LINEAR TRANSFORMATIONS

• Linear transformations

• Eigenvectors and eigenvalues

Another interpretation of matrix equations

• Equation Ax = b can be regarded as a function:

Matrix A *acts* on x, producing a new vector b (analogous to an action of a function y = f(x))

• So, left-multiplication by A *transforms* x into b The resulting correspondence between x and b is a *mapping* from one set of vectors to another

Transformations

Definition: Transformation (mapping, function) \widehat{T} from V onto W is a rule assigning element $\widehat{T}(\mathbf{x}) = \mathbf{y} \in W$ to each element $\mathbf{x} \in V$

- The usual notation is: $\widehat{T}:V\mapsto W$
- V is called the $\operatorname{\mathbf{domain}}$, and W the $\operatorname{\mathbf{codomain}}$ of \widehat{T}
- Vector $\mathbf{y}=\widehat{T}(\mathbf{x})$ is called the image of \mathbf{x}
- The set of all images $\left\{\widehat{T}(\mathbf{x})\right\}$ is called the range of \widehat{T}

Linear transformations

Definition:

Transformation \widehat{T} is linear if: $\forall \, {\bf u}, \, {\bf v}$ in the domain of \widehat{T}

(i)
$$\widehat{T}(\mathbf{u} + \mathbf{v}) = \widehat{T}(\mathbf{u}) + \widehat{T}(\mathbf{v})$$

(ii) $\widehat{T}(c \mathbf{u}) = c \widehat{T}(\mathbf{u}) \quad \forall c \in \mathbb{R}$

Properties:

If \widehat{T} is a linear transformation, then

•
$$\widehat{T}(\mathbf{0}) = \mathbf{0}$$
 (proof: $\widehat{T}(\mathbf{0}) = \widehat{T}(\mathbf{0} \cdot \mathbf{0}) = \mathbf{0} \cdot \widehat{T}(\mathbf{0}) = \mathbf{0}$)

•
$$\widehat{T}(c\mathbf{u} + d\mathbf{v}) = c\widehat{T}(\mathbf{u}) + d\widehat{T}(\mathbf{v})$$
 (follows from (i) and (ii))

Note: Generally, a linear transformation is often called a linear operator

Linear transformations in matrix form

If A is an $m \times n$ matrix, $\widehat{T}(\mathbf{x}) = \mathbf{A}\mathbf{x}$ is a linear transformation.

Proof: given that $\mathbf{A}\mathbf{x} = x_1\mathbf{a}_1 + \ldots + x_n\mathbf{a}_n$

$$\widehat{T}(\mathbf{x} + \mathbf{y}) = (x_1 + y_1)\mathbf{a}_1 + \dots + (x_n + y_n)\mathbf{a}_n$$
$$= x_1\mathbf{a}_1 + \dots + x_n\mathbf{a}_n + y_1\mathbf{a}_1 + \dots + y_n\mathbf{a}_n = \widehat{T}(\mathbf{x}) + \widehat{T}(\mathbf{y})$$
$$\widehat{T}(c\,\mathbf{x}) = (cx_1)\mathbf{a}_1 + \dots + (cx_n)\mathbf{a}_n$$
$$= c\,(x_1\mathbf{a}_1 + \dots + x_n\mathbf{a}_n) = c\,T(\mathbf{x})$$

Thus $\widehat{T}(\mathbf{x} + \mathbf{y}) = \widehat{T}(\mathbf{x}) + \widehat{T}(\mathbf{y})$ and $\widehat{T}(c \mathbf{x}) = c \cdot \widehat{T}(\mathbf{x})$ so $\widehat{T} = \mathbf{A}\mathbf{x}$ is a linear transformation, by definition.

Linear transformations in matrix form

- For $\mathbf{x} \in \mathbb{R}^n$, a linear transformation $\widehat{T}(\mathbf{x})$ into \mathbb{R}^m can be computed as $\mathbf{A}\mathbf{x}$ where \mathbf{A} is an $m \times n$ matrix.
- If the domain of \widehat{T} is \mathbb{R}^n then A has n columns, and if the codomain of \widehat{T} is \mathbb{R}^m then A has m rows.
- The range of \widehat{T} is $\operatorname{Span}\{\mathbf{a}_1 \dots \mathbf{a}_n\}$ and image of \mathbf{x} is $\mathbf{A}\mathbf{x}$.

