FUNDAMENTALS OF LINEAR ALGEBRA

Linear combinations
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Subspaces spanned by a set

Linear dependence or independence



Revision: Linear spaces

A linear space V is a non-empty set of objects, for which two
operations are defined so that Vu, v, w € V and V¢, d € R:

e addition (u+v)eV

@ multiplication by scalars

(cu)eV

and these operations obey the following axioms:
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ut+v=v+4+u

(u+v)+w=u+(v+w)

40 : u+0=u
d(-u) : u+(-u)=0
l-u=u

¢(du) = (cd)u
(c+du=cu+du

clu+v)=cu+cv

Consequences:

(ix) 0 is unique

(x)  (—u) is unique

(xi) 0-u=0
(xii) (=u)=(-1)-u
(xiii) ¢ 0=0

(xiv) u—v=u+(-v)

(w=u—-v if w+v=nu)



Revision: Subspaces

Definition: A subspace H of a linear space V is a subset of
elements with the following properties:

@ H is closed under addition: V (u,v) € H, (u+v) e H

@ H is closed under multiplication by scalars:
Vue H and VeceR, cue H

Every subspace is a linear space and satisfies the axioms.

Property of any subspace: H includes the zero element of V

(so if a set does not include the zero element, then it is not a subspace)
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Linear combinations

Definition: Given a set of elements {vy, vo... v,} €V
and given scalars {c1, ca...cpn} €R

(any real numbers including zero),
y=cvi+cve+t...cnVm

is called a linear combination of the set

{v1, va... v;u} with coefficients {c1, ca...cm}.

Example 1 (with vectors):

as[4] e e[i]

1 2
y2vl+3V22{ }+:%|:1:|



Linear combinations: examples
@ Example 2: Given pi(t) =1, p2(t) =13, and p3(t) =4 —t:
pa(t) =t>+t+3
is a linear combination of the set {p1, p2, p3} because

p1=T7pP1 + P2 — P3

whereas
ps(t) =2 +2

is not a linear combination of these polynomials.
o Example 3: Given the interval z € [0, 27], function
f(z) =2sinz — 3cosz
is a linear combination of the functions {sinz, cosz}, whereas

g(x) =5tanz + 4 cosx

is not a linear combination of those functions.



Linear combinations and Ax = b

If A is an m X n matrix with columns a;...a, and if x € R"
then Ax is the linear combination of the columns of A:

’7(—111 a2 ... (1111,-‘ T

asi Z2
Ax=| aj as ... a, ) = z1a; +x20ay ...+ xpa,
am1 Tn

In general, Ax = b can be interpreted as a linear combination
ria1 + xoas...+zpa, = b

as well as a system of linear equations for the unknowns x;.

This system can be solved by row-reducing the augmented matrix

[al ap --- an\b]



Linear combinations and Ax = b

Example: can b be written as a linear combination of a; and ay :

1 2 7
ag=| -2 |, ax=|5 and b= 4
-5 6 -3

That is, are there scalars x1,xo such that zia; + z0a2 =b

Solution: Equivalent formulations of the problem:

1 2 7
1| =2 | +22| 5 = 4 =1
-5 6 -3
r1 4+ 2z9 = 7 1 2 7
—221 4+ Bry = 4 & -2 5 [ﬂ: 4
5 4+ 6y = -3 5 6| "2 -3

3 equations for 2 unknowns, so it might easily have no solution



Linear combinations and Ax = b

1 2|7
The augmented matrix of the systemis | —2 5| 4
-5 6| -3

Reduce to REF with R, — R + 2R; and then R3 — R3 4+ 5R;

1 2|7 1 2|7 1 0|3
0 9|18 — 0 1]2 — 0 1|2
0 16|32 0 112 0 010

So, there is a solution: 1 = 3, 29 = 2, which means
b = 3a; + 2ay
and thus b can be presented as a linear combination of a; and as.

Note: vectors a;, as, b formed the the augmented matrix [al ao \b}



Span

Definition: For elements vi,va,... v, €V, the set of all their
linear combinations is denoted by Span{vi,va,... v,}
(it can be called a subset of V' spanned by vi,va,...Vvp)

In other words, span is the collection of all elements produced as
C1V1 +cavo + -+ -+ CpVyp

with arbitrary scalars ¢i, ¢ ... ¢, (possibly including zeros).

