
Solving large-scale linear systems

Brief revision: Gaussian reduction

Matrix A = LU factorisation (decomposition)

Elementary matrices for row operations

LU factorisation methods:

Doolittle’s algorithm

Crout’s algorithm

Cholesky’s algorithm

Revision: Gaussian reduction / elimination 2

Row operations that can be used:

Swapping two rows

Multiplying a row by a constant

Adding a multiple of one row to another

With these operations, matrix is first reduced to echelon form (EF):
� ∗ ∗ ∗
0 � ∗ ∗
0 0 0 0
0 0 0 0

 or


0 � ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 � ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 � ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 � ∗


and then reduced echelon form (REF), which is unique:

1 0 ∗ ∗
0 1 ∗ ∗
0 0 0 0
0 0 0 0

 or


0 1 ∗ 0 0 0 ∗ ∗ 0 ∗
0 0 0 1 0 0 ∗ ∗ 0 ∗
0 0 0 0 1 0 ∗ ∗ 0 ∗
0 0 0 0 0 0 0 0 1 ∗



LU factorisation (decomposition) 3

Quite often, one needs to solve a number of linear systems
Axi = bi for different bi but with the same matrix A .

It would be inefficient to reduce
[
A |bi

]
to REF each time.

This could be done using the inverted matrix A−1 , however
inversion is often numerically unstable and increases errors.

LU factorisation provides a quicker method to solve the
system Axi = bi for a number of vectors bi .

If we can reduce a square matrix A to echelon form without
row swaps, then it can be written as the product of an upper
triangular matrix U and a lower triangular matrix L :

A = LU

(slightly more complicated if we need to also use row swaps).

LU factorisation 4

To solve the system Ax = b we decompose A = LU where

L =


∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗

 , U =


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

 ,

so the system can be written as: Ax = (LU)x = L(Ux) = b .

Letting Ux = y we get L(Ux) = Ly = b .

In this way, we obtain two equations to solve instead of one:{
Ly = b (to find y first)

Ux = y (to find x then)

however each of these is much quicker to solve.

LU factorisation (4× 4 example) 5

We solve Ly = b first. This is easy because L is triangular:

Ly =


∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗




y1
y2
y3
y4

 =


b1
b2
b3
b4


We find the solution by forward substitution
(y1 = b1/∗ , y2 = (b2 − ∗ · y1)/∗ , and so on)

Then we can solve Ux = y . Also easy, because U is triangular:

Ux =


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗




x1
x2
x3
x4

 =


y1
y2
y3
y4


This is solved by backward substitution (x4 = y4/∗ , etc.)

LU factorisation 6

Summary: To solve (numerically) a system Ax = b :

1 Obtain, if possible, matrices L and U such that A = LU ,
where L is a lower triangular and U is an upper triangular
matrix. Then LUx = b .

2 Assuming y = Ux , solve Ly = b for y
using forward substitution.

3 Having obtained y , solve Ux = y for x
using backward substitution.

Another question is, how to obtain the required LU factorisation.

NB: Not every matrix has a LU factorisation; e.g. try

[
0 1
1 0

]
— but upon a row swap, it becomes factorable.

Gaussian reduction and LU factorisation 7

Gaussian reduction of a given square matrix

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


through row operations, brings it into echelon form like

A ∼


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗


which is actually an upper-triangular matrix.

This makes a link to LU factorisation — via elementary matrices.

Elementary matrices 8

Consider a general matrix

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


and the following examples of elementary matrices:

Ẽ3 =

 1 0 0
0 1 0
0 0 k

 Ẽ31 =

 1 0 0
0 1 0
k 0 1

 P12 =

 0 1 0
1 0 0
0 0 1


The actions of these elementary matrices over A are defined by
matrix multiplications from the left:

Ẽ3A = . . . ; Ẽ13A = . . . ; P12A = . . .