Example 1: image of **u** obtained with **A**:

$$\mathbf{A} = \begin{bmatrix} 1 & -3\\ 3 & 5\\ -1 & 7 \end{bmatrix}, \qquad \mathbf{u} = \begin{bmatrix} 2\\ -1 \end{bmatrix}$$

This is a $\widehat{T}:\mathbb{R}^2\mapsto\mathbb{R}^3$ transformation:

$$\widehat{T}(\mathbf{u}) = \mathbf{A}\mathbf{u} = \begin{bmatrix} 5\\1\\-9 \end{bmatrix}$$

This can be also written in functional form:

$$\widehat{T}(\mathbf{x}) = \begin{bmatrix} x_1 - 3x_2\\ 3x_1 + 5x_2\\ -x_1 + 7x_2 \end{bmatrix}$$

Example 2: Let $\widehat{T}(x_1, x_2) = ((2x_1 - 3x_2); (x_1 + 4); (5x_2)).$

Show that the above \widehat{T} is not a linear transformation:

$$\widehat{T}(x_1, x_2) = \begin{bmatrix} 2x_1 - 3x_2 \\ x_1 + 4 \\ 5x_2 \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ 1 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 4 \\ 0 \end{bmatrix}$$

Thus $\widehat{T}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{q}$ where

$$\mathbf{A} = \begin{bmatrix} 2 & -3\\ 1 & 0\\ 0 & 5 \end{bmatrix} \quad \text{and} \quad \mathbf{q} = \begin{bmatrix} 0\\ 4\\ 0 \end{bmatrix}$$

If \widehat{T} were a linear transformation, then $\widehat{T}({\bf 0})={\bf 0}$ However, here $\widehat{T}({\bf 0})={\bf q}\neq {\bf 0}$

Therefore, it is not a linear transformation.

Example 3:
$$\mathbf{T} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}, \quad \widehat{T}(\mathbf{x}) = \mathbf{T}\mathbf{x}.$$

To find ${\bf x}$ such that $\widehat{T}({\bf x})={\bf b}$ we need to solve the system:

$$\begin{bmatrix} 1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & -5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 \\ 0 & 1 & -1/2 \\ 0 & 0 & 0 \end{bmatrix}$$

So
$$x_1 = \frac{3}{2}$$
, $x_2 = -\frac{1}{2}$ and thus **b** is the image of $\mathbf{x} = \begin{bmatrix} 1.5 \\ -0.5 \end{bmatrix}$

A unique solution implies only one \mathbf{x} with the image \mathbf{b} . We have also verified that \mathbf{b} is in the range of \widehat{T} .

Example 4:
$$\mathbf{T} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$, $\widehat{T}(\mathbf{x}) = \mathbf{T}\mathbf{x}$.

Determine whether or not \mathbf{c} is in the range of transformation \widehat{T} .

Vector \mathbf{c} is in the range of $\widehat{T}(\mathbf{x})$ if \mathbf{c} is an image of some $\mathbf{x} \in \mathbb{R}^2$.

Solving the system $\mathbf{T}\mathbf{x}=\mathbf{c}$ gives

$$\begin{bmatrix} 1 & -3 & | & 3 \\ 3 & 5 & | & 2 \\ -1 & 7 & | & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & | & 3 \\ 0 & 1 & | & 1/2 \\ 0 & 0 & | & 10 \end{bmatrix}$$

The system is inconsistent and thus \mathbf{c} is **not** in the range of \widehat{T} . There are no vectors in \mathbb{R}^2 with an image \mathbf{c} under \widehat{T} .

Classical linear transformations: scaling

Example: Let
$$\widehat{T}: \mathbb{R}^2 \mapsto \mathbb{R}^2$$
, $\widehat{T}(\mathbf{x}) = r \mathbf{x}$, where $r \in \mathbb{R}$.

