Solving large-scale linear systems

Brief revision: Gaussian reduction
Matrix A = LU factorisation (decomposition)
Elementary matrices for row operations

LU factorisation methods:
o Doolittle's algorithm
o Crout's algorithm

o Cholesky's algorithm



Revision: Gaussian reduction / elimination

Row operations that can be used:

@ Swapping two rows
@ Multiplying a row by a constant
e Adding a multiple of one row to another

With these operations, matrix is first reduced to echelon form (EF):

B o« x x 0O WM * x % % % * % %
0O M x x 0 0 0 M x % % % % x
0000 % 0000 B+ % x % =
0O 0 0 O 0O 0 0O0O 0O OO0 O MM «
and then reduced echelon form (REF), which is unique:
1 0 * = 01 x 0 0 0 %« x 0 =
0 1 x = 00 0100 % %« 0 =*
0000 % 000010 0 x
0O 0 0 O 0 0O0OO0OO0OO0OO0OTU 0OT1 =«



LU factorisation (decomposition)

@ Quite often, one needs to solve a number of linear systems
Ax; = b; for different b; but with the same matrix A.

@ It would be inefficient to reduce [A | bi] to REF each time.

@ This could be done using the inverted matrix A~!, however
inversion is often numerically unstable and increases errors.

@ LU factorisation provides a quicker method to solve the
system Ax; = b; for a number of vectors b;.

@ If we can reduce a square matrix A to echelon form without
row swaps, then it can be written as the product of an upper
triangular matrix U and a lower triangular matrix L:

A=LU

(slightly more complicated if we need to also use row swaps).



LU factorisation

To solve the system Ax = b we decompose A = LU where

l
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so the system can be written as: Ax = (LU)x = L(Ux) = b.
Letting Ux=y weget L(Ux)=Ly=Db.

In this way, we obtain two equations to solve instead of one:

Ly=b (to find y first)
Ux=y (to find = then)

however each of these is much quicker to solve.



LU factorisation (4 x 4 example)

We solve Ly = b first. This is easy because L is triangular:

* 0 0 O Y1 b1

|l x % 00 y2 | | b2

Ly = x * *x 0 y3 | | b3
x ok % % Ya by

We find the solution by forward substitution
(y1 =0b1/*, y2=(bg —*-y1)/*, and so on)

Then we can solve Ux = y. Also easy, because U is triangular:

ES * * ES I yl
0 * *x = T Y2

U = —
x 0 0 x = 3 Y3
0 0 0 =« T4 Ya

This is solved by backward substitution (z4 = y4/*, etc.)



LU factorisation

Summary: To solve (numerically) a system Ax = b:

© Obtain, if possible, matrices L and U such that A = LU,
where L is a lower triangular and U is an upper triangular
matrix. Then LUx = b.

@ Assuming y = Ux, solve Ly = b for y
using forward substitution.

© Having obtained y, solve Ux =y for x
using backward substitution.

Another question is, how to obtain the required LU factorisation.

_ o 0 1
NB: Not every matrix has a LU factorisation; e.g. try L) ()}

— but upon a row swap, it becomes factorable.



Gaussian reduction and LU factorisation

Gaussian reduction of a given square matrix

ail

a
A — 21
a31

a4

ai2
a22
as2
a42

a3
a23
ass
a43

a4
az4
a34
Q44

through row operations, brings it into echelon form like

O O O *

S O ¥ *x

O ¥ ¥ %

* X X X

which is actually an upper-triangular matrix.

This makes a link to LU factorisation — via elementary matrices.




Elementary matrices

Consider a general matrix

a1 a2 a3
A= | axn ax» as

az1 as2 ass

and the following examples of elementary matrices:

The actions of these elementary matrices over A are defined by
matrix multiplications from the left:

E3A:‘..; E13A:...; P12A:...



