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Another interpretation of matrix equations 2

Equation Ax = b can be regarded as a function:

Matrix A acts on x , producing a new vector b
(analogous to an action of a function y = f(x))

So, left-multiplication by A transforms x into b

The resulting correspondence between x and b
is a mapping from one set of vectors to another



Transformations 3

Definition: Transformation (mapping, function) T̂ from V onto W

is a rule assigning element T̂ (x) = y ∈ W to each element x ∈ V

The usual notation is: T̂ : V 7→ W

V is called the domain, and W the codomain of T̂

Vector y = T̂ (x) is called the image of x

The set of all images
{
T̂ (x)

}
is called the range of T̂

Picture:

V = Rn

W = Rm



Linear transformations 4

Definition:

Transformation T̂ is linear if: ∀ u, v in the domain of T̂

(i) T̂ (u+ v) = T̂ (u) + T̂ (v)

(ii) T̂ (cu) = c T̂ (u) ∀ c ∈ R

Properties:

If T̂ is a linear transformation, then

T̂ (0) = 0 ( proof: T̂ (0) = T̂ (0 · 0) = 0 · T̂ (0) = 0 )

T̂ (cu+ dv) = c T̂ (u) + d T̂ (v) ( follows from (i) and (ii) )

Note: Generally, a linear transformation is often called a linear operator



Linear transformations in matrix form 5

If A is an m× n matrix, T̂ (x) = Ax is a linear transformation.

Proof: given that Ax = x1a1 + . . .+ xnan

T̂ (x+ y) = (x1 + y1)a1 + . . .+ (xn + yn)an

= x1a1 + . . .+ xnan + y1a1 + . . .+ ynan = T̂ (x) + T̂ (y)

T̂ (cx) = (cx1)a1 + . . .+ (cxn)an

= c (x1a1 + . . .+ xnan) = c T (x)

Thus T̂ (x+ y) = T̂ (x) + T̂ (y) and T̂ (cx) = c · T̂ (x)
so T̂ = Ax is a linear transformation, by definition.



Linear transformations in matrix form 6

For x ∈ Rn , a linear transformation T̂ (x) into Rm

can be computed as Ax where A is an m× n matrix.

If the domain of T̂ is Rn then A has n columns, and
if the codomain of T̂ is Rm then A has m rows.

The range of T̂ is Span{a1 . . .an} and image of x is Ax .



Linear transformations, examples 7

Example 1: image of u obtained with A:

A =

 1 −3
3 5

−1 7

 , u =

[
2

−1

]

This is a T̂ : R2 7→ R3 transformation:

T̂ (u) = Au =

 5
1

−9


This can be also written in functional form:

T̂ (x) =

 x1 − 3x2

3x1 + 5x2

−x1 + 7x2





Linear transformations, examples 8

Example 2: Let T̂ (x1, x2) =
(
(2x1 − 3x2); (x1 + 4); (5x2)

)
.

Show that the above T̂ is not a linear transformation:

T̂ (x1, x2) =

 2x1 − 3x2
x1 + 4
5x2

 =

 2 −3
1 0
0 5

[
x1
x2

]
+

 0
4
0


Thus T̂ (x) = Ax+ q where

A =

 2 −3
1 0
0 5

 and q =

 0
4
0


If T̂ were a linear transformation, then T̂ (0) = 0

However, here T̂ (0) = q ̸= 0

Therefore, it is not a linear transformation.



Linear transformations, examples 9

Example 3: T =

 1 −3
3 5

−1 7

 , b =

 3
2

−5

 , T̂ (x) = Tx .

To find x such that T̂ (x) = b we need to solve the system: 1 −3 3
3 5 2

−1 7 −5

 →

 1 0 3/2
0 1 −1/2
0 0 0


So x1 =

3

2
, x2 = −1

2
and thus b is the image of x =

[
1.5

−0.5

]
A unique solution implies only one x with the image b .

We have also verified that b is in the range of T̂ .



Linear transformations, examples 10

Example 4: T =

 1 −3
3 5

−1 7

 , c =

 3
2
5

 , T̂ (x) = Tx .

Determine whether or not c is in the range of transformation T̂ .

Vector c is in the range of T̂ (x) if c is an image of some x ∈ R2 .

Solving the system Tx = c gives 1 −3 3
3 5 2

−1 7 5

 →

 1 −3 3
0 1 1/2
0 0 10


The system is inconsistent and thus c is not in the range of T̂ .

There are no vectors in R2 with an image c under T̂ .



Classical linear transformations: scaling 11

Example: Let T̂ : R2 7→ R2 , T̂ (x) = r x , where r ∈ R .

Show that this is a linear transformation:

T̂ (cu+ dv) = r(cu+ dv) = c(r u) + d(r v) = c T̂ (u) + d T̂ (v).