Elementary matrices 9

The action of the elementary matrix Ẽ3 over A is as follows:

Ẽ3A =

 1 0 0
0 1 0
0 0 k

 a11 a12 a13
a21 a22 a23
a31 a32 a33


=

[
1 · a11 + 0 · a21 + 0 · a31 1 · a12 + 0 · a22 + 0 · a32 1 · a13 + 0 · a23 + 0 · a33
0 · a11 + 1 · a21 + 0 · a31 0 · a12 + 1 · a22 + 0 · a32 0 · a13 + 1 · a23 + 0 · a33
0 · a11 + 0 · a21 + k · a31 0 · a12 + 0 · a22 + k · a32 0 · a13 + 0 · a23 + k · a33

]

=

 a11 a12 a13
a21 a22 a23
ka31 ka32 ka33


This corresponds to an elementary row operation:

Ẽ3A ⇔ R3 → k · R3 multiply row by a factor

Elementary matrices 10

The action of the elementary matrix Ẽ13 over A is as follows:

Ẽ31A =

 1 0 0
0 1 0
k 0 1

 a11 a12 a13
a21 a22 a23
a31 a32 a33


=

[
1 · a11 + 0 · a21 + 0 · a31 1 · a12 + 0 · a22 + 0 · a32 1 · a13 + 0 · a23 + 0 · a33
0 · a11 + 1 · a21 + 0 · a31 0 · a12 + 1 · a22 + 0 · a32 0 · a13 + 1 · a23 + 0 · a33
k · a11 + 0 · a21 + 1 · a31 k · a12 + 0 · a22 + 1 · a32 k · a13 + 0 · a23 + 1 · a33

]

=

 a11 a12 a13
a21 a22 a23

a31 + ka11 a32 + ka12 a33 + ka13


This corresponds to an elementary row operation:

Ẽ31A ⇔ R3 → (R3 + k · R1) add a multiple of a row to another

Elementary matrices 11

The action of the elementary matrix P3 over A is as follows:

P12A =

 0 1 0
1 0 0
0 0 1

 a11 a12 a13
a21 a22 a23
a31 a32 a33


=

[
0 · a11 + 1 · a21 + 0 · a31 0 · a12 + 1 · a22 + 0 · a32 0 · a13 + 1 · a23 + 0 · a33
1 · a11 + 0 · a21 + 0 · a31 1 · a12 + 0 · a22 + 0 · a32 1 · a13 + 0 · a23 + 0 · a33
0 · a11 + 0 · a21 + 1 · a31 0 · a12 + 0 · a22 + 1 · a32 0 · a13 + 0 · a23 + 1 · a33

]

=

 a21 a22 a23
a11 a12 a13
a31 a32 a33


This corresponds to an elementary row operation:

P12A ⇔ R1 ↔ R2 swap two rows

Elementary matrices 12

Other examples:

Ẽ2 =

 1 0 0
0 k 0
0 0 1

 Ẽ21 =

 1 0 0
k 1 0
0 0 1

 P23 =

 1 0 0
0 0 1
0 1 0



Generally, elementary matrices are built from I by modifications:

eii = k ⇔ Ri → k · Ri multiplies row i by k

eij = k ⇔ Ri → (Ri + k · Rj) adds k × row j to row i{
eij = eji = 1

eii = ejj = 0
⇔ Ri ↔ Rj swaps rows i and j

Subsequent multiplication Ẽ(step m) . . . Ẽ(step 2) Ẽ(step 1)A by

a chain of appropriate elementary matrices brings A to REF.

Gaussian reduction and LU factorisation 13

Example: row-reduce a fun matrix A =

1 2 3
4 5 6
7 8 9


To eliminate a21 = 4 we use Ẽ21

∣∣
−4 1 0 0

−4 1 0
0 0 1

 1 2 3
4 5 6
7 8 9

 =

 1 2 3
0 −3 −6
7 8 9


To eliminate a31 = 7 we use Ẽ31

∣∣
−7 1 0 0

0 1 0
−7 0 1

 1 2 3
0 −3 −6
7 8 9

 =

 1 2 3
0 −3 −6
0 −6 −12


To eliminate a32 = −6 we use Ẽ32

∣∣
−2 1 0 0

0 1 0
0 −2 1

 1 2 3
0 −3 −6
0 −6 −12

 =

 1 2 3
0 −3 −6
0 0 0



Gaussian reduction and LU factorisation 14

These subsequent multiplications reduce A into echelon form 1 0 0
0 1 0
0 −2 1

 1 0 0
0 1 0
−7 0 1

 1 0 0
−4 1 0
0 0 1


︸ ︷︷ ︸

 1 2 3
4 5 6
7 8 9

 =

=

 1 0 0
−4 1 0
1 −2 1

 1 2 3
4 5 6
7 8 9

 =

 1 2 3
0 −3 −6
0 0 0


whereas the product of elementary matrices is a low triangular matrix.