Elementary matrices

The action of the elementary matrix E5 over A is as follows:

0 0 ail a2 a3
10 as1 a2 a3
0 k az1 asz ass

EsA =

S O =

—_

1-a11+0-a21+0-a31 1-a12+0-a22+0-a32 ~a13 +0-a23 +0-ass
= | 0-a11+1-a21+0-a31 O0-ai2+1-a2 +0-as2 ca13+1-a23 +0-as3
0-aj1+0-a21+k-a31 0-aj2+0-a22+k-az2 0-a;3+0-a23+k-as3

o

aii ai2 ais
- a1 a2 a23
kagl kagg ]{?agg

This corresponds to an elementary row operation:

EsA & R3—k-Rg multiply row by a factor



Elementary matrices 10

The action of the elementary matrix Elg over A is as follows:

0 0 ai1 a2 ais
10 a1 a2 a3
0 1 az1 a3z as3

E; A =

> O =

—_

1-a11+0-a21+0-a31 1-a12+0-a22+0-a32 ~a13 +0-a23 +0-ass
= 0O-a11+1-a21+0-a31 0O-a12+1-a22+0-a32 0-a13+1-a23+0-as3
k-ai1+0-a21+1-a31 k-ai2+0-ax2+1-a3z2 k-a13+0-a23+1-a33

a1 a12 a13
= a1 a2 as3
as1 + ka1 asz + kaia ass+ kags

This corresponds to an elementary row operation:

EyA & Ry — (Rs+ k- Ry) add a multiple of a row to another



Elementary matrices

The action of the elementary matrix P35 over A is as follows:

01 0 ail] ai2 Qi3
P12A = 1 0 0 a1 a2 asg
0 01 asy a2 ass
0-a11+1-a214+0-a31 0O-ai2+4+1-a22+0-a32 0-a13+1-a23+0-a33

= 1-a11+0-a21 +0-a31 1-a12+0-a22+0-a32 1-a13+0-a23+0-a33
0-ai11+0-a21+1-a31 0-a12+0-a22+1-a32 0-a13+0-a23+1-as3

21 a2 a23
= aip a2 aig
aszy asz ass

This corresponds to an elementary row operation:

PpA & Ry <Ry swap two rows



Elementary matrices 12

Other examples:

i 100 ) 100 10 0
E;=|0 k 0 Eyp=|k 1 0 Py;=|0 0 1
00 1 00 1 010

Generally, elementary matrices are built from I by modifications:
ei=k < R, —>k-R; multiplies row ¢ by k

ei; =k < R = (Ri+k-Rj) adds k X row j to row i

eij =ej =1 . .
& R« R; swaps rows ¢ and j
€ = €jj =0

Subsequent multiplication E(Stepm) e E(step2) E(step 1) A by
a chain of appropriate elementary matrices brings A to REF.



Gaussian reduction and LU factorisation
Example: row-reduce a fun matrix

@ To eliminate as; = 4 we use Eo; )

1 0 0 1 2 3 1
—4 1 0 4 5 6 =10
0 0 1 7 8 9 7
@ To eliminate a3; = 7 we use Egl .
1 00 1 2 3 1
0 1 0 0 -3 -6 |=1|0
-7 0 1 7 8 9 0
@ To eliminate a3s = —6 we use Egg L
1 0 O 1 2 3 1
0 1 0 0 -3 -6 =10
0 —2 1 0 —6 —12 0

-3
—6

-3

3
—6
—12

—6

oo Ot N

13



Gaussian reduction and LU factorisation

These subsequent multiplications reduce A into echelon form

1 0 0 1 0 0 1 00 1 2 3
0 1 0 0 1 0 -4 1 0 4 5 6 | =
0 -2 1 -7 0 1 0 01 7 8 9
1 0 0 1 2 3 1 2 3
=] -4 1 0 4 5 6 |=]10 -3 -6
1 -2 1 7T 8 9 0o 0 0

whereas the product of elementary matrices is a low triangular matrix.

Regarding the last equation as LA =U

1 0 0 1 0 0
where L™'=| -4 1 0 andso L=|4 1 0
1 -2 1 7 2 1

this result provides a factorisation A = LU.



Gaussian reduction and LU factorisation

@ The row reduction above can be expressed in matrix form as

Es E3 Egy A=TU

@ This is equivalent to

A= (EpEs Ey) 'U=E; E;'E;] U=1LU

@ So using a row-reduction algorithm, we have obtained
A1 a1 fa—1
L =Ey E3 Ej
U=E;3 Es Ex A

@ The point is that inverting elementary matrices is very easy.

15



Gaussian reduction and LU factorisation

Inverted matrices Ei_j1 are very easy to construct.
Their actions just revert the original Eij operation:

i (1 0 0] i 100
Egp ,=|0 10 E;l,=10 10
|0 -2 1 [0 2 1]
i [ 1.0 0] i (1.0 0]
Eg| .=| 010 Ejl'|. = 10
-7 0 1 701
i [ 1.0 0] i (1.0 0]
En| ,=| -4 1 Exll,=41
| 0 0 1 [0 0 1]

It is easy to check that By, E;'| , =B;'| , By, =1




Gaussian reduction and LU factorisation

If we also use row scaling, e.g.

