UNIVERSITY OF TECHNOLOGY SYDNEY School of Mathematical and Physical Sciences

37233 LINEAR ALGEBRA

Solutions 5

Question 1

(a) Forming the corresponding matrix and proceeding with row reduction we see pivots

[1	-3	2		[1	-3	2
-1	4	-2	\rightarrow	0	1	0
$\lfloor -3 \rfloor$	9	4		0	0	10

in every column, so the set is linearly independent, spans \mathbb{R}^3 , and thus is a basis for \mathbb{R}^3 .

(b) For this we solve the corresponding equation, row-reducing the augmented matrix

Γ	1	-3	2	8		[1	-3	2	8		[1	0	0	-1			(-1)
-	1	4	-2	-9	\rightarrow	0	1	0	-1	\rightarrow	0	1	0	-1	so	$[\mathbf{x}]_{\mathcal{B}} =$	-1
L-	-3	9	4	6		0	0	10	30		0	0	1	3		L	\ 3/

(c) For this we proceed with direct multiplication

$$\begin{bmatrix} 1 & -3 & 2 \\ -1 & 4 & -2 \\ -3 & 9 & 4 \end{bmatrix} \begin{pmatrix} 16 \\ 5 \\ 1 \end{pmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \quad \text{so} \quad \mathbf{y} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$

Question 2

(a)
$$[\mathbf{x}]_{\mathcal{C}} = -6 [\mathbf{b}_1]_{\mathcal{C}} + 5 [\mathbf{b}_2]_{\mathcal{C}} - [\mathbf{b}_3]_{\mathcal{C}} = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -3 & -4 \\ 2 & 4 & 7 \end{bmatrix} \begin{pmatrix} -6 \\ 5 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Equivalently, this can be verified by direct calculation as: $\mathbf{x} = -6(\mathbf{c}_1 - 2\mathbf{c}_2 + 2\mathbf{c}_3) + 5(2\mathbf{c}_1 - 3\mathbf{c}_2 + 4\mathbf{c}_3) - (3\mathbf{c}_1 - 4\mathbf{c}_2 + 7\mathbf{c}_3) = \mathbf{c}_1 + \mathbf{c}_2 + \mathbf{c}_3.$

(b) Note the matrix appeared in (b) is the change of coordinates matrix from \mathcal{B} to \mathcal{C} . The change of coordinates matrix from \mathcal{C} to \mathcal{B} is the inverse of it, which we can obtain by row-reducing $[\mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}}|\mathbf{I}] \rightarrow [\mathbf{I}|\mathbf{P}_{\mathcal{B}\leftarrow\mathcal{C}}]$:

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ -2 & -3 & -4 & 0 & 1 & 0 \\ 2 & 4 & 7 & 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & -5 & -2 & 1 \\ 0 & 1 & 0 & 6 & 1 & -2 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{bmatrix}$$

Then $[\mathbf{y}]_{\mathcal{B}} = \begin{bmatrix} -5 & -2 & 1 \\ 6 & 1 & -2 \\ -2 & 0 & 1 \end{bmatrix} \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}$, equivalently $\mathbf{y} = 3\mathbf{b}_1 - \mathbf{b}_2$.

Question 3

(a) Row-reduction of these matrices shows pivots in every column

$$\mathbf{B} \rightarrow \begin{bmatrix} 3 & 0 & 0 & 2 \\ 0 & 1 & 0 & -4/3 \\ 0 & 0 & 2 & -16/3 \\ 0 & 0 & 0 & -1/3 \end{bmatrix} \rightarrow \mathbf{I} \text{ and } \mathbf{C} \rightarrow \begin{bmatrix} 1 & 5 & -5 & 5 \\ 0 & -2 & 4 & -4 \\ 0 & 0 & -44 & 48 \\ 0 & 0 & 0 & -2/11 \end{bmatrix} \rightarrow \mathbf{I}$$

so both the columns of **B** and the columns of **C** form bases for \mathbb{R}^4 .

(b) From solving
$$\mathbf{B}[\mathbf{x}]_{\mathcal{B}} = \mathbf{x}$$
 we find $[\mathbf{x}]_{\mathcal{B}} = \begin{pmatrix} 0 \\ 2 \\ 5 \\ 1 \end{pmatrix}$.