Regarding the last equation as L−1A = U

where L−1 =

 1 0 0
−4 1 0
1 −2 1

 and so L =

 1 0 0
4 1 0
7 2 1


this result provides a factorisation A = LU .

Gaussian reduction and LU factorisation 15

The row reduction above can be expressed in matrix form as

Ẽ32 Ẽ31 Ẽ21 A = U

This is equivalent to

A =
(
Ẽ32 Ẽ31 Ẽ21

)−1
U = Ẽ−121 Ẽ−131 Ẽ−132 U = LU

So using a row-reduction algorithm, we have obtained

L = Ẽ−121 Ẽ−131 Ẽ−132

U = Ẽ32 Ẽ31 Ẽ21 A

The point is that inverting elementary matrices is very easy.

Gaussian reduction and LU factorisation 16

Inverted matrices E−1ij are very easy to construct.

Their actions just revert the original Ẽij operation:

Ẽ32

∣∣
−2 =

 1 0 0
0 1 0
0 −2 1

 Ẽ−132

∣∣
2
=

 1 0 0
0 1 0
0 2 1



Ẽ31

∣∣
−7 =

 1 0 0
0 1 0
−7 0 1

 Ẽ−131

∣∣
7
=

 1 0 0
0 1 0
7 0 1



Ẽ21

∣∣
−4 =

 1 0 0
−4 1 0
0 0 1

 Ẽ−121

∣∣
4
=

 1 0 0
4 1 0
0 0 1


It is easy to check that Ẽij

∣∣
k
Ẽ−1ij

∣∣
−k = Ẽ−1ij

∣∣
−k Ẽij

∣∣
k
= I.

Gaussian reduction and LU factorisation 17

If we also use row scaling, e.g. 1 0 0
0 −1/3 0
0 0 1

 1 2 3
0 −3 −6
0 0 0

 =

 1 2 3
0 1 2
0 0 0


then the corresponding inverted matrix is also straightforward:

Ẽ−1ii

∣∣
1
k
= Ẽii

∣∣
k

Ẽ22

∣∣
− 1

3
=

 1 0 0
0 −1/3 0
0 0 1

 Ẽ−122

∣∣
−3 =

 1 0 0
0 −3 0
0 0 1



Permutation (row swapping) 18

In general, row reduction process may require row swapping.
This is done by permutation matrices.

Permutation matrix Pij is constructed from identity matrix
by swapping rows i and j :

P12 =

 0 1 0
1 0 0
0 0 1

 P23 =

 1 0 0
0 0 1
0 1 0

 P31 =

 0 0 1
0 1 0
1 0 0



An inverted permutation matrix equals to the original one:

P−1ij = Pji = Pij

Gaussian reduction and LU factorisation 19

Any elementary row operation on A is represented by
left-multiplication of A by a suitable elementary matrix.

Hence row reduction is a sequence of left-multiplications.

Apart from row swaps, elementary matrices (and their
inverses) are all lower triangular.

Thus, row reduction is equivalent to A = LU process.

In case row swaps PA are required, these are performed first;

the same is required for the right-hand side: b→ Pb .

So, in general, PA = LU (which is the same as A = PLU).

Summary on LU factorisation usage 20

To solve a system Ax = b in the most general case:

1 Perform row swaps first (importantly, for both A and b):
PAx = Pb

2 Factorise PA = LU , where L is a lower triangular and U is
an upper triangular matrix. Then LUx = Pb .

3 Denoting y = Ux , solve Ly = Pb for y
(with forward substitution).

4 Having obtained y , solve Ux = y for x
(with backward substitution).

The general strategy for row swaps is in arranging the largest
numbers along the matrix diagonal, as much as possible.

