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Definition: Set B = {b1, . . . bp} ∈ V is a basis for V if

(i) B is a linearly independent set, and

(ii) V = Span{b1, . . . bp}

Notes:

A basis is the smallest possible spanning set.

A basis is the largest possible linearly independent set.

If S is a basis for V and is enlarged by one element w ∈ V
then the enlarged set cannot be linearly independent, because
S spans V so w is a linear combination of the elements of S .

If S is a basis for V and if S is made smaller by one element
u ∈ V then the reduced set cannot serve as a basis, because
it will not span V anymore.
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Definition: If V is spanned by a finite set, then V is called a
finite-dimensional space, and the dimension of V , written as
dimV = n , is the number n of elements in a basis for V .

Warning: for a vector space, dimension is the number of
elements in a basis, not a number of entries in each vector.

Theorem: Let V be a p -dimensional linear space, p ⩾ 1 . Then:

• any linearly independent set of p elements in V is a basis for V ;

• any set of p elements that spans V is a basis for V .

Theorem: Let H be a subspace of a finite-dimensional space V .

Any linearly independent set in H can be expanded

to a basis for H , and dimH ⩽ dimV .
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Definition: A one-to-one correspondence is said to be established
between linear spaces V and W if every element v ∈ V is
mapped to element w ∈ W so that each w ∈ W is mapped by
only one element v ∈ V . One of the usual notations is: v ↔ w .

Definition: Linear spaces V and W are called isomorphic if
there is a one-to-one correspondence such that:

(v1 + v2) ↔ (w1 +w2) if vi ↔ wi

and cv ↔ cw if v ↔ w (with the same c)

Theorem: Linear spaces V and W are isomorphic

if and only if dimV = dimW .

Establishing isomorphism to an appropriate vector space is highly
useful in the analysis of linear spaces, since vector spaces can be
analysed with the necessary matrix equations.



The role of basis 5

So, an indexed set B = {b1, . . .bp} is a basis in V if:

B is a linearly independent set, and V = Span{b1, . . .bp}

An important reason for specifying a basis B for linear space V
is to introduce a coordinate system within V :

If dimV = n , then a coordinate system will describe a specific
isomorphism between linear space V and vector space Rn .

Theorem: (the unique representation theorem)

Let B = {b1, . . . bn} be a basis for a linear space V .

Then ∀x ∈ V there exists a unique set of scalars x1, . . . xn such that

x = x1b1 + . . .+ xnbn.
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Proof: As V = SpanB there exists a set of scalars {ci}n such that

x = c1b1 + . . .+ cnbn.

Suppose another set {di}n also satisfies x = d1b1 + . . .+ dnbn.

Then we can write

0 = x+ (−x) = x+ (−1) · x

= c1b1 + . . .+ cnbn − d1b1 − . . .− dnbn

= (c1 − d1)b1 + . . .+ (cn − dn)bn.

However, because B is a linearly independent set, all the
coefficients (ci − di) must be equal to zero:

ci = di 1 ⩽ i ⩽ n.

Therefore, representation x = c1b1 + . . .+ cnbn is unique.
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Definition: Let B = {b1, . . .bn} be a basis for V , and x ∈ V .
(1) Coordinates of x relative to basis B (or B -coordinates of x)
are the coefficients x1, . . . xn such that

x = x1b1 + . . .+ xnbn

(2) If x1, . . . xn are the B -coordinates of x , then

[x]B =

 x1
...
xn

 ∈ Rn

is the coordinate vector of x , relative to B .

Unique correspondence x 7→ [x]B is called coordinate mapping.



Coordinate mapping 8

So, by selecting a basis B = {b1, . . .bn} in a linear space V
we can introduce a coordinate system in V .

Coordinate mapping x 7→ [x]B makes V isomorphic to Rn .

Linear operations with coordinate vectors of the elements of V are
equivalent to the corresponding linear operations with those elements.
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Example 1: Coordinates of x =

45
6

 in the standard basis E(3)

e1 =

10
0

 , e2 =

01
0

 , e3 =

00
1


are obvious, but can be formally retrieved by “solving” the system1 0 0 4

0 1 0 5
0 0 1 6

 ⇒


x1 = 4

x2 = 5

x3 = 6

so [x]E =

 4
5
6



Coordinate vector in the standard basis is the same as the vector.
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Example 2:

P = {1, t, t2, t3, t4} is the standard basis in the space P4 .

A typical element p of P4 has the form

p = a0 + a1t+ a2t
2 + a3t

3 + a4t
4

This is a linear combination of the standard basis vectors, so

[p]P =


a0
a1
a2
a3
a4


Coordinate mapping p 7→ [p]P is an isomorphism of P4 and R5 .