(c) $\mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}}$ is found by row-reducing

$$\begin{bmatrix} \mathbf{C} \, | \, \mathbf{B} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix} \Rightarrow \mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{C}} = \mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}} \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{pmatrix} -1 \\ 2 \\ 7 \\ 6 \end{pmatrix}.$$

Question 4

(d)

(a) Write the coordinates of Hermite polynomials in the standard polynomial basis, and form the corresponding matrix:

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 2 & 0 & -12 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 8 \end{bmatrix}$$

There are pivots in every column, so this is a linearly independent set. This set spans the space \mathbb{P}^3 because there are pivots in every row. Thus the set is a basis for \mathbb{P}^3 .

(b) The coordinates of p(t) in the standard basis are $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$.

To find the \mathcal{H} -coordinates of p(t) we need to solve the system:

$$\begin{bmatrix} 1 & 0 & -2 & 0 & 1 \\ 0 & 2 & 0 & -12 & 1 \\ 0 & 0 & 4 & 0 & 1 \\ 0 & 0 & 0 & 8 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 3/2 \\ 0 & 1 & 0 & 0 & 5/4 \\ 0 & 0 & 1 & 0 & 1/4 \\ 0 & 0 & 0 & 1 & 1/8 \end{bmatrix} \Rightarrow [p]_{\mathcal{H}} = \begin{pmatrix} 3/2 \\ 5/4 \\ 1/4 \\ 1/8 \end{pmatrix}$$

which can be easily verified by calculating the corresponding linear combination.

(c) To find q from its \mathcal{H} -coordinates we take a direct multiplication by the matrix **H**:

$$\begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 2 & 0 & -12 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 8 \end{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{bmatrix} -1 \\ -10 \\ 4 \\ 8 \end{bmatrix}$$

which is the same as summing up the Hermite polynomials: $q(t) = 8t^3 + 4t^2 - 10t - 1$.

(d)

(i) Each of the q_i cannot be obtained as a linear combination of the previous vectors (as there is a term with higher power added each time), so the set is linearly independent. These vectors span the space of polynomials \mathbb{P}^3 so they form a basis. Coordinates of this set it terms of the standard polynomial basis, written together as columns of a matrix, are

$$\mathbf{Q} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(ii) Coordinates of the set of Hermite polynomials it terms of the standard polynomial basis, written together as columns of a matrix, are

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 2 & 0 & -12 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 8 \end{bmatrix}$$

so the change of coordinates matrix from basis \mathcal{H} to basis \mathcal{Q} is then found from row reduction $[\mathbf{Q} | \mathbf{H}] \rightarrow [\mathbf{I} | \mathbf{P}_{\mathcal{Q} \leftarrow \mathcal{H}}]$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 1 & 0 & 2 & 0 & -12 \\ 0 & 0 & 1 & 1 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & -2 & -2 & 12 \\ 0 & 1 & 0 & 0 & 0 & 2 & -4 & -12 \\ 0 & 0 & 1 & 0 & 0 & 0 & 4 & -8 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 8 \end{bmatrix}$$

(iii) Coordinates of r in the standard polynomial basis are (0; 1; 2; 3) so its \mathcal{H} -coordinates are found by solving

$$\begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 2 & 0 & -12 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 8 \end{bmatrix} [r]_{\mathcal{H}} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix} \qquad \Rightarrow \qquad [r]_{\mathcal{H}} = \begin{pmatrix} 1 \\ 11/4 \\ 1/2 \\ 3/8 \end{pmatrix}$$

(iv)

$$[r]_{\mathcal{Q}} = \mathbf{P}_{\mathcal{Q} \leftarrow \mathcal{H}}[r]_{\mathcal{H}} = \begin{bmatrix} 1 & -2 & -2 & 12 \\ 0 & 2 & -4 & -12 \\ 0 & 0 & 4 & -8 \\ 0 & 0 & 0 & 8 \end{bmatrix} \begin{pmatrix} 1 \\ 11/4 \\ 1/2 \\ 3/8 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ -1 \\ 3 \end{pmatrix}$$