1 0 0 1 2 3 1 2 3
0 —1/3 0 0 -3 6 |=(01 2
0 0 1 0 0 0 0 00

then the corresponding inverted matrix is also straightforward:

<=
E;; }%_E’Ak

) 1 0 0 ) 1 0 0

Exp| =0 —1/3 0 Ey| =0 -3 0



Permutation (row swapping) 18

@ In general, row reduction process may require row swapping.
This is done by permutation matrices.

@ Permutation matrix P;; is constructed from identity matrix
by swapping rows i and j:

010 1 00 0 01
Ppo=]1 0 0 Poys=|(0 0 1 Ps;=]0 10
0 01 010 1 00

@ An inverted permutation matrix equals to the original one:

Pl =P; =Py



Gaussian reduction and LU factorisation 19

Any elementary row operation on A is represented by
left-multiplication of A by a suitable elementary matrix.

@ Hence row reduction is a sequence of left-multiplications.

@ Apart from row swaps, elementary matrices (and their
inverses) are all lower triangular.

@ Thus, row reduction is equivalent to A = LU process.

@ In case row swaps PA are required, these are performed first;

the same is required for the right-hand side: b — Pb.

@ So, in general, PA = LU (which is the same as A = PLU).



Summary on LU factorisation usage

To solve a system Ax = b in the most general case:

@ Perform row swaps first (importantly, for both A and b):
PAx =Pb

@ Factorise PA = LU, where L is a lower triangular and U is
an upper triangular matrix. Then LUx = Pb.

© Denoting y = Ux, solve Ly = Pb for y
(with forward substitution).

@ Having obtained y, solve Ux =y for x
(with backward substitution).

The general strategy for row swaps is in arranging the largest
numbers along the matrix diagonal, as much as possible.

20



LU factorisation methods 21

There is no unique way of factorising a matrix into a product of
upper and lower triangular matrices L and U. To get a unique
factorisation, one can impose additional conditions.

@ Doolittle’s method implies that the diagonal elements of the
lower triangular matrix L are equal to 1.

@ Crout’s method, by contrast, requires that the diagonal
elements of the upper triangular matrix U are equal to 1.

We will now have a look at these two methods in more detail.



Doolittle's method 22

3 X 3 case:

Consider A as a product of L (lower triangular) and U (upper
triangular), with the diagonal elements of L equal to 1:

ail a2 ais 1 0 0) [unn w2 w3
a1 az axs| = |lor 1 0 0 wa wus
asy as ass 31 l32 1] [ 0 0 us

To find the u;; and [;; we multiply the L and U matrices:

ail a2 a3 U1 Uu12 u13
a1 az a3| = |laruir  la1uin 4 uge lo1u1z + u2s
az1 asz as3 l31unr  I31u12 + l32u22  l31u13 + I32U23 + Uu33



Doolittle's method

ail Q12 a3 U1 U12 U13
az1 aGg2 G23| = |loa1un1 lo1u12 + u22 lo1u13 + 23
asy a3z ass Is1u1r Ig1ui2 + lzauoe  I31u13 + l32U03 + uss

This provides the following equations for the entries of L and U:

u11 = a1, Ule = a12, u13 = a13
loyuir = a1 = log = ag1/un;
la1u12 + u22 = ag9 uge = ag2 — lar1uge
l21u13 + u23 = a3 Uz = ag3 — la1u13
I31u11 = a3 = asz1/u11

l31u12 + I32u22 = a3 lzo = (as2 — l31u12) /u2e

N T -
|

l31u13 + I32u23 + u33z = ass uz3z = agz — l31u13 — l32u23

23



Doolittle's method 24

The extension of this method to n x n is straightforward:
Algorithm: For k=1,2,...n
@ Diagonal elements of L:

@ k-th row of U:

N

<.
N
S

= Q5 — Z lkmumja k

@ k-th column of L:

k-1
lLir, = <azkz lzmumk> ; k
Ukl

m=1

N
N
3



Doolittle's method (example)
Use Doolittle’s LU factorisation to find the solution for system

o — 2w+ a5 = 0 1 -2 1 0
2%2 - S.Tg = 8 0 2 =8 X = 8
—4x1 + 522+ 923 = -9 —4 5 9 -9
uir = a;p = 1, ue = aj2 = —2, w1z = a3 =1,
lor = ag1/u11 =0, ls1 = as1/uin = —4,

Uga = a2 — lojuir = 2, Ug3 = ag3 — laju1z = —8,

l32 = (ag2 — l31u12) /u22 = —3/2,

u33z = a3z — l31u13 — l32u23 = 1

=
Il
=~ O
Nw = O
— o O
Il
S O =
[\V]
|

25



Doolittle’s method (example) 26

So A = LU with

1 00 1 -2 1
L=| 0 10 U=|0 2 -8
-4 =31 0 0 1

Now we can split Ax = b into solving Ly = b and then Ux =y.

