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Revision: Linear spaces 2

A linear space V is a non-empty set of objects, for which two
operations are defined so that ∀ u, v, w ∈ V and ∀ c, d ∈ R :

addition (u+ v) ∈ V

multiplication by scalars (cu) ∈ V

and these operations obey the following axioms:

(i) u+ v = v + u

(ii) (u+ v) +w = u+ (v +w)

(iii) ∃0 : u+ 0 = u

(iv) ∃ (−u) : u+ (−u) = 0

(v) 1 · u = u

(vi) c (du) = (c d)u

(vii) (c+ d)u = cu+ du

(viii) c (u+ v) = cu+ cv

Consequences:

(ix) 0 is unique

(x) (−u) is unique

(xi) 0 · u = 0

(xii) (−u) = (−1) · u
(xiii) c · 0 = 0

(xiv) u− v = u+ (−v)

(w = u− v if w + v = u)
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Definition: A subspace H of a linear space V is a subset of
elements with the following properties:

H is closed under addition: ∀ (u,v) ∈ H, (u+ v) ∈ H

H is closed under multiplication by scalars:
∀u ∈ H and ∀ c ∈ R , cu ∈ H

Every subspace is a linear space and satisfies the axioms.

Property of any subspace: H includes the zero element of V

(so if a set does not include the zero element, then it is not a subspace)



Revision: Linear combinations, span, linear independence 4

Definition: y = c1v1 + c2v2 + . . . cnvn, vi ∈ V, ci ∈ R
is called a linear combination of the set {v1,v2, . . . vn}
with coefficients {c1, c2 . . . cn} .

Definition: For elements v1,v2, . . . vp ∈ V , the set of all their
linear combinations is denoted by Span{v1,v2, . . . vp} and
it is a subspace of V spanned (generated) by v1,v2, . . . vp .

Definition: A set {v1,v2, . . . vm} is linearly independent if

c1v1 + c2v2 + . . .+ cmvm = 0

has only the trivial solution (with all ci = 0).

If S is a linearly dependent set, then some vj is a linear
combination of the preceding elements v1,v2, . . .vj−1 .

If a set contains 0 , then this set is linearly dependent.

Vector set {v1, . . . vp} ∈ Rn is linearly dependent if p > n .
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Definition: Set B = {b1, . . . bp} ∈ V is a basis for subspace H

if: (i) B is a linearly independent set,

and (ii) H = Span{b1, . . . bp}

Note: This definition also applies for H = V .

Theorem: If a linear space V has a basis B = {b1, . . .bn}
with n elements, then any set in V containing
more than n elements must be linearly dependent.

Theorem: If a linear space V has a basis of n elements, then
every basis of V must consist of exactly n elements.
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Example 1: Set P = {1, t, t2, . . . tn} is a basis for Pn .

This basis is called the standard basis for polynomial space Pn .

Proof: It is obvious that any polynomial of a degree up to n ,
can be written as a linear combination of the elements of P .
Therefore, set P spans the polynomial space Pn .

To check S for linear independence, consider if

c0 · 1 + c1t+ c2t
2 + . . .+ cnt

n = 0 ∀ t

However a polynomial of degree n has at most n roots, which
means that, in general, the above relation can only be satisfied for
not more than some n specific values of t , but not for any t .

Therefore the above relation can only be satisfied for all t
if all ci = 0 , thus the set P is linearly independent.
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Example 2: For any vector in R2 :

[
x1
x2

]
= x1

[
1
0

]
+ x2

[
0
1

]
Vectors e1 =

[
1
0

]
and e2 =

[
0
1

]
are the standard basis in R2

Similarly in R3 : x = x1e1 + x2e2 + x3e3 ; the standard basis is

e1 =

 1
0
0

 and e2 =

 0
1
0

 and e3 =

 0
0
1



Generally in Rn x = x1e1 + . . .+ xnen with en :

{
e(i=n)
n = 1

e(i ̸=n)
n = 0

(columns of the corresponding identity matrix)
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Example 3: Determine if the set {v1,v2,v3} is a basis for R3 if

v1 =

 3
0
6

 , v2 =

 −4
1

−2

 , v3 =

 −2
1
5

 .