All linear operations in P4 correspond to operations in R5 .
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Example 3a: Consider a basis B = {b1,b2} for R2 , where

b1 =

[
1
0

]
, b2 =

[
1
2

]
(we can easily see these two vectors are linearly independent)

Let x ∈ R2 have the following B -coordinate vector:

[x]B =

(
−2
3

)

The B -coordinates of x directly produce x from the vectors of B :

x = −2b1 + 3b2 = −2

[
1
0

]
+ 3

[
1
2

]
=

[
1
6

]
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(Example 3a): x =

[
1
6

]
in the standard basis e1 =

[
1
0

]
, e2 =

[
0
1

]
and in basis B = {b1;b2} with b1 = e1 and b2 =

[
1
2

]
.

Coordinates

[
1
6

]
locate x relative to the standard basis.

B -coordinates [x]B =

(
−2
3

)
locate x relative to B .
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Example 3b: The same basis B = {b1,b2} , and x ∈ R2 :

b1 =

[
1
0

]
, b2 =

[
1
2

]
; x =

[
6
4

]
.

To find the B -coordinates for vector x , we need to solve

x = x1b1 + x2b2 = x1

[
1
0

]
+ x2

[
1
2

]
=

[
6
4

]

[
1 1 6
0 2 4

]
→

[
1 0 4
0 1 2

]
⇒

{
x1 = 4

x2 = 2
thus [x]B =

(
4
2

)

This can be easily verified: 4

[
1
0

]
+ 2

[
1
2

]
=

[
6
4

]
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Example 4: recall B = {v1,v2} is a basis for H = Span{v1,v2}

with v1 =

 3
6
2

 , v2 =

 −1
0
1

 ; consider x =

 3
12
7


and determine if x ∈ H and, if so, find [x]B .

Solution: If x ∈ H , then the following equation is consistent:

c1

 3
6
2

+ c2

 −1
0
1

 =

 3
12
7


The scalars c1 and c2 , if they exist, are the B coordinates of x . 3 −1 3

6 0 12
2 1 7

 →

 3 −1 3
0 2 6
0 1 3

 →

 1 0 2
0 1 3
0 0 0
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Thus the system is consistent; a unique solution is c1 = 2 , c2 = 3 .

The coordinate vector of x relative to B is [x]B =

(
2
3

)
.

v1 =

 3
6
2

 , v2 =

 −1
0
1

 ;

and

x =

 3
12
7

 = 2v1 + 3v2

This illustrates an isomorphism between Span{v1, v2} and R2 .
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Example 5:

The first five Chebyshev polynomials (of the first kind) are

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1

These are polynomials of a degree up to 4, so we can obtain their
coordinates in the standard basis of P4 by expressing each Ti(x) as
a linear combination of the elements from P = {1, x, x2, x3, x4} :

[Ti]P =


1
0
0
0
0

 ,


0
1
0
0
0

 ,


−1
0
2
0
0

 ,


0

−3
0
4
0

 ,


1
0

−8
0
8

 .

Note that we can see these polynomials are linearly independent.
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Given different coordinate systems, we can change between them.

The mechanism for this change should be the same for all vectors.

Example: b1 =

[
2
1

]
, b2 =

[
−1
1

]
, x =

[
4
5

]
.

To find the coordinate vector [x]B = (c1; c2) of x with respect to
basis B , we need to solve the equation c1b1 + c2b2 = x :[

2 −1
1 1

] [
c1
c2

]
=

[
4
5

]

Upon row-reduction, the unique solution is c1 = 3 and c2 = 2 .
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. . .

[
2 −1
1 1

] [
c1
c2

]
=

[
4
5

]
. . . solution is c1 = 3 and c2 = 2

Thus x = 3b1 + 2b2

and we can write

[x]B =

(
c1
c2

)
=

(
3
2

)

Observation:

Multiplication by matrix

[
2 −1
1 1

]
=

[
b1 b2

]
converts B -coordinates of any x into its standard coordinates.



Change of basis in Rn
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Generally, let B = {b1, . . .bn} be a basis in Rn .

Construct the following matrix: PB = [b1, . . .bn] .

Then the vector equation x = c1b1 + . . .+ cnbn is equivalent to

x = PB [x]B where [x]B =

 c1
...

cn


PB is the change of coordinates matrix from B
to the standard basis in Rn : {e1, . . . en} .

The columns of PB are linearly independent (being basis vectors).
Then matrix PB is invertible, permitting back-transformation:

Left-multiplication by P−1B converts x into B -coordinate vector

[x]B = P−1B x
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Given basis B = {b1, . . .bn} and basis C = {c1, . . . cn} for V :

there is a unique n× n matrix PC←B such that

[x]C = PC←B [x]B

Columns of PC←B are the C -coordinates of the vectors of basis B .

That is, PC←B =
[
[b1]C [b2]C . . . [bn]C

]
.

PC←B is called the change of coordinate matrix from B to C .
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The columns of the square matrix PC←B are linearly independent
(coordinate vectors of basis B ). Therefore PC←B is invertible.

By multiplying both the sides of [x]C = PC←B [x]B

from the left by (PC←B)
−1 we get: (PC←B)

−1 [x]C = [x]B

Matrix (PC←B)
−1 converts C -coordinates into B -coordinates:

(PC←B)
−1 = PB←C

Note: For the standard basis E = {e1, . . . en} each [bi]E = bi .