The Ly = b equation is

1 00 Y1 0
0 10 yv2 | = 8
-4 -3 1 y3 -9

With forward substitution we obtain y; =0, yo =8, y3 =3



Doolittle's method (example) 27

Now we use Ux =y to find x:

1 -2 1 1 0
0 2 =8 T2 | = | 8
0 0 1 T3 3

With backward substitution we get z3 = 3, xo = 16, 1 = 29.

So the final solution is

29
x=1 16



Crout's method 28

3 X 3 case:

Consider A as a product of L (lower triangular) and U (upper
triangular) where the diagonal elements of U are equal to 1:

ajlp ai2 ais l11 0 0 1 ul2 U113
a21 a2 ag3| = |la1 laa O 0 1 ugs
as a2 ass ls1 ls2 s3] [0 0 1

To find the u;; and [;; we multiply the L and U matrices:

a1 a2 a3 11 lituio li1uis
a1 az axs| = |la1 lajuiz + oo lo1u13 + laouas

az1 asz as3 l31 lz1u12 + 132 I31u13 + l32u23 + I33



Crout's method

a1 a2 G13 11 li1u12 li1u13
a1 a2 aG23| = |la1 la1uiz 4 la2 la1u13 + laougs
as1 Gz G33 I31 Iz1uiz + 132 l31u13 + l32u03 + I33

This provides the following equations for the entries of L and U:

11 = a1z, lo1 = as1, l31 = a3
lhuie = a2 = up =a/l;
lo1u12 + l22 = a2 lo2 = ags — lorur2
I31u12 + 132 = a32 I32 = a3z — l31u12
li1uiz = a3 w13 = a13/ln

la1u13 + l22ugz = asos3 ugg = (ag3 — la1u13)/l22

N

l31u13 + l32u23 + I33 = ass3 l33 = agz — l31u13 — [32u923



Crout's method 30

The extension of this method to an n x n is also straightforward:
Algorithm: Calculate the L and U matrix elements as

uii:1 i:1,2,...,n
1 i—1 o
uij:lii<aij_k§_:1likukj> 1<j=2,3,...,n.

zy—am lekuk] 1=275=12,...,n



Crout’'s method (example)

Decompose the following matrix using Crout’s method:

2 -1 1
A= |4 3 —1
3 2 2
lit =an =2, lo1 = ag1 =4, lsn =a31 =3
1 1
w1 = aro/l1; = -y u= a3/l = 3
lo2 = agy — la1u12 =5 l32 = azz — lz1u12 = 5
_agz—lyguiz 3 _ _
Upg = —— % = = I33 = az3 — I31u13 — l32u23 = —
99 5 5
2 -1 1 2 0 0 1 —1/2 1/2
A= |4 3 -1l =14 5 0 0 1 —-3/5| =LU
3 2 2 3 7/2 13/5] |0 0 1

31



LU factorisation (remarks) 32

Doolittle’s and Crout’s algorithms are reliable and easy to code.
However, for certain matrices, these algorithms still fail.

In such cases, it is necessary to swap some rows of the matrix and
attempt an LU factorisation of the permuted matrix:

PA=LU

Reminder: once P is established, the same row swap should be
performed over (every) right-hand side: b; — Pb;,.

The general strategy for row swaps is in arranging the largest
numbers along the matrix diagonal, as much as possible.



LDU factorisation 33

If A is a square matrix which can be reduced to row echelon form
without row swaps, then A can be factorised uniquely as

A =LDU, where L is lower triangular, U upper triangular, and
D is a strictly diagonal matrix.

This is called an LDU-factorisation of matrix A:

ajlp] ai2 ais 1 0 0 d1 0 0 1 ui2 U113
as21 a2 a3 = 121 1 0 0 dQ 0 0 1 uo23
a3zl as2 ass l31 l32 1 0 0 d3 0 0 1

Multiplying the right two matrices gives the Doolittle’s method;
multiplying the left two matrices gives the Crout’s method.

