LINEAR TRANSFORMATIONS

@ Linear transformations

o Eigenvectors and eigenvalues



Another interpretation of matrix equations

@ Equation Ax = b can be regarded as a function:

Matrix A acts on x, producing a new vector b
(analogous to an action of a function y = f(z))

@ So, left-multiplication by A transforms x into b

The resulting correspondence between x and b
is a mapping from one set of vectors to another
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Transformations

Definition: Transformation (mapping, function) T from V onto W

is a rule assigning element f(x) =y € W to each element x € V
o The usual notation is: 7:V — W
o V is called the domain, and W the codomain of 7'

@ Vector y = f(x) is called the image of x

@ The set of all images {f(x)} is called the range of T

Picture:
"'7 — RII
¢ W =R"

Domain



Linear transformations

Definition:
Transformation 7T is linear if: Y u, v in the domain of T
() T(a+v)=T(u) +T(v)

(i) T(cu)=cT(u) VeceR

Properties:

If T is a linear transformation, then

@ T(0)=0 ( proof: T(0)=7(0-0)=0-7(0)=0)

o T(cu+dv)=cT(u)+dT(v) ( follows from (i) and (ii))

Note: Generally, a linear transformation is often called a linear operator



Linear transformations in matrix form

If A is an m x n matrix, T(x) = Ax is a linear transformation.

Proof: given that Ax = z1a; +... + xp,a,

A~

Tx+y)=(r1+y)ar+...+ (zn +yn)an
=za; + ...+ Tpa, Y181 + ...+ Ynay, :j’\(x)—i—f(y)

~

T(cx) = (cx1)ar + ...+ (cxy)ay,
=c(za; + ...+ zpa,) = cT(x)

Thus T(x +y) =T(x) + T(y) and T(cx) = c-T(x)

so T = Ax is a linear transformation, by definition.



Linear transformations in matrix form
e For x € R, a linear transformation 7'(x) into R™
can be computed as Ax where A is an m X n matrix.

o If the domain of T E R™ then A has n columns, and
if the codomain of T is R™ then A has m rows.

@ The range of T is Span{a; ...a,} and image of x is Ax.

Domain



Linear transformations, examples 7

)
Example 1: image of u obtained with A:
1 -3
2 X
A= 3 5], u= I )
R & BEzE
. T
Thisis a T : R?2 — R? transformation: x, )
R 5
T(u)=Au=| 1 x,
-9 *1

This can be also written in functional form:

1 — 3T9
T(x) = | 3z1 + bxo . / 5
—x1 + Txo T(u):[ 1}
-9



Linear transformations, examples

Example 2: Let T(x1,73) = ((2z1 — 3x2); (z1 + 4); (5a2)).

Show that the above T is not a linear transformation:

N 2(15'1 - 3$2 2 -3 z 0
T(z1,20)=| x1+4 |=]1 0 [xl]Jr 4
5y 0 5 ? 0
Thus T(x) = Ax + q where
2 -3 0
A={(1 0 and q=| 4
0 5 0

If T were a linear transformation, then f(O) =0
However, here T(0) = q # 0

Therefore, it is not a linear transformation.



Linear transformations, examples

1 -3 3 ~
Example 3: T = 3 51|, b= 2 |, T(x)=Tx.
-1 7 -5

To find x such that T(x) = b we need to solve the system:

1 -3] 3 1 0] 3/2
3 5| 2| —= |0 1]-1/2
-1 7|-5 00 0

3 1 ) . 1.5
So x1 = 3 To = —3 and thus b is the image of x = [_0.5}

A unique solution implies only one x with the image b.

We have also verified that b is in the range of T.



Linear transformations, examples 10

1 =3 3 R
Example 4: T = 3 5|, c¢c=1|2], T(x)=Tx.
-1 7 5

Determine whether or not c is in the range of transformation T.
Vector c is in the range of f(x) if ¢ is an image of some x € R2.

Solving the system Tx = c gives

1 -3]3 1 -3 3
3 5(2] = |0 1|1/2
-1 7|5 0 0|10

The system is inconsistent and thus c is not in the range of T.

There are no vectors in R? with an image ¢ under 7.



Classical linear transformations: scaling

Example: Let T :R2 s R2, f(x) = rx, where r € R.

Show that this is a linear transformation:

T(cu+dv)=r(cu+dv) =c(ru)+d(rv)=cT(u)+dT(v).