Show that this is a linear transformation:

$$\widehat{T}(c\mathbf{u} + d\mathbf{v}) = r(c\mathbf{u} + d\mathbf{v}) = c(r\mathbf{u}) + d(r\mathbf{v}) = c\widehat{T}(\mathbf{u}) + d\widehat{T}(\mathbf{v}).$$

 \widehat{T} is called a scaling (or dilation) transformation:

Classical linear transformations: projections

Example:

$$\mathbf{O_{12}} = \left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

Action of this matrix on $\mathbf{x} \in \mathbb{R}^3$ is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$$

This transformation projects points of \mathbb{R}^3 onto a plane. This is an example of *projection* transformation.

Note: this is still a \mathbb{R}^3 onto \mathbb{R}^3 transformation; its domain is \mathbb{R}^3 and codomain is \mathbb{R}^3 , but the range is a plane within \mathbb{R}^3 .

Visualisation of linear transformations

A convenient way to visualise transformations in \mathbb{R}^2 is to depict their action on a unit square: a square made by vectors

Plotting the resulting points and connecting these with lines (transformation is linear) shows how the shape is changed.

Visualisation of linear transformations

Classical linear transformations: shear

This is an example of *shear* transformation (square to parallelogram)

• So far, we have seen how to visualise a given transformation

• But it is also important to design a desired transformation

• There is a straightforward algorithm: standard matrices

Reminder: Standard basis vectors

In
$$\mathbb{R}^2$$
, any $\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$ where
 $\mathbf{e}_1 = \begin{bmatrix} 1\\0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0\\1 \end{bmatrix}$

are called the standard basis vectors in \mathbb{R}^2 .

Similarly, in \mathbb{R}^3 , any $\mathbf{x} = x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + x_3\mathbf{e}_3$ with the basis

$$\mathbf{e}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \quad \text{and} \quad \mathbf{e}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix} \quad \text{and} \quad \mathbf{e}_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

Generally in
$$\mathbb{R}^n$$
 $\mathbf{x} = x_1 \mathbf{e}_1 + \ldots + x_n \mathbf{e}_n$ with $\mathbf{e}_n : \begin{cases} e_n^{(i=n)} = 1 \\ e_n^{(i\neq n)} = 0 \end{cases}$

Standard matrix of linear transformation

For any linear transformation $\widehat{T} : \mathbb{R}^2 \mapsto \mathbb{R}^2$ we can write $\widehat{T}(\mathbf{x}) = \widehat{T}(x_1\mathbf{e}_1 + x_2\mathbf{e}_2) = \widehat{T}(x_1\mathbf{e}_1) + \widehat{T}(x_2\mathbf{e}_2) = x_1\widehat{T}(\mathbf{e}_1) + x_2\widehat{T}(\mathbf{e}_2)$ This can be written as $\widehat{T}(\mathbf{x}) = \begin{bmatrix} \widehat{T}(\mathbf{e}_1) \mid \widehat{T}(\mathbf{e}_2) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \equiv \mathbf{T}\mathbf{x}$ $\mathbf{T} = \begin{bmatrix} \widehat{T}(\mathbf{e}_1) \mid \widehat{T}(\mathbf{e}_2) \end{bmatrix}$ is called the *standard matrix* of \widehat{T} .

Similarly, for any linear transformation $\widehat{T}: \mathbb{R}^n \mapsto \mathbb{R}^n$ we can write

$$\widehat{T}(\mathbf{x}) = \widehat{T}(x_1\mathbf{e}_1 + \ldots + x_n\mathbf{e}_n) = \widehat{T}(x_1\mathbf{e}_1) + \ldots + \widehat{T}(x_n\mathbf{e}_n)$$
$$= x_1\widehat{T}(\mathbf{e}_1) + \ldots + x_n\widehat{T}(\mathbf{e}_n) = \mathbf{T}\mathbf{x}$$

with the standard matrix $\mathbf{T} = \begin{bmatrix} \widehat{T}(\mathbf{e}_1) & | \dots & | \widehat{T}(\mathbf{e}_n) \end{bmatrix}$.

Example: Find the standard matrix for scaling $\widehat{T}(\mathbf{x}) = r\mathbf{x}$

Action of this scaling on standard vectors is straightforward:

$$\widehat{T}(\mathbf{e}_1) = r\mathbf{e}_1 = r \begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} r\\0 \end{bmatrix}$$
$$\widehat{T}(\mathbf{e}_2) = r\mathbf{e}_2 = r \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} 0\\r \end{bmatrix}$$

The standard matrix is therefore:

$$\mathbf{D}_r = \left[\widehat{T}(\mathbf{e}_1) \mid \widehat{T}(\mathbf{e}_2)\right] = \left[\begin{array}{cc} r & 0\\ 0 & r \end{array}\right]$$

Standard matrix for rotation

Find the standard matrix of a transformation that rotates any vector in \mathbb{R}^2 around the origin by an angle φ radians.