Vectors: for a given vector b € R™ and a set vi,va,... v, € R",
the following statements are equivalent :

@ b € Span{vy,va,... vy}
@ b is a linear combination of vi,va,... v,

e Equation [vi vy -+ v,]|x=Db has a solution



Span (examples with vectors) 10

Example 1: check if b € Span{a;,as}

1 5 -3
ai=| -2 |, a=| —13 and b= 8
3 -3 1

Solution: row-reduce the augmented matrix [a; az | b]:

1 5 -3 1 5 -3
-2 -13 8 — 0 -3 2
3 -3 1 0 0 -2
The bottom row in the REF shows an inconsistency 0 L —2, so

there are no solutions and therefore b ¢ Span{a;,as}, that is,
vector b is not a linear combination of vectors a; and as.



Span (examples with vectors) 11

Find h such that y € Span{vy,vy,v3} in R?, if

Example 2:
—4 1 ) -3
y= 31 vi=| -1 ], va=| -4 |, v3= 1
h -2 -7 0

Solution: vector y € Span{vi,va,vs} if £1v] + zavy + 23v3 =y

This vector equation corresponds to matrix equation

1 5 -3 —4 1 5 -3 -4 1 5 -3 -4
-1 -4 1 3|1 =101 -2 -1 - 101 -2 -1
-2 -7 0 &R 0 3 -6 h-8 0 0 0 h—=5

—4

3

which is only consistent if A =5, so then y =
5



Span (examples with vectors)

Continue reduction towards REF, taking into account h = 5:

1 5 -3 -4 1 5 -3 —4 1 0 7 1

01 -2 -1 =101 -2 -1 =01 -2 -1

00 0 hA-5 00 0 0 00 0 O
which gives free variable x3 and =1 =1—-"Tx3, xo3=—-1+ 2z3
Setting the free variable 3 =0, we get 1 =1 and x5 = —1.

Thus y =1vy — 1vy +0v3 = v — vy, which is easily checked:

—4 1 5
3| = -1|—-| -4
5 -2 -7

Note: it is also possible to choose x3 # 0, in which case the linear
combination will involve all the three vectors.

12



Subspaces spanned by a set 13

Theorem:
For vi,va,... v, €V, H = Span{vi,va,... v,} is a subspace of V.
H is called a subspace spanned (generated) by {vi,va,... vp,}.

] ) proof
(a) Any two elements in H can be written as ( )

u=cvy+---+cvy, and W =51Vi+ -+ 5,V
therefore their sum u+ w € H because
U+w=c1vi+---+¢Vp+51vi+ -+ 5pvp
= (c1+s1)vi+ -+ (cp +8p)Vp
(b) For any ¢ € R element cu € H because
cu=c(c1vi+ -+ cpvy) = (cer)vi + -+ + (ccp)vp
Thus H is a subspace of V.

Needless to say, zero elements is in H: 0=0vy+---+0v,.



Subspaces spanned by a set 14

Example:
a—3b
Let H be a set of all vectors of the form b ; @
b
where a, b are arbitrary scalars.
This can be rewritten as follows:
a—3b 1 -3
b—a -1 1
a =a 1 +b 0 =avy + bvs.
b 0 1

This rearrangement demonstrates that H = Span{vy,va}.

Therefore, H is a subspace of R* generated by v; and v, .



3

Geometric interpretation of span (R° example) 15

Let v be a nonzero vector in R3.
Then Span{v} = cv is the set of all scalar multiples of v.
This can be visualised as the line in R? through v and 0.

=7
W VI
i

If u, v € R? are nonzero vectors with u not a multiple of v, then
Span{u, v} = ciu + cov is the plane in R? that contains u,v,0.



Spanning a linear (sub)space

A set of elements vi,vs,...v, €V issaid to span V :

Span{vi,va,...,v,} =V

if every element in V is a linear combination of vi,va,...,v,.

In particular, the columns of A span R™ if every b € R™
is a linear combination of the columns of A.

