 2v1 − 2v2 − v4

(as we have figured out already, analysing the REF matrix).
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A single element v is linearly dependent if and only if v = 0 .

A set of two non-zero elements {u,v} is linearly dependent if
and only if one is a multiple of the other.

A set S = {v1,v2, . . . vm} of two or more elements is linearly
dependent if and only if at least one of the elements in S is a
linear combination of the other elements in S .

If S is a linearly dependent set, then some vj is a linear
combination of the preceding elements v1,v2, . . .vj−1 .

If a set contains 0 , then the set is linearly dependent.

(suppose vi = 0 , then 0v1 + 0v2 + . . .+ 1vi + . . .+ 0vm = 0
which demonstrates a linear dependence)

Any set {v1, . . . vp} ∈ Rn is linearly dependent if p > n .
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Linear combinations and span

Subspaces spanned by a set

Linear dependence or independence
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Class tests 2 are running this week at the tutorials

See you next week