Solution: Check that the set {v1,v2,v3} spans R3 :

c1v1 + c2v2 + c3v3 = b is consistent ∀b ∈ R3

and that this set is linearly independent:

c1v1 + c2v2 + c3v3 = 0 only if ci = 0 ∀ i

(1) Spanning: solution for any ‘right-hand’ side (inhomogeneous eq.);

(2) Linear independence: only the trivial solution (homogeneous eq.).
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Example 3: Determine if the set {v1,v2,v3} is a basis for R3 if

v1 =

 3
0
6

 , v2 =

 −4
1

−2

 , v3 =

 −2
1
5

 .

So: we are checking if the set spans R3 and is linearly independent:

(1) Solution for any ‘right-hand’ side (for inhomogeneous eq.);

(2) Only the trivial solution (for homogeneous eq.).

Considering the equations in matrix form, this implies having:

(1) pivots in every row, and (2) pivots in every column. 3 −4 −2
0 1 1
6 −2 5

 →

 3 −4 −2
0 1 1
0 6 9

 →

 3 −4 −2
0 1 1
0 0 3


Pivots in every column and every row: {vi} is a basis for R3 .
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Example 4: Consider H = Span{v1,v2,v3} where

v1 =

 0
2

−1

 , v2 =

 2
2
0

 , v3 =

 6
16
−5


It is easy to see that v3 = 5v1 + 3v2 , therefore ∀u ∈ H

u = c1v1 + c2v2 + c3v3 = c1v1 + c2v2 + c3(5v1 + 3v2)

= (c1 + 5c3)v1 + (c2 + 3c3)v2.

Thus u ∈ Span{v1,v2} and so H is identical to Span{v1,v2} .
In other words, it turns out Span{v1,v2,v3} = Span{v1,v2} .
Clearly, every vector in Span{v1,v2} belongs to H because

c1v1 + c2v2 = c1v1 + c2v2 + 0v3.

Then, we see that v1,v2 are linearly independent (v1 ̸= cv2 ).

Therefore, we can conclude that {v1,v2} is a basis for H .
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Example 4: Consider H = Span{v1,v2,v3} where

v1 =

 0
2

−1

 , v2 =

 2
2
0

 , v3 =

 6
16
−5


Note: We have written that v3 = 5v1 + 3v2 .

However, equivalently v1 = −3

5
v2 +

1

5
v3 , or v2 =

1

3
v3 −

5

3
v1 .

Thus Span{v1,v2,v3} = Span{v2,v3} = Span{v3,v1} .

The pair v2, v3 is linearly independent, and v3, v1 as well.

Therefore, {v2,v3} is also a basis for H , and so is {v2,v3} .

Any two of these three vectors make a basis for H .
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A basis is an “efficient” spanning set
that contains only “necessary” elements.

A basis can be constructed from a spanning set
by discarding unnecessary elements.

Theorem (the spanning set theorem):

Let S = {v1, . . . vp} be a set in V , and H = Span{v1, . . . vp} .

(a) If one of the elements in S , say vi , is a linear combination of
the other elements in S , then the set formed from S by
removing vi still spans H .

(b) If H ̸= {0} , some subset of S is a basis for H .
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(a): Suppose vp = a1v1 + . . .+ ap−1vp−1 . Then ∀x ∈ H ,

x = c1v1 + . . .+ cp−1vp−1 + cpvp

= c1v1 + . . .+ cp−1vp−1 + cp(a1v1 + . . .+ ap−1vp−1)

= (c1 + cpa1)v1 + . . .+ (cp−1 + cpap−1)vp−1

Thus {v1, . . . vp−1} spans H , because this holds ∀x ∈ H .

(b): If S is linearly independent, then it is already a basis for H .

If not, then one of the elements can be removed (see part a).
We can continue to remove elements until the remaining set is
linearly independent and hence is a basis for H .

If the set is eventually reduced to one element, that element
will be non-zero because H ̸= {0} . Since a single non-zero
element v is linearly independent, it will be a basis for H .



Spanning set theorem (notes) 14

Notes:

A basis is the smallest possible spanning set.

A basis is the largest possible linearly independent set.

If S is a basis for V and is enlarged by one element w ∈ V
then the enlarged set cannot be linearly independent, because
S spans V so w is a linear combination of the elements of S .