For m x n matrix A, the following statements are equivalent:
@ The columns of A span R™
@ Ax =Db has a solution Yb € R™

@ Row-reduced A has a pivot position in every row

16



Spanning (or not) a vector space 17

Example 1: check if these vectors span R3:

1 —1 3
vy = 0 , Vo = 3 , vy=| —2
-1 7 —2

Row-reduce [v1, v2, v3] and see if we get a pivot in every row.

R3 - R3+R; R3 — R3 — 2R»
1 -1 3 1 -1 3 1 -1 3
0o 3 -2 — 0 3 -2 — 0 3 -2
1 7 =2 0 6 1 0 0 5

So there is a pivot in every row and thus {vi,va,v3} span R3.

Any vector from R3 is a linear combination of these vectors.



Spanning (or not) a vector space

Example 2: Check if the system Ax = b is consistent for all b:

1 3 4 by
A=| -4 2 -6 |, b= b
-3 -2 -7 b3
4 | b
. R2 — R2 + 4R1
Solution: —6 | by Rs — Ry + 3R,
—T7 | bs
1 3 4 by 1
0 14 10 | 4by + by Rs — Rs — =R,
0 7 5 |3b+bs 2
3 4 by
O 14 10 4b1 + bs
0 0 0 |3b+35(—4by —by) +bs

— only two pivots, therefore columns of A do not span R3.



Spanning (or not) a vector space 19
So, the EF of the augmented matrix upon the reduction is:

1 3 4 b1
0 14 10 4by + bo
0 0 0 |b—3by+bs
The system is only consistent if: by — (1/2)by + b3 = 0.

For consistency, the right-hand side must have the form

b1 bt 1 0
by = by =bh + by 1
b3 —b1 + (1/2)[)2 -1 1/2
[ 1 0
i.e. b € Span 0 |, 1
i -1 1/2

This statement represents all the possible solutions for Ax = b.



Spanning (or not) a vector space 20

So any vector spanned by the columns of A must have the form

by

1
by where by — =bys +b3=0
2
b3
1 3 4
In particular, each columnof A=| -4 2 —6
-3 -2 -7

satisfies the same constraint as by — by/2 +b3 =0 :

First column: 1-(-4)/2-3=0
Second column: 3—-2/2-2=0
Third column: 4—(-6)/2-7=0



Spanning (or not) a vector space 21

Geometrically, this relationship
defines a plane:

1
x1—5x2+x3:0

Span{ a;, ag, ag } =

1 0
Span 0 |, 1
~1 1/2

The vector space spanned by the columns of A is generated by
only two vectors (corresponding to REF A having only two pivots).



Spanning (or not) a vector space 22

For this example, revisiting the equivalent statements reveals:

@ " The columns of A span R™ "

False: Columns of A only span a plane (not the entire R?)

@ “ Ax = Db has a solution Yb e R™ "
False: System only has a solution if b1 —be/2+ b3 =0.

@ “ Row-reduced A has a pivot position in every row "
False: REF A has only 2 pivots, not 3.

The columns of A span a plane defined by two vectors:

o | e |2
1]



Linear dependence or independence

23



Linear dependence or independence: Definitions
o Aset {vy,va,... vi,} €V is linearly independent if
civi+covo+ ...+ v, =0

has only the trivial solution (with all ¢; = 0).

o Aset {vy,va,... vi,} €V is linearly dependent if there are
weights c¢1, s, ... ¢y, not all equal to zero, such that

civi +covo + ...+ v, = 0.
The above relation is a linear dependence relation.
Linear (in)dependence is the property of a whole given set.

Not every element must be a linear combination of the other ones.

Linear dependence equation does not necessarily include all elements.



Linear dependence: example 25

Example 1: Find if the set {vi, vy, v3} is linearly dependent

1 4 2
Vi = 2 ’ Vo = 5 ’ V3 = 1
3 6 0

To do so, we need to solve the equation x1vy + xave + x3vy =0

1 4 2 0
1| 2 | +x2| b | +x3| 1 = 0
3 6 0 0

The augmented matrix can be reduced to REF as

1 4 20 1 4 20 1 0 -2 0
2510 — 0 -3 -3 0 — 01 10
36 00 0 6 -6 0 00 00

which indicates a nontrivial solution, so {v;} is linearly dependent.