Consider the action of this rotation over the standard vectors:

Standard matrix for rotation (example)

counterclockwise rotation by 90° about the origin Example: $\mathbf{T} = \begin{vmatrix} 0 & -1 \\ 1 & 0 \end{vmatrix} \quad \text{so} \quad \widehat{T}(\mathbf{x}) = \begin{vmatrix} 0 & -1 \\ 1 & 0 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = \begin{vmatrix} -x_2 \\ x_1 \end{vmatrix}$ Find the images of: $\mathbf{u} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $\mathbf{u} + \mathbf{v} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$. $T(\mathbf{u} + \mathbf{v})$ + $\widehat{T}(\mathbf{u}) = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$ $T(\mathbf{u})$ $\widehat{T}(\mathbf{v}) = \begin{bmatrix} -3\\2 \end{bmatrix}$ $T(\mathbf{v})$ $\widehat{T}(\mathbf{u} + \mathbf{v}) = \begin{vmatrix} -4 \\ -6 \end{vmatrix}$

One-to-one linear transformations

Definition: Transformation $\widehat{T}: V \mapsto W$ is called *one-to-one* if each $\mathbf{y} \in W$ is the image of at most one $\mathbf{v} \in V$

Theorem: A linear transformation \hat{T} is one-to-one if and only if the equation $\hat{T}(\mathbf{x}) = \mathbf{0}$ has only the trivial solution $(\mathbf{x} = \mathbf{0})$. Equivalent definition for vector spaces:

Transformation $\widehat{T} : \mathbb{R}^n \mapsto \mathbb{R}^m$ is a one-to-one linear transformation if $\forall \mathbf{b} \in \mathbb{R}^m$ equation $\mathbf{Tx} = \mathbf{b}$ (where **T** is the matrix of \widehat{T}) has either a unique solution or no solutions.

Theorem: Let $\widehat{T} : \mathbb{R}^n \mapsto \mathbb{R}^m$ be a linear transformation with the standard matrix \mathbf{T} . Then:

- (a) \widehat{T} maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of \mathbf{T} span \mathbb{R}^m
- (b) \widehat{T} is one-to-one if and only if the columns of \mathbf{T} are linearly independent

Coordinate transformations

- Isomorphism between linear spaces is established with a one-to-one linear transformation
- Coordinate mapping is a one-to-one linear transformation
- Change of basis is a one-to-one linear transformation (and change of basis matrix is the matrix of transformation)

Linearity of transformation ensures that coordinate vector of a linear combination of elements is a linear combinations of their coordinate vectors, taken with the same coefficients:

$$\left[c_{1}\mathbf{u}_{1}+\ldots+c_{n}\mathbf{u}_{n}\right]_{\mathcal{B}}=c_{1}\left[\mathbf{u}_{1}\right]_{\mathcal{B}}+\ldots+c_{n}\left[\mathbf{u}_{n}\right]_{\mathcal{B}}$$

Analysing linear transformations, examples

Example: Consider a transformation \widehat{T} with standard matrix

$$\mathbf{T} = \begin{bmatrix} 1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

Check if this transformation is a one-to-one linear transformation, and specify the domain, codomain, and range of $\hat{T}.$

- \widehat{T} is presented as $\mathbf{T}\mathbf{x}$ so it is a linear transformation.
- The domain of \widehat{T} is \mathbb{R}^4 and the codomain is \mathbb{R}^3 .
- There are three pivots in T so the columns of T span \mathbb{R}^3 , thus the range of \widehat{T} is the entire \mathbb{R}^3 .
- The columns of T are not linearly independent, therefore \widehat{T} is not one-to-one.

Analysing linear transformations, examples

Example: Check if the transformation $\widehat{T}(x_1, x_2) = \begin{bmatrix} 3x_1 + x_2 \\ 5x_1 + 7x_2 \\ x_1 + 3x_2 \end{bmatrix}$ is a one-to-one linear transformation, and find its range.