If S is a basis for V and if S is made smaller by one element
u ∈ V then the reduced set cannot serve as a basis, because
it will not span V anymore.

Any smaller linearly independent set can be enlarged to form a basis,
but further enlargement destroys the linear independence.

Any excessively large spanning set can be reduced to a basis,
but further shrinking destroys the spanning property.
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A linearly independent set which does not span R3 :
 1

0
0

 ,

 2
3
0

 .

A basis for R3 : 
 1

0
0

 ,

 2
3
0

 ,

 4
5
6

 .

A set that spans R3 but is linearly dependent:
 1

0
0

 ,

 2
3
0

 ,

 4
5
6

 ,

 7
8
9

 .

(Any) 3 linearly independent vectors form a basis for R3 .

2 (or less) are not sufficient, while 4 (or more) are too many.
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Dimension of a linear space 17

Definition: If V is spanned by a finite set, then V is called a
finite-dimensional space, and the dimension of V , written as
dimV = n , is the number n of elements in a basis for V .

The dimension of the {0} linear space is defined to be zero.

If V is not spanned by a finite set then V is infinite-dimensional.

Warning: for a vector subspace, dimension is the number of
elements in a basis, not a number of entries in each vector.

Theorem: (the basis theorem)

Let V be a n-dimensional linear space, n ⩾ 1 . Then:

• any linearly independent set of n elements in V is a basis for V ;

• any set of n elements that spans V is a basis for V .
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Example: The basis for Rn contains n vectors, so dimRn = n .

Example: The standard polynomial basis is {1, t, t2, t3, . . .} ,

so, e.g. dimP2 = 3 ; dimP0 = 1 ; and in general, dimPn = n+ 1 .

The space P of all polynomials is infinite-dimensional.

Example:

Let H = Span{v1,v2}, with

v1 =

 3
6
2

 , v2 =

 −1
0
1


Set {v1,v2} is a basis for H,
since v1 and v2 are linearly
independent. So dimH = 2.
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Theorem: Let H be a subspace of a finite-dimensional space V .
Then any linearly independent set in H can be expanded to a
basis for H , and dimH ⩽ dimV .

Proof: If H = {0} , then certainly dimH = 0 ⩽ dimV .

Otherwise let S = {u1 . . .uk} be a linearly independent set in H .

If S spans H then S is a basis for H .

Otherwise there is a some uk+1 ∈ H which is not in span of S .

Then the set S′ = {u1, . . .uk, uk+1} is linearly independent.

As long as the new set S′ does not span subspace H we can
continue to add linearly independent elements, expanding S to a
larger linearly independent set in H .

But the number of elements can never exceed dimV , which is a
number of linearly independent elements in the entire space V .

Eventually the expanded set S will span H and dimH ⩽ dimV .



Example: Various subspaces of R3
20

0-dimensional subspace: only the zero subspace.

1-dimensional subspaces: any subspace spanned by a single
nonzero vector — these define lines through the origin.

2-dimensional subspaces: any subspace spanned by two
linearly independent vectors — planes through the origin.

3-dimensional subspace: only R3 itself — any three linearly
independent vectors in R3 span the entire R3 .



Example (a vector subspace) 21

Example: Find the dimension of a subspace defined as

H =




a− 3b+ 6c
5a+ 4d

b− 2c− d
5d


 a, b, c, d ∈ R.

Solution: Decomposing these vectors, we have
a− 3b+ 6c
5a+ 4d

b− 2c− d
5d

 = a


1
5
0
0

+ b


−3
0
1
0

+ c


6
0

−2
0

+ d


0
4

−1
5


Therefore H is the set of all linear combination of vectors

v1 =


1
5
0
0

 , v2 =


−3
0
1
0

 , v3 =


6
0

−2
0

 , v4 =


0
4

−1
5

 .



Example (a vector subspace) 22

By analysing these vectors, we notice the following

v1 =


1
5
0
0

 , v2 =


−3
0
1
0

 , v3 =


6
0

−2
0

 , v4 =


0
4

−1
5

 .

v2 is not a multiple of v1

v3 is a multiple of v2 (since v3 = −2v2 ). By spanning set
theorem, if we discard v3 , the remaining set still spans H

v4 is not a linear combination of v1 and v2 (why?)