Linear dependence: example 26

Now we can obtain an explicit form of the linear dependence
T1V1 + T2vo + x3vy = 0

seeing that x1, xo are basic, and z3 is a free variable:

1 0 -2 0 xr, = 21‘3
0 1 1 0 = T2 = —I3
00 00O Vs € R

Any non-zero value for 3 yields a nontrivial solution; e.g. x3 =1:
2vi—vo+vy3 =0
This is a linear dependence equation for vy, va, v3.

Any other coefficients satisfying the above relations are suitable:

dvi —2vo +2v3 =0

—2vi+ve—v3=0



Linear (in)dependence: examples 27

e Example 2: Given pi(t) =1, pa(t) =t, and p3(t) =4 — ¢,
this polynomial set {p1,p2, p3} € P is linearly dependent,
because p3 = 4p; — p2, thatis, 4p; —p2 —p3 =0

o Example 3: In Fjy 5, (continuous functions on 0 <t < 27)
the set {asint, bcost} is linearly independent:
c1sint + cocost =0 only has the trivial solution, as

there is no scalar ¢ such that cost =csint Vit € [0, 27].

o Example 4: {sintcost, sin2t} € Fjg 5] is linearly dependent,
because sin2t = 2sintcost Yt € [0, 7],

so the linear dependence equation is 2sintcost —sin2t = 0.



Linear dependence or independence 28

@ Zero element is linearly dependent as the equation ¢-0 =0
has infinite number of non-trivial solutions.

@ One element {v} is linearly independent if and only if v # 0
(because ¢v = 0 has only the trivial solution for v # 0).

@ The columns of matrix A are linearly independent if and only
if the equation Ax = 0 has only the trivial solution.

This directly follows from the fact that homogeneous equation
Ax = 0 is equivalent to z1a; + z9a2 + ...+ x,a, = 0.

Any linear dependence relation between the columns of A
corresponds to a nontrivial solution of Ax = 0.



Linear independence: example 29

Example 5:

Check if the columns of this matrix are linearly independent:

01 4 1 2 -1 1 2 -1
1 2 -1 — 0 1 4 — 01 4
5 8 0 0 -2 5 0 0 13

The EF shows pivots in every row, there are no free variables

So each column has a pivot, then Ax = 0 only has the trivial
solution, therefore the columns of A are linearly independent.

In other words, equation x1a; + x2a2 + x3a3 = 0 only has a trivial
solution, therefore vectors {a;} are linearly independent.



Easy check for a set of two elements

For a set of two elements only, linear dependence is easy to check:

It is sufficient to check if they are multiples of each other. Proof:

Suppose there are scalars ¢ # 0 and d such that ¢v + du = 0.
Then v = (—d/c)u, implying them to be multiples of each other.

Vice versa, if v = ku, then v + (—k)u = 0, with at least one
non-zero coefficient, so the two elements are linearly dependent.

Example 6: vy = [ i’ } , Vo= [ g ] — linearly dependent
3 6 : .

Example 7: V3= g | VA=, — linearly independent
3 6

Example 8: u=|1]|, v=1|0 — linearly independent

1



Linear independence and span (three elements) 31
(1) If w € Span{u, v} then {u,v,w} is a linearly dependent set.

Proof: If w € Span{u,v} then w = c;u+ cav, which can be rewritten
as ciu + cov + caw = 0 with non-trivial ¢c3 = —1. Therefore, the set
{u,v,w} is linearly dependent.

(2) If u and v are linearly independent, but the set {u,v,w} is
linearly dependent, then w € Span{u,v}.

Proof: If {u,v,w} is linearly dependent, then c;u+ cov + csw =0
with ¢z # 0 in this case (why?). Therefore w = —(c¢1/c3)u — (ca/c3)v,
implying w € Span{u,v}.

Linearly dependent, Linearly independent,
w in Span{u, v} w not in Span{u, v}



Linearly independent sets 32

Theorem:

o Aset S ={vy,va,... vy} of two or more elements
is linearly dependent if and only if at least one of the elements
in S is a linear combination of the other elements in S.

e If S is a linearly dependent set, then some v; is a linear
combination of the preceding elements vi,va,...v;j 1.

Proof follows the same logic as in the previous example with 3 elements.