LU factorisation methods 21

There is no unique way of factorising a matrix into a product of
upper and lower triangular matrices L and U . To get a unique
factorisation, one can impose additional conditions.

Doolittle’s method implies that the diagonal elements of the
lower triangular matrix L are equal to 1 .

Crout’s method, by contrast, requires that the diagonal
elements of the upper triangular matrix U are equal to 1.

We will now have a look at these two methods in more detail.

Doolittle’s method 22

3× 3 case:

Consider A as a product of L (lower triangular) and U (upper
triangular), with the diagonal elements of L equal to 1:a11 a12 a13

a21 a22 a23
a31 a32 a33

 =

 1 0 0
l21 1 0
l31 l32 1

u11 u12 u13
0 u22 u23
0 0 u33


To find the uij and lij we multiply the L and U matrices:a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 u11 u12 u13
l21u11 l21u12 + u22 l21u13 + u23
l31u11 l31u12 + l32u22 l31u13 + l32u23 + u33



Doolittle’s method 23[
a11 a12 a13
a21 a22 a23
a31 a32 a33

]
=

[
u11 u12 u13

l21u11 l21u12 + u22 l21u13 + u23

l31u11 l31u12 + l32u22 l31u13 + l32u23 + u33

]

This provides the following equations for the entries of L and U :

u11 = a11, u12 = a12, u13 = a13

l21u11 = a21 ⇒ l21 = a21/u11

l21u12 + u22 = a22 ⇒ u22 = a22 − l21u12

l21u13 + u23 = a23 ⇒ u23 = a23 − l21u13

l31u11 = a31 ⇒ l31 = a31/u11

l31u12 + l32u22 = a32 ⇒ l32 = (a32 − l31u12)/u22

l31u13 + l32u23 + u33 = a33 ⇒ u33 = a33 − l31u13 − l32u23

Doolittle’s method 24

The extension of this method to n× n is straightforward:

Algorithm: For k = 1, 2, . . . n :

Diagonal elements of L :

lkk = 1

k -th row of U :

ukj = akj −
k−1∑
m=1

lkmumj , k 6 j 6 n

k -th column of L :

lik =
1

ukk

(
aik −

k−1∑
m=1

limumk

)
, k 6 i 6 n

Doolittle’s method (example) 25

Use Doolittle’s LU factorisation to find the solution for system

x1 − 2x2 + x3 = 0
2x2 − 8x3 = 8

−4x1 + 5x2 + 9x3 = −9

 1 −2 1
0 2 −8
−4 5 9

x =

 0
8
−9



u11 = a11 = 1, u12 = a12 = −2, u13 = a13 = 1,

l21 = a21/u11 = 0, l31 = a31/u11 = −4,
u22 = a22 − l21u12 = 2, u23 = a23 − l21u13 = −8,

l32 = (a32 − l31u12)/u22 = −3/2,
u33 = a33 − l31u13 − l32u23 = 1

L =

 1 0 0
0 1 0
−4 −3

2 1

 U =

 1 −2 1
0 2 −8
0 0 1



Doolittle’s method (example) 26

So A = LU with

L =

 1 0 0
0 1 0
−4 −3

2 1

 U =

 1 −2 1
0 2 −8
0 0 1


Now we can split Ax = b into solving Ly = b and then Ux = y .

The Ly = b equation is 1 0 0
0 1 0
−4 −3

2 1

 y1
y2
y3

 =

 0
8
−9


With forward substitution we obtain y1 = 0 , y2 = 8 , y3 = 3

Doolittle’s method (example) 27

Now we use Ux = y to find x : 1 −2 1
0 2 −8
0 0 1

 x1
x2
x3

 =

 0
8
3


With backward substitution we get x3 = 3 , x2 = 16 , x1 = 29 .