This transformation can be written in a matrix form:

$$\widehat{T}(\mathbf{x}) = \begin{bmatrix} 3x_1 + x_2\\ 5x_1 + 7x_2\\ x_1 + 3x_2 \end{bmatrix} = \begin{bmatrix} 3 & 1\\ 5 & 7\\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \mathbf{T}\mathbf{x}$$

- The columns of ${\bf T}$ are linearly independent therefore \widehat{T} is a one-to-one linear transformation.
- $\mathbf{x} \in \mathbb{R}^2$ so domain of \widehat{T} is \mathbb{R}^2 ; $\mathbf{T}\mathbf{x} \in \mathbb{R}^3$ so codomain is \mathbb{R}^3 .
- The two linearly independent columns of T span a plane within \mathbb{R}^3 : this plane is the range of \widehat{T} .

(this topic officially is a pre-requisite knowledge

— but there are some new details)

Eigenvectors and eigenvalues

Definition: An *eigenvector* of a square matrix \mathbf{A} is a nonzero vector \mathbf{v} such that $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$ for some scalar λ . A scalar λ is called an *eigenvalue* of \mathbf{A} if there is a nontrivial solution \mathbf{v} of $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$. (then this \mathbf{v} is an eigenvector *corresponding* to λ).

As a linear transformation A performs scaling of its eigenvectors

 λ is an eigenvalue for ${\bf A}$ if and only there is a nontrivial solution to

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$$

Therefore, λ can be found by solving a *characteristic equation*:

$$\det\left(\mathbf{A} - \lambda \mathbf{I}\right) = 0$$

Note: there may be complex roots to the characteristic equation.

Example: Find eigenvalues and eigenvectors for $\mathbf{A} = \begin{bmatrix} 2 & 5 \\ 6 & 1 \end{bmatrix}$.

Solution: Construct characteristic equation $det (\mathbf{A} - \lambda \mathbf{I}) = 0$:

$$\begin{vmatrix} \begin{bmatrix} 2 & 5 \\ 6 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{vmatrix} = \begin{vmatrix} \begin{bmatrix} 2 - \lambda & 5 \\ 6 & 1 - \lambda \end{bmatrix} \end{vmatrix} = 0$$
$$(2 - \lambda)(1 - \lambda) - 30 = 0$$
$$\lambda^2 - 3\lambda - 28 = 0$$

which yields the eigenvalues as the solution:

$$\lambda_1 = 7$$
 $\lambda_2 = -4$

For each of these eigenvalues, we need to solve $(\mathbf{A} - \lambda \mathbf{I}) \mathbf{x} = \mathbf{0}$.

Example: For
$$\mathbf{A} = \begin{bmatrix} 2 & 5 \\ 6 & 1 \end{bmatrix}$$
 we found $\lambda_1 = 7, \quad \lambda_2 = -4$

$$\mathbf{A} - 7\mathbf{I} = \begin{bmatrix} 2 & 5\\ 6 & 1 \end{bmatrix} - \begin{bmatrix} 7 & 0\\ 0 & 7 \end{bmatrix} = \begin{bmatrix} -5 & 5\\ 6 & -6 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & -1\\ 0 & 0 \end{bmatrix} \Rightarrow \mathbf{v}_1 = c \cdot \begin{bmatrix} 1\\ 1 \end{bmatrix}$$

$$\mathbf{A} + 4\mathbf{I} = \begin{bmatrix} 2 & 5\\ 6 & 1 \end{bmatrix} - \begin{bmatrix} -4 & 0\\ 0 & -4 \end{bmatrix} = \begin{bmatrix} 6 & 5\\ 6 & 5 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 6 & 5\\ 0 & 0 \end{bmatrix} \Rightarrow \mathbf{v}_2 = c \cdot \begin{bmatrix} 5\\ -6 \end{bmatrix}$$

Example: Find eigenvalues and eigenvectors for $\mathbf{A} = \begin{bmatrix} 2 & 5 \\ 6 & 1 \end{bmatrix}$.