Thus PE←B =
[
[b1]E , . . . [bn]E

]
=

[
b1, . . .bn

]
= PB
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Example: Find PC←B from B = {b1,b2} to C = {c1, c2} , where

b1 =

[
−9
1

]
, b2 =

[
−5
−1

]
, c1 =

[
1

−4

]
, c2 =

[
3

−5

]
.

Solution: The columns of PC←B are C -coordinates of b1 and b2 :

[b1]C =

(
x1
x2

)
, [b2]C =

(
y1
y2

)
. Then

{
b1 = x1c1 + x2c2

b2 = y1c1 + y2c2

which means
[
c1 c2

]( x1
x2

)
= b1,

[
c1 c2

]( y1
y2

)
= b2.

To find x1 , x2 , y1 , y2 all at once, use doubly augmented matrix:[
c1 c2 | b1 b2

]
.
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b1 =

[
−9
1

]
, b2 =

[
−5
−1

]
, c1 =

[
1

−4

]
, c2 =

[
3

−5

]
.

[
c1 c2 | b1 b2

]
=

[
1 3 −9 −5

−4 −5 1 −1

]

→
[
1 3 −9 −5
0 7 −35 −21

]
→

[
1 0 6 4
0 1 −5 −3

]
Thus

[b1]C =

(
x1
x2

)
=

(
6

−5

)
, [b2]C =

(
y1
y2

)
=

(
4

−3

)
so the change of coordinate matrix is

PC←B =
[
[b1]C [b2]C

]
=

[
6 4

−5 −3

]
.
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[
c1 c2 | b1 b2

]
=

[
1 3 −9 −5

−4 −5 1 −1

]
→

[
1 0 6 4
0 1 −5 −3

]

Summary:

Matrix PC←B appeared in the right-hand side upon row reduction:

[
c1 c2 | b1 b2

]
→

[
1 0 6 4
0 1 −5 −3

]
=

[
I | PC←B

]
So, the i-th column of PC←B results from row reducing [ c1 c2 | bi ] .

The same procedure is used for a change of basis generally in Rn :[
c1 c2 . . . cn | b1 b2 . . . bn

]
→

[
I | PC←B

]
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Another way to change coordinates from B to C is to combine the
transitions into standard coordinates, realised by PB and PC .

∀x ∈ Rn PB [x]B = x PC [x]C = x

From the latter relation we express

[x]C = P−1C x

and subsequently using the other relation we obtain

[x]C = P−1C x = P−1C PB [x]B

Therefore

PC←B = P−1C PB and analogously PB←C = P−1B PC

This approach is however slower than the direct transformation.



Change of basis 26

Example: Find PC←B by using PC and PB for the two bases:

b1 =

[
1

−3

]
, b2 =

[
−2
4

]
; c1 =

[
−7
9

]
, c2 =

[
−5
7

]
.

We first construct PC and PB and then use PC←B = (PC)
−1PB .

PB =

[
1 −2

−3 4

]
, PC =

[
−7 −5
9 7

]
;

then

P−1C =

[
−7/4 −5/4
9/4 7/4

]
and so

PC←B = (PC)
−1 PB =

[
2 −3/2

−3 5/2

]
.
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Example: Consider two bases B = {b1,b2} and C = {c1, c2}
such that b1 = 4c1 + c2 and b2 = −6c1 + c2 , and some x ,
for which we only know that x = 3b1 + b2 , that is,

[x]B =

(
3
1

)
Note that we do not know vectors bi , ci , and x themselves.

Let us apply C coordinates to x = 3b1 + b2 . Coordinate mapping
introduces isomorphism, which preserves linear operations, so

[x]C = [3b1 + b2]C = 3 [b1]C + [b2]C =
[
[b1]C [b2]C

] [ 3
1

]

However we know that [b1]C =

(
4
1

)
, [b2]C =

(
−6
1

)
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Given those [b1]C and [b2]C , we have
[
[b1]C [b2]C

]
=

[
4 −6
1 1

]
Thus the coordinates are connected by the above matrix, and

[x]C =

[
4 −6
1 1

] (
3
1

)
=

(
6
4

)

On the left, x = 3b1 + b2 . On the right, the same x = 6c1 + 4c2 .



Summary 29

Coordinates

(coefficients from linear combination of basis elements)

Change of coordinates

(achieved by matrix multiplication)



Important: next week is unusual 30

1. No on-campus lecture on 28 March

Recordings on Canvas to study online (moved from 25 April):

a) Elementary matrices and matrix representation of row reduction

b) LU decomposition for solving large-scale systems

2. No tutorials on 29 March (public holiday)

Exercises for self-study of the above topics

3. Upcoming quick tests

on 22 March: basis, dimensions and isomorphism

on 5 April: coordinates and change of basis

4. Next lecture on campus: 4 April