T is called a scaling (or dilation) transformation:

11



Classical linear transformations: projections

Example: ’
100 o |
O12=]0 10 / : .
00 0 N T ’
Action of this matrix on x € R? is J l

1 1 00 x1 1
zo |—= | 0 1 0 Ty | = | T2
T3 0 0 0 I3 0

This transformation projects points of R onto a plane.
This is an example of projection transformation.

Note: this is still a R3 onto R? transformation: its domain is R3
and codomain is R?, but the range is a plane within R3.

12



Visualisation of linear transformations

A convenient way to visualise transformations in R? is to depict
their action on a unit square: a square made by vectors

Plotting the resulting points and connecting these with lines
(transformation is linear) shows how the shape is changed.

13



Visualisation of linear transformations 14

Example: illustrate linear transformation given by [—O 5 05

-1 —0.5}

o5 o3 1) = [ = [as)+ 03



Classical linear transformations: shear 15

Example: transformation with T = [é ‘z’

] of a 2 X 2 square

| — |
O =
_ W
—_
| —

This is an example of shear transformation (square to parallelogram)



Standard matrices for linear transformations

@ So far, we have seen how to visualise a given transformation

@ But it is also important to design a desired transformation

@ There is a straightforward algorithm: standard matrices

16



Reminder: Standard basis vectors 17

In R2, any X = x1e] + xoe2 where

(3] e [2]

are called the standard basis vectors in R2.

Similarly, in R3, any x = z1e; + z2es + x3e3 with the basis

1 0 0

e1=10 and ey = | 1 and e3= |0

0 0 1
eli=n) = 1

Generally in R® x=x1e1+...+x,e, with e,: "
{eﬁf#”) =0



Standard matrix of linear transformation 18

For any linear transformation T : R? — R2 we can write
y

f(x) = f(wlel—l—xzeQ) = T\(wlel)—l—f(:erQ) = .%'17/—\’(61)4-.7}2?(62)

This can be written as T'(x) = [ T(e1) ‘ T(ey) } [ il ] =Tx
2

T= [ f(el) ‘ f(eg) ] is called the standard matrix of T .

Similarly, for any linear transformation T :R" — R" we can write
T(x)=T(z1e1+ ... +zpe,) = T(z1€1) + ... + T(xnen)
w1T(er) + ...+ z,T(e,) = Tx

~

with the standard matrix T = [ T\(el) ‘ ‘ T(en) ]



Standard matrix for scaling

Example: Find the standard matrix for scaling YA“(X) =7rx

Action of this scaling on standard vectors is straightforward:

~ 1 r

T(el)—’l“el—’l“|:0:|—|:0:|

T\(eg)—reg—r{?} —[0]
The standard matrix is therefore:

D, = [Ten) | Tlea] = | § 7|

19



Standard matrix for rotation 20

Find the standard matrix of a transformation that rotates any
vector in R? around the origin by an angle ¢ radians.

Consider the action of this rotation over the standard vectors:

%y

fen=[]  aa Ten=] 7]

Therefore

R _ | cose —sing
¥ | sinp  cosgp



Standard matrix for rotation (example)

Example: counterclockwise rotation by 90° about the origin

v[1 ] =m0 ][] 2]

. . 4 2 6
Flndthelmagesof.u—{l}7 V—|:3:|, u+v-[4]
~ — T
T(u) = [ b ] Jo
T T
T(u) u+v
fy = [ 8 N
V) 9 + Ve
Ttv)* T
~ —4 -+ .
T(u—i—v):[ } u
6 1 R

21



One-to-one linear transformations 22

Definition: Transformation 7 : V + W is called one-to-one
if each y € W is the image of at most one v e V

T'is not one-to-one T is one-to-one

Theorem: A linear transformation 7' is one-to-one
if and only if the equation T'(x) =0
has only the trivial solution (x = 0).



One-to-one linear transformations 23

Equivalent definition for vector spaces:
Transformation T : R” s R™ is a one-to-one linear transformation
if Vb € R™ equation Tx =b (where T is the matrix of f)

has either a unique solution or no solutions.

Theorem: Let T : R™ — R™ be a linear transformation
with the standard matrix T. Then:
(a) T maps R" onto R™ if and only if
the columns of T span R™

(b) T is one-to-one if and only if the
columns of T are linearly independent



Coordinate transformations 24

@ Isomorphism between linear spaces is established
with a one-to-one linear transformation

@ Coordinate mapping is a one-to-one linear transformation

@ Change of basis is a one-to-one linear transformation

(and change of basis matrix is the matrix of transformation)

Linearity of transformation ensures that coordinate vector of a
linear combination of elements is a linear combinations of their
coordinate vectors, taken with the same coefficients:

[ciag + ...+ (i,lunjB =c [uﬂB + ... 4, [un}b,



Analysing linear transformations, examples

Example: Consider a transformation T with standard matrix

-4 8
-1
0

ot W

1
T=1(0 2

0 0
Check if this transformation is a one-to-one IinearAtransformation,
and specify the domain, codomain, and range of T'.

o T is presented as Tx so it is a linear transformation.
o The domain of T is R* and the codomain is R3.

