UNIVERSITY OF TECHNOLOGY SYDNEY School of Mathematical and Physical Sciences

37233 LINEAR ALGEBRA

Exercises 5

Question 1

Consider vectors
$$\begin{bmatrix} 1\\-1\\-3 \end{bmatrix}$$
, $\begin{bmatrix} -3\\4\\9 \end{bmatrix}$, and $\begin{bmatrix} 2\\-2\\4 \end{bmatrix}$.

(a) Figure out if these vectors form a basis \mathcal{B} for \mathbb{R}^3 .

(b) Find
$$\mathcal{B}$$
-coordinates $[\mathbf{x}]_{\mathcal{B}}$ for $\mathbf{x} = \begin{bmatrix} 8\\ -9\\ 6 \end{bmatrix}$.

(c) Find **y** which has \mathcal{B} -coordinates $\begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathcal{B}} = \begin{pmatrix} 16\\ 5\\ 1 \end{pmatrix}$.

Question 2

Suppose $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3\}$ are bases for \mathbb{R}^3 , even though we do not know the coordinates of all those vectors relative to the standard basis.

However, we know that $\mathbf{b}_1 = \mathbf{c}_1 - 2\mathbf{c}_2 + 2\mathbf{c}_3$, $\mathbf{b}_2 = 2\mathbf{c}_1 - 3\mathbf{c}_2 + 4\mathbf{c}_3$, and $\mathbf{b}_3 = 3\mathbf{c}_1 - 4\mathbf{c}_2 + 7\mathbf{c}_3$.

- (a) Find $[\mathbf{x}]_{\mathcal{C}}$ given that $\mathbf{x} = -6\mathbf{b}_1 + 5\mathbf{b}_2 \mathbf{b}_3$.
- (b) Find $[\mathbf{y}]_{\mathcal{B}}$ given that $\mathbf{y} = \mathbf{c}_1 3\mathbf{c}_2 + 2\mathbf{c}_3$.

Question 3

Let

$$\mathbf{B} = \begin{bmatrix} 6 & 0 & 0 & 4 \\ 4 & 2 & 0 & 0 \\ 0 & -8 & 4 & 0 \\ 0 & 0 & 2 & -6 \end{bmatrix} \quad \text{and} \quad \mathbf{C} = \begin{bmatrix} 1 & 5 & -5 & 5 \\ 1 & 3 & -1 & 1 \\ 6 & -6 & -2 & 6 \\ 4 & -4 & 4 & -2 \end{bmatrix}$$

(a) Check if the columns of **B** form a basis \mathcal{B} for \mathbb{R}^4 , and if the columns of **C** form another basis \mathcal{C} for \mathbb{R}^4 .

(b) Find
$$\mathcal{B}$$
-coordinates of $\mathbf{x} = \begin{bmatrix} 4 \\ 4 \\ 4 \\ 4 \end{bmatrix}$.

- (c) Find the change-of-coordinate matrix from \mathcal{B} to \mathcal{C} .
- (d) Using the above matrix, find $[\mathbf{x}]_{\mathcal{C}}$.

Question 4

Hermite polynomials are used in mathematical physics and probability theory.

The first four of these polynomials are: $h_1 = 1$, $h_2 = 2t$, $h_3 = 4t^2 - 2$, and $h_4 = 8t^3 - 12t$.

- (a) Show that these polynomials form a basis \mathcal{H} for \mathbb{P}^3 .
- (b) Find the coordinates of a polynomial $p = t^3 + t^2 + t + 1$ in the basis \mathcal{H} .

(c) Write down polynomial q with \mathcal{H} -coordinates $[q]_{\mathcal{H}} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$.

(d) Take the following set $\{q_i\}$ of polynomials in \mathbb{P}^3 :

 $q_1 = 1$, $q_2 = t + 1$, $q_3 = t^2 + t + 1$, and $q_4 = t^3 + t^2 + t + 1$.

- (i) Determine if set $\{q_i\}$ forms a basis \mathcal{Q} in \mathbb{P}^3 .
- (ii) Obtain the change of coordinates matrix $\mathbf{P}_{\mathcal{Q}\leftarrow\mathcal{H}}$.
- (iii) Calculate the coordinates of $r = t \cdot (1 + 2t + 3t^2)$ relative to \mathcal{H} .
- (iv) Use the change of coordinates matrix found in (b) to calculate $[r]_{\mathcal{O}}$.