UNIVERSITY OF TECHNOLOGY SYDNEY School of Mathematical and Physical Sciences

37233 LINEAR ALGEBRA

Exercises 7

Question 1

Let \widehat{T} be a linear transformation with the following matrix $\mathbf{T}\colon$

$$\begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 1 & 2 & 0 \\ 0 & 2 & -2 \end{bmatrix}$$

(a) Specify the domain and codomain of \hat{T} ;

(b) Find all the images of $\mathbf{u} = \begin{bmatrix} -2\\1\\1 \end{bmatrix}$

(c) Describe the range of \widehat{T} and find its basis;

(d) Find all the sources for
$$\mathbf{v} = \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}$

Question 2

Consider a linear transformation \widehat{T} with the standard matrix $\mathbf{T} = \begin{bmatrix} 3 & 3 \\ 0 & 1 \end{bmatrix}$.

- (a) Specify the domain, codomain and range of \widehat{T} .
- (b) Illustrate the effect of \widehat{T} by mapping its action on a unit square in the domain of \widehat{T} .
- (c) Find the vector in the domain of \widehat{T} if its image is $\begin{bmatrix} 3\\ 1/2 \end{bmatrix}$, and illustrate the result.

Question 3

Let
$$\mathbf{e}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
, $\mathbf{e}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$, $\mathbf{e}_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$, $\mathbf{y}_1 = \begin{bmatrix} 3\\2\\-1 \end{bmatrix}$, $\mathbf{y}_2 = \begin{bmatrix} -5\\0\\3 \end{bmatrix}$, $\mathbf{y}_3 = \begin{bmatrix} -6\\3\\5 \end{bmatrix}$.

Let \widehat{T} : $\mathbb{R}^3 \mapsto \mathbb{R}^3$ be a linear transformation that maps \mathbf{e}_i to \mathbf{y}_i .

- (a) Write the standard matrix representation of \widehat{T} . (b) Find the image of $\mathbf{v} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.
- (c) Find the standard matrix of the reverse transformation from \mathbf{y}_i to \mathbf{e}_i .
- (d) Using the reverse transformation, obtain the image of $\begin{bmatrix} \mathbf{u} \end{bmatrix}_{\mathcal{Y}} = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$.

Question 4

Consider matrix

$$\mathbf{A} = \begin{bmatrix} 3 & -3 & 0 \\ 0 & 3 & -3 \\ 0 & 3 & 9 \end{bmatrix}$$

- (a) Solve the characteristic equation to find the eigenvalues of **A**.
- (b) Find the bases for eigenspaces of **A** corresponding to each eigenvalue.