With swaps, the most general factorisation is: A = PLDU.



Factorisation of symmetric matrices

Quite often, a matrix is symmetric: a;; = aj;:

ail a2 e A1n

a2 ago e Qa2n,
A =

A1n aon . Ann

Symmetric matrices are equal to their own transpose: AT = A,

So if there is an LU factorisation A = LU for a symmetric
matrix, then LU = (LU)T = UTLT. Thus we have L = UT.

Then we can decompose a symmetric matrix A into the form

A = UTU where U is an upper triangular matrix.

An efficient method for finding the LU factorisation of a
symmetric positive definite matrix is due to Choleski.

34



Factorisation of symmetric matrices 35

Definition: A square matrix A is positive definite if
xTAx >0 Vx#0

Remark: A symmetric matrix is positive definite
if and only if all its eigenvalues are positive.

Definition: A square n x n matrix A is diagonally dominant if

n

jail > > al Vi=1,2,...,n
J=1, i

Theorem: |If A is a diagonally dominant symmetric matrix, and
if a; >0 Vi=1,2,...n, then A is positive definite.

Note: This is a sufficient, but not necessary condition.



Choleski method (3 x 3 example) 36
Obtaining Cholesky factorisation A = UTU is straightforward:

ann a2 ais] up 0 0 U1l U2 U13
ara azy agz| =U'U = |uiz uge O 0 uze w3
a13 a3 ass| U3 U3 U33 0 0 |uss
[l U11U12 u11U13
= [u11u12 U%g + U%g U12U13 + U22U23
| U11U13  U12U13 + U22U23 U%3 + u§3 + ugg

From here, we easily find the elements of the U matrix:

uil = v/aii, U2 = a12/u11, u13 = a13/u117

. 9 (23 — U12U13
U2 = 1/ a22 — U7, Uy = ————,
U22




Choleski method

The extension of A = UTU factorisation to n x n is as follows:

Uil = van

. aiq
For j=2,3,...,n: ulj:—j

Uil

For i=2,3,....n
j=i+1,i+2,...,n

For i>j: u;; =0

37



Choleski method (example)

38
Let us consider an example with symmetric a;; = a;; matrix:
1 2 3 1 10
2 5 10 o | = | 26
3 10 26 T3 55
1 2 3 u%l uU11U12 uj1uUl3
2 5 10 | =UTU = | ujjuip uly + U3y U2U13 + U22U23

9 2 9
3 10 26 UI1U13  UI2U13 + U22U23  UT3 + Uy + U

uyp =V1=1, uip = 2/un =2, w1z = 3/un =3,

ugy = (/5 —ufy =1, u3 = (10 — ujou13)/uge = 4,
Uus33 = \/26—1@3 —’UJ%3 =1.



Choleski method (example)

The decomposed form Ax = UTUx = b then reads

1 2 3 1 100
2 5 10 2 | =12 1 0
3 10 26 3 3 41

1 2 3 x1
01 4 o =
0 01 3

We can then solve it as Ux =y and UTy =b

1 00 Y1

2 1 0 Y2

3 4 1 Y3
Thus y; =10, y2 =26 —2y; =6,

10

10
=1 26
55

Y3 =55 —3y1 —4y2 = 1:

10
26
55

39



Choleski method (example)

Now we can solve Ux = y:

1 2 3 1 10
01 4 x2 | =1 6
0 01 3 1

Then .%'3:1, 332:6—4333:2, x1:10—3x3—2x2:3so

3
x=| 2
1
Check:
1 2 3 3 10
Ax=|[2 5 10 21 =126 |=b

3 10 26 1 55

40



Summary a1
A = LU with lower triangular L and upper triangular U matrices
This permits to solve Ly = b then Ux =y instead of Ax =b

@ Row operations can be represented via elementary matrices
@ Row reduction to EF is equivalent to LU factorisation

@ There are efficient programming algorithms for LU:

e Doolittle: diagonal elements of L are all equal to 1
e Crout: diagonal elements of U are all equal to 1

(when these algorithms fail, retrying upon row swaps may help)

o Cholesky: symmetric positive definite matrix A = UTU

@ Most generally, A = PLDU (do not forget b — Pb)



Questions?

Mid-term class test (2 hours)

at the tutorials this week

covers the topics of the first five weeks
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