So {v1,v2,v4} is a linearly independent set and a basis for H .

Thus: dimH = 3 .

Alternatively, we could make a row-reduction of the corresponding
matrix, to discover that there are three pivots only.



Example (a polynomial subspace) 23

Example: Find the dimension for a set of all polynomials {q(t)}
of P2 , such that q(t) = 0 for t = 1 .

A general form for a polynomial of P2 is: p(t) = c0 + c1t+ c2t
2 .

But ∀ q(t) : q(1) = c0 + c1 · 1 + c2 · 12 = c0 + c1 + c2 = 0

from where we can generally express e.g. c0 = −c1 − c2 :

q(t) = (−c1 − c2) + c1t+ c2t
2 = c1(t− 1) + c2(t

2 − 1)

So any q(t) is a linear combination of two polynomials

q1(t) = t− 1 and q2(t) = t2 − 1

which are linearly independent. So {q1, q2} is a basis for {q(t)} .

Therefore dim{q(t)} = 2 .

NB: The above basis is not unique. Expressing c2 via c0 and c1 ,
or c1 via c0 and c2 , we obtain other pairs of basis polynomials.
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Definition: A one-to-one correspondence is said to be established
between linear spaces V and W if every element v ∈ V is
mapped to element w ∈ W so that each w ∈ W is mapped by
only one element v ∈ V . One of the usual notations is: v ↔ w .

Definition: Linear spaces V and W are called isomorphic if
there is a one-to-one correspondence such that:

(v1 + v2) ↔ (w1 +w2) if vi ↔ wi

and cv ↔ cw if v ↔ w (with the same c)

Theorem: Linear spaces V and W are isomorphic

if and only if dimV = dimW .

Notation and terminology may be very different in V and W ,
however as linear spaces they have identical structure.
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Example:

Set P = {1, t, t2, t3} is the standard basis in the space P3 .

Thus dimP3 = dimR4 , therefore P3 and R4 are isomorphic.

A one-to-one correspondence between a typical element of P3

p = a0 + a1t+ a2t
2 + a3t

3

and a typical vector of R4 can be established:
a0
a1
a2
a3

 or


a3
a2
a1
a0

 etc.

Any linear operations in P3 correspond to those in R4 .
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Polynomial space Pn is isomorphic to vector space R(n+1)

A space of all arrows defined in a geometric space with
n independent directions is isomorphic to vector space Rn

A space of all m× n matrices Mm
n of real numbers is

isomorphic to polynomial space P(m·n−1) and to R(m·n)

A space of all functions f(t) = a sin t+ b cos t where
a, b ∈ R , is isomorphic to R2 as well as to P1

Establishing an isomorphism to an appropriate vector space is
highly useful in the analysis of linear spaces, since vector spaces
can be analysed with the necessary matrix equations.
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Example: Check if these polynomials are linearly dependent:

p1 = 1 + 2t2, p2 = 4 + t+ 5t2, p3 = 3 + 2t

Solution: These pi ∈ P2 which is isomorphic to R3 :

p1 ↔

10
2

 , p2 ↔

41
5

 , p3 ↔

32
0


Check for linear dependence of these vectors by row reduction: 1 4 3

0 1 2
2 5 0

 →

 1 4 3
0 1 2
0 −3 −6

 →

 1 0 −5
0 1 2
0 0 0


No pivot in the third column so the columns are linearly dependent.
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So x3 is a free variable, and then x2 = −2x3 and x1 = 5x3 : 1 0 −5
0 1 2
0 0 0


Choosing e.g. x3 = 1 , we have x1 = 5 and x2 = −2 :

5

 1
0
2

− 2

 4
1
5

+

 3
2
0

 = 0

Coming back to the polynomials, the corresponding relation is:

5p1 − 2p2 + p3 = 0 which can be confirmed:

5(1 + 2t2)− 2(4 + t+ 5t2) + (3 + 2t) = 0 ∀ t



Summary 29

Basis

(minimal spanning set, maximal linearly independent set)

Dimension

(number of elements in a basis)

Isomorphism

(equivalence between linear spaces)
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Class tests 3 are running this week at the tutorials

See you next week