So the final solution is

x =

 29
16
3



Crout’s method 28

3× 3 case:

Consider A as a product of L (lower triangular) and U (upper
triangular) where the diagonal elements of U are equal to 1:a11 a12 a13

a21 a22 a23
a31 a32 a33

 =

l11 0 0
l21 l22 0
l31 l32 l33

1 u12 u13
0 1 u23
0 0 1


To find the uij and lij we multiply the L and U matrices:a11 a12 a13

a21 a22 a23
a31 a32 a33

 =

l11 l11u12 l11u13
l21 l21u12 + l22 l21u13 + l22u23
l31 l31u12 + l32 l31u13 + l32u23 + l33



Crout’s method 29[
a11 a12 a13
a21 a22 a23
a31 a32 a33

]
=

[
l11 l11u12 l11u13

l21 l21u12 + l22 l21u13 + l22u23

l31 l31u12 + l32 l31u13 + l32u23 + l33

]

This provides the following equations for the entries of L and U :

l11 = a11, l21 = a21, l31 = a31

l11u12 = a12 ⇒ u12 = a12/l11

l21u12 + l22 = a22 ⇒ l22 = a22 − l21u12

l31u12 + l32 = a32 ⇒ l32 = a32 − l31u12

l11u13 = a13 ⇒ u13 = a13/l11

l21u13 + l22u23 = a23 ⇒ u23 = (a23 − l21u13)/l22

l31u13 + l32u23 + l33 = a33 ⇒ l33 = a33 − l31u13 − l32u23

Crout’s method 30

The extension of this method to an n× n is also straightforward:

Algorithm: Calculate the L and U matrix elements as

uii = 1 i = 1, 2, . . . , n

uij =
1

lii

(
aij −

i−1∑
k=1

likukj

)
i < j = 2, 3, . . . , n.

lij = aij −
j−1∑
k=1

likukj i > j = 1, 2, . . . , n

Crout’s method (example) 31

Decompose the following matrix using Crout’s method:

A =

2 −1 1
4 3 −1
3 2 2


l11 = a11 = 2, l21 = a21 = 4, l31 = a31 = 3

u12 = a12/l11 = −
1

2
u13 = a13/l11 =

1

2

l22 = a22 − l21u12 = 5 l32 = a32 − l31u12 =
7

2

u23 =
a23 − l21u13

l22
= −3

5
l33 = a33 − l31u13 − l32u23 =

13

5

A =

2 −1 1
4 3 −1
3 2 2

 =

2 0 0
4 5 0
3 7/2 13/5

1 −1/2 1/2
0 1 −3/5
0 0 1

 = LU

LU factorisation (remarks) 32

Doolittle’s and Crout’s algorithms are reliable and easy to code.

However, for certain matrices, these algorithms still fail.

In such cases, it is necessary to swap some rows of the matrix and
attempt an LU factorisation of the permuted matrix:

PA = LU

Reminder: once P is established, the same row swap should be
performed over (every) right-hand side: bi → Pbi .

The general strategy for row swaps is in arranging the largest
numbers along the matrix diagonal, as much as possible.

LDU factorisation 33

If A is a square matrix which can be reduced to row echelon form
without row swaps, then A can be factorised uniquely as
A = LDU , where L is lower triangular, U upper triangular, and
D is a strictly diagonal matrix.

This is called an LDU-factorisation of matrix A : a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 1 0 0
l21 1 0
l31 l32 1

 d1 0 0
0 d2 0
0 0 d3

 1 u12 u13
0 1 u23
0 0 1



Multiplying the right two matrices gives the Doolittle’s method;
multiplying the left two matrices gives the Crout’s method.

With swaps, the most general factorisation is: A = PLDU .

Factorisation of symmetric matrices 34

Quite often, a matrix is symmetric: aij = aji :

A =


a11 a12 . . . a1n
a12 a22 . . . a2n

...
... . . .

...
a1n a2n . . . ann


Symmetric matrices are equal to their own transpose: AT = A .

So if there is an LU factorisation A = LU for a symmetric

matrix, then LU = (LU)T = UTLT . Thus we have L = UT .

Then we can decompose a symmetric matrix A into the form

A = UTU where U is an upper triangular matrix.

An efficient method for finding the LU factorisation of a
symmetric positive definite matrix is due to Choleski.