@ There are three pivots in T so the columns of T span R3,
thus the range of T is the entire R3.

@ The columns of T are not linearly independent,
therefore T' is not one-to-one.

25



Analysing linear transformations, examples

R 3x1 + a2
Example: Check if the transformation T'(x1, x9) = |bx) + Txo
1 + 3x2
is a one-to-one linear transformation, and find its range.
This transformation can be written in a matrix form:
N 3x1 + 2 3 1 "
T(x)=| ba1+Tzy | = |5 7 [; ] = Tx
T + 3x9 1 3 2

@ The columns of T are linearly independent
therefore T' is a one-to-one linear transformation.

o x € R2 so domain of T is R2: Tx € R3 so codomain is R3.

@ The two linearly independent cqumnsAof T span a plane
within R3: this plane is the range of T .

26



Revision: Eigenvectors and eigenvalues

(this topic officially is a pre-requisite knowledge

— but there are some new details)

27



Eigenvectors and eigenvalues 28

Definition: An eigenvector of a square matrix A is a nonzero
vector v such that Av = Av for some scalar \.

A scalar )\ is called an eigenvalue of A if there is
a nontrivial solution v of Av = Av.

(then this v is an eigenvector corresponding to \).
As a linear transformation A performs scaling of its eigenvectors
A is an eigenvalue for A if and only there is a nontrivial solution to
(A= XI)v=0
Therefore, A can be found by solving a characteristic equation:
det (A —AI) =0

Note: there may be complex roots to the characteristic equation.



Eigenvectors and eigenvalues: example

Example: Find eigenvalues and eigenvectors for A = E ﬂ .

Solution: Construct characteristic equation det (A — AI) = 0:

6l A= 2]l

(2=XN)(1-X)—-30=0
A —3)-28=0
which yields the eigenvalues as the solution:

M =7 Ay =—4

For each of these eigenvalues, we need to solve (A — A\I)x = 0.



Eigenvectors and eigenvalues: example 30



Eigenvectors and eigenvalues: example

So the eigenvalues are: A\ =7 and Ao = —4

1

and the corresponding eigenvectors are vy = [1

We can verify this back with the original matrix:

| el

et Y- ne

o 0 [

] = \aVvo

5
6

|
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Eigenvectors and eigenvalues 32
@ 0 is an eigenvalue of A if and only if A is singular.

@ All the eigenvectors of A corresponding to a given eigenvalue,
span the corresponding eigenspace

o If vi,... v, are eigenvectors corresponding
to different eigenvalues Aq,... A, then the
set {v1,... vp} is linearly independent.

o For a triangular matrix, eigenvalues are the diagonal entries:

ail a2 a3 A1 = a1l
A= 0 ag2 G923 = )\2 = a22
0 0 ass /\3 = ass

(because its determinant is the product of its main diagonal)



Eigenvectors and eigenvalues: example 33

4 -1 6
Example: for A = |2 1 6| find bases for its eigenspaces.
2 -1 8
Solution:
4-X -1 6
det(A—XD)=|| 2 1-x 6
2 -1 8-=A

—(A=AN1=MN)B=A)—12—1246(4—A) +2(8 = \) — 12(1 — A)

=X\ +13)\2 — 40\ + 36

=0-N2-XN2-X)=0
so A1 =9 and A3 =2.



Eigenvectors and eigenvalues: example 34

4 -1 6
Example: for A = |2 1 6| find bases for its eigenspaces.
2 —1 8

...50 A1 =9 and A\y3 =2; then we solve (A —AI)x =0

So the bases are:

1 1 -3
1 for A and 21, 0 for Aa3



Examples in relation to linear transformations 35

Dilation e.g. [(2) g} we have Ao =2 and Vve R2

0

Shear e.g. [(1) 1

1} we have A2 =1 and v= [l]

Projection e.g. [(1) 8] we have A\ =1 for v= [(1)}

and Xy =0 for V:|:(1):|

Swap e.g. [(1) (1]] we have Ajp=1 and v = E]

Rotation e.g. [_? (1)] we have Mo ==4i and Vv e C?



Questions?

This week: quick test 5

(change of coordinates)

Next week: quick test 6

(linear transformations)
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