So the eigenvalues are: $\lambda_1 = 7$ and $\lambda_2 = -4$

and the corresponding eigenvectors are

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 5\\-6 \end{bmatrix}$$

We can verify this back with the original matrix:

$$\mathbf{A}\mathbf{v}_{1} = \begin{bmatrix} 2 & 5\\ 6 & 1 \end{bmatrix} \begin{bmatrix} 1\\ 1 \end{bmatrix} = \begin{bmatrix} 7\\ 7 \end{bmatrix} = 7 \cdot \begin{bmatrix} 1\\ 1 \end{bmatrix} = \lambda_{1}\mathbf{v}_{1}$$
$$\mathbf{A}\mathbf{v}_{2} = \begin{bmatrix} 2 & 5\\ 6 & 1 \end{bmatrix} \begin{bmatrix} 5\\ -6 \end{bmatrix} = \begin{bmatrix} -20\\ 24 \end{bmatrix} = -4 \cdot \begin{bmatrix} 5\\ -6 \end{bmatrix} = \lambda_{2}\mathbf{v}_{2}$$

Eigenvectors and eigenvalues

- 0 is an eigenvalue of A if and only if A is singular.
- All the eigenvectors of **A** corresponding to a given eigenvalue, span the corresponding *eigenspace*
- If v₁,... v_p are eigenvectors corresponding to different eigenvalues λ₁,... λ_p, then the set {v₁,... v_p} is linearly independent.
- For a triangular matrix, eigenvalues are the diagonal entries:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} \qquad \Rightarrow \qquad \begin{cases} \lambda_1 = a_{11} \\ \lambda_2 = a_{22} \\ \lambda_3 = a_{33} \end{cases}$$

(because its determinant is the product of its main diagonal)

Example: for
$$\mathbf{A} = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$$
 find bases for its eigenspaces.

Solution:

$$\det \left(\mathbf{A} - \lambda \mathbf{I} \right) = \begin{vmatrix} 4 - \lambda & -1 & 6 \\ 2 & 1 - \lambda & 6 \\ 2 & -1 & 8 - \lambda \end{vmatrix}$$

$$= (4 - \lambda)(1 - \lambda)(8 - \lambda) - 12 - 12 + 6(4 - \lambda) + 2(8 - \lambda) - 12(1 - \lambda)$$
$$= -\lambda^3 + 13\lambda^2 - 40\lambda + 36$$
$$\dots = \dots$$
$$= (9 - \lambda)(2 - \lambda)(2 - \lambda) = 0$$

so $\lambda_1 = 9$ and $\lambda_{2,3} = 2$.

Example: for
$$\mathbf{A} = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$$
 find bases for its eigenspaces.

... so $\lambda_1 = 9$ and $\lambda_{2,3} = 2$; then we solve $(\mathbf{A} - \lambda \mathbf{I}) \mathbf{x} = \mathbf{0}$

$$\mathbf{A} - 9\mathbf{I} = \begin{bmatrix} -5 & -1 & 6\\ 2 & -8 & 6\\ 2 & -1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1\\ 0 & 1 & -1\\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{x} = x_3 \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix}$$
$$\mathbf{A} - 2\mathbf{I} = \begin{bmatrix} 2 & -1 & 6\\ 2 & -1 & 6\\ 2 & -1 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -\frac{1}{2} & 3\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{x} = x_2 \begin{bmatrix} 0.5\\ 1\\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3\\ 0\\ 1 \end{bmatrix}$$

So the bases are:

$$\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\} \quad \text{for } \lambda_1 \qquad \text{and} \qquad \left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} -3\\0\\1 \end{bmatrix} \right\} \quad \text{for } \lambda_{2,3}$$

Examples in relation to linear transformations

Dilation e.g.
$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
 we have $\lambda_{1,2} = 2$ and $\forall \mathbf{v} \in \mathbb{R}^2$
Shear e.g. $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ we have $\lambda_{1,2} = 1$ and $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
Projection e.g. $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ we have $\lambda_1 = 1$ for $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
and $\lambda_2 = 0$ for $\mathbf{v} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
Swap e.g. $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ we have $\lambda_{1,2} = 1$ and $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
Rotation e.g. $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ we have $\lambda_{1,2} = \pm i$ and $\forall \mathbf{v} \in \mathbb{C}^2$

This week: quick test 5 (change of coordinates)

Next week: quick test 6 (linear transformations)