Theorem:

@ Any set {vi,... v,} € R" is linearly dependent if p > n.
That is, if a set contains more vectors than there are entries in
each vector, then the set is linearly dependent.

Proof: Compose A = {vy,vs,...V,}, an n x p matrix. Then Ax =0
corresponds to n equations with p unknowns. If p > n, there are more
variables than equations so there must be free variables and non-trivial
solutions, so the columns of A are linearly dependent.



Linear dependence: example 33

Example 9: V1:|:?:|,V2:|:_411:|,V3:|:_§:|

must be linearly dependent because there are only two entries in
each vector (n = 2) but there are 3 vectors (p = 3).

Indeed, if we compose the equation z1vy + x2vy + x3v3 = 0, upon
reduction the corresponding matrix is

2 4 -2 1 2 -1 . 1 0 1

1 -1 2 0 -3 3 01 -1
The basic variables are x1, x5 and the free variable is z5.
Thereby x1 = —x3 and x5 =23

An explicit linear dependence equation ise.g.: vy — vy —v3 =0.



Linear independence: example 10 34

Consider a set of vectors {vy,Vva,... vg} given by these columns:

12 10 -6 -3 7 10
-7 -6 4 7 -9 5
9 9 -9 -5 5 -1
-4 -3 1 6 -8 9
8§ 7 -5 -9 11 -8

Upon row reduction, we find how v; are related.

10 2 0 2 O
o 1 -3 0 -2 0
— o o o0 1 -1 0
o o0 o0 0 0 1
o o o0 o0 0 O

The set is dependent, but we see pivots in columns 1, 2, 4, 6.



Linear independence: example 10

The REF form provides all the information on linear dependence:

1 0 2 0 2 0
0o 1 -3 0 -2 0
0o 0 o0 1 -1 O
0O 0 0 0 0 1
o 0o o0 o0 0 O

Pivot columns (1, 2, 4, 6) are linearly independent.

Therefore vi, va, v4, vg are linearly independent.

The dependence coefficients appear in the non-pivot columns.
vy = 2vi — 3vy and Vs = 2V — 2Vy — Vy

Hence the examples of linear dependence equations:

2vy —3vg —v3 =20 and 2vy —2vg — vy —v5 =0

35



Linear independence: example 10

A long way to establish this relation runs by solving the system:

OO OO
OO O = O

A
€2
€3
T4
&5

The solution

Ze

O OO W
OO = OO

721‘3
3!173
T3

To = 3x3 + 225

{xl = —256‘3 — 2.7,‘5

0 X1 0
i) 0
0
I3 0
0 —
Ty 0
1
0 Is 0
L Te 0
— 2.L5 T
+ 2.’E5
can be written as:
x5
T5
0 -




Linear independence: example 10

Using the solution in the form

xr1 = —2.%‘3 — 2.1‘5 Ty = Ty
and
To = 3x3 + 225 Tg =
we can rewrite the vector equation as follows:
T1V] + TaVa + 23V3 + T4V + T5Vs + Ve = 0

(72.733 - 2.7,‘5)V1 + (37‘3 + 27[35)V2 + X3V3 + T5Vy + T5Vy + 0- Vg = 0

x3(—2v1 +3va +v3) + x5(—2vy + 2va + vy +v5) =0

The latter relation must hold true for any x3 and x5, therefore
vy = 2vy] — 3vy and Vs = 2v] — 2vy — vy

(as we have figured out already, analysing the REF matrix).

37



Linear

independence: Summary 38

A single element v is linearly dependent if and only if v =0.

A set of two non-zero elements {u, v} is linearly dependent if
and only if one is a multiple of the other.

Aset S ={vi,va,... v;,} of two or more elements is linearly
dependent if and only if at least one of the elements in S is a
linear combination of the other elements in S.

If S is a linearly dependent set, then some v; is a linear
combination of the preceding elements vi,va,...v;j_1.

If a set contains 0, then the set is linearly dependent.

(suppose v; =0, then Ov; +0vo + ...+ 1v; +...+0v,, =0
which demonstrates a linear dependence)

Any set {vy,... v,} € R" is linearly dependent if p > n.



Summary

@ Linear combinations and span

@ Subspaces spanned by a set

@ Linear dependence or independence
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Questions?

Class tests 2 are running this week at the tutorials

See you next week
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