Factorisation of symmetric matrices 35

Definition: A square matrix A is positive definite if

xTAx > 0 ∀ x 6= 0

Remark: A symmetric matrix is positive definite
if and only if all its eigenvalues are positive.

Definition: A square n× n matrix A is diagonally dominant if

|aii| >
n∑

j=1, j 6=i

|aij | ∀ i = 1, 2, . . . , n

Theorem: If A is a diagonally dominant symmetric matrix, and
if aii > 0 ∀ i = 1, 2, . . . n , then A is positive definite.

Note: This is a sufficient, but not necessary condition.

Choleski method (3× 3 example) 36

Obtaining Cholesky factorisation A = UTU is straightforward:a11 a12 a13
a12 a22 a23
a13 a23 a33

 = UTU =

u11 0 0
u12 u22 0
u13 u23 u33

u11 u12 u13
0 u22 u23
0 0 u33



=

 u211 u11u12 u11u13
u11u12 u212 + u222 u12u13 + u22u23
u11u13 u12u13 + u22u23 u213 + u223 + u233


From here, we easily find the elements of the U matrix:

u11 =
√
a11, u12 = a12/u11, u13 = a13/u11,

u22 =
√
a22 − u212, u23 =

a23 − u12u13
u22

,

u33 =
√

a33 − u213 − u223.

Choleski method 37

The extension of A = UTU factorisation to n× n is as follows:

u11 =
√
a11

For j = 2, 3, . . . , n : u1j =
a1j
u11

For i = 2, 3, . . . , n : uii =

√√√√aii −
i−1∑
k=1

u2ki

{
For i = 2, 3, . . . , n

j = i+ 1, i+ 2, . . . , n
: uij =

1

uii

(
aij −

i−1∑
k=1

ukiukj

)

For i > j : uij = 0

Choleski method (example) 38

Let us consider an example with symmetric aij = aji matrix: 1 2 3
2 5 10
3 10 26

 x1
x2
x3

 =

 10
26
55


 1 2 3

2 5 10
3 10 26

 = UTU =

 u211 u11u12 u11u13
u11u12 u212 + u222 u12u13 + u22u23
u11u13 u12u13 + u22u23 u213 + u223 + u233



u11 =
√
1 = 1, u12 = 2/u11 = 2, u13 = 3/u11 = 3,

u22 =
√

5− u212 = 1, u23 = (10− u12u13)/u22 = 4,

u33 =
√
26− u213 − u223 = 1.

Choleski method (example) 39

The decomposed form Ax = UTUx = b then reads 1 2 3
2 5 10
3 10 26

 x1
x2
x3

 =

 1 0 0
2 1 0
3 4 1

 1 2 3
0 1 4
0 0 1

 x1
x2
x3

 =

 10
26
55


We can then solve it as Ux = y and UTy = b 1 0 0

2 1 0
3 4 1

 y1
y2
y3

 =

 10
26
55


Thus y1 = 10 , y2 = 26− 2y1 = 6 , y3 = 55− 3y1 − 4y2 = 1 :

y =

 10
6
1



Choleski method (example) 40

Now we can solve Ux = y : 1 2 3
0 1 4
0 0 1

 x1
x2
x3

 =

 10
6
1


Then x3 = 1 , x2 = 6− 4x3 = 2 , x1 = 10− 3x3 − 2x2 = 3 so

x =

 3
2
1


Check:

Ax =

 1 2 3
2 5 10
3 10 26

 3
2
1

 =

 10
26
55

 = b

Summary 41

A = LU with lower triangular L and upper triangular U matrices

This permits to solve Ly = b then Ux = y instead of Ax = b

Row operations can be represented via elementary matrices

Row reduction to EF is equivalent to LU factorisation

There are efficient programming algorithms for LU:

Doolittle: diagonal elements of L are all equal to 1

Crout: diagonal elements of U are all equal to 1

(when these algorithms fail, retrying upon row swaps may help)

Cholesky: symmetric positive definite matrix A = UTU

Most generally, A = PLDU (do not forget b→ Pb)

Questions? 42

Mid-term class test (2 hours)

at the tutorials this week

covers the topics of the first five weeks