T̂ is called a scaling (or dilation) transformation:



Classical linear transformations: projections 12

Example:

O12 =

 1 0 0
0 1 0
0 0 0


Action of this matrix on x ∈ R3 is

 x1
x2
x3

 7→

 1 0 0
0 1 0
0 0 0

  x1
x2
x3

 =

 x1
x2
0


This transformation projects points of R3 onto a plane.

This is an example of projection transformation.

Note: this is still a R3 onto R3 transformation; its domain is R3

and codomain is R3 , but the range is a plane within R3 .



Visualisation of linear transformations 13

A convenient way to visualise transformations in R2 is to depict
their action on a unit square: a square made by vectors

[
0
1

] [
1
1

]

[
0
0

] [
1
0

]

Plotting the resulting points and connecting these with lines
(transformation is linear) shows how the shape is changed.



Visualisation of linear transformations 14

Example: illustrate linear transformation given by

[
−1 −0.5

−0.5 0.5

]
[

−1 −0.5
−0.5 0.5

] [
0
1

]
=

[
−0.5
0.5

]
[

−1 −0.5
−0.5 0.5

] [
1
0

]
=

[
−1

−0.5

]

[
−1 −0.5

−0.5 0.5

] [
1
1

]
⇒

[
−1.5

0

]
⇔

[
−1

−0.5

]
+

[
−0.5
0.5

]



Classical linear transformations: shear 15

Example: transformation with T =

[
1 3
0 1

]
of a 2× 2 square

[
1 3
0 1

] [
2
0

]
=

[
2
0

]
,

[
1 3
0 1

] [
2
2

]
=

[
8
2

]
[

1 3
0 1

] [
0
2

]
=

[
6
2

]
,

[
1 3
0 1

] [
0
0

]
=

[
0
0

]

This is an example of shear transformation (square to parallelogram)



Standard matrices for linear transformations 16

So far, we have seen how to visualise a given transformation

But it is also important to design a desired transformation

There is a straightforward algorithm: standard matrices



Reminder: Standard basis vectors 17

In R2 , any x = x1e1 + x2e2 where

e1 =

[
1
0

]
and e2 =

[
0
1

]
are called the standard basis vectors in R2 .

Similarly, in R3 , any x = x1e1 + x2e2 + x3e3 with the basis

e1 =

 1
0
0

 and e2 =

 0
1
0

 and e3 =

 0
0
1



Generally in Rn x = x1e1 + . . .+ xnen with en :

{
e(i=n)
n = 1

e(i ̸=n)
n = 0



Standard matrix of linear transformation 18

For any linear transformation T̂ : R2 7→ R2 we can write

T̂ (x) = T̂ (x1e1+x2e2) = T̂ (x1e1)+T̂ (x2e2) = x1T̂ (e1)+x2T̂ (e2)

This can be written as T̂ (x) =
[
T̂ (e1) T̂ (e2)

] [ x1
x2

]
≡ Tx

T =
[
T̂ (e1) T̂ (e2)

]
is called the standard matrix of T̂ .

Similarly, for any linear transformation T̂ : Rn 7→ Rn we can write

T̂ (x) = T̂ (x1e1 + . . .+ xnen) = T̂ (x1e1) + . . .+ T̂ (xnen)

= x1T̂ (e1) + . . .+ xnT̂ (en) = Tx

with the standard matrix T =
[
T̂ (e1) . . . T̂ (en)

]
.



Standard matrix for scaling 19

Example: Find the standard matrix for scaling T̂ (x) = rx

Action of this scaling on standard vectors is straightforward:

T̂ (e1) = re1 = r

[
1
0

]
=

[
r
0

]

T̂ (e2) = re2 = r

[
0
1

]
=

[
0
r

]

The standard matrix is therefore:

Dr =
[
T̂ (e1)

∣∣ T̂ (e2)] =

[
r 0
0 r

]



Standard matrix for rotation 20

Find the standard matrix of a transformation that rotates any
vector in R2 around the origin by an angle φ radians.

Consider the action of this rotation over the standard vectors:

T̂ (e1) =

[
cosφ
sinφ

]
and T̂ (e2) =

[
− sinφ
cosφ

]
Therefore

Rφ =

[
cosφ − sinφ
sinφ cosφ

]



Standard matrix for rotation (example) 21

Example: counterclockwise rotation by 90◦ about the origin

T =

[
0 −1
1 0

]
so T̂ (x) =

[
0 −1
1 0

] [
x1
x2

]
=

[
−x2
x1

]

Find the images of: u =

[
4
1

]
, v =

[
2
3

]
, u+ v =

[
6
4

]
.

T̂ (u) =

[
−1
4

]
T̂ (v) =

[
−3
2

]
T̂ (u+ v) =

[
−4
6

]



One-to-one linear transformations 22

Definition: Transformation T̂ : V 7→ W is called one-to-one
if each y ∈ W is the image of at most one v ∈ V

Theorem: A linear transformation T̂ is one-to-one
if and only if the equation T̂ (x) = 0
has only the trivial solution (x = 0).



One-to-one linear transformations 23

Equivalent definition for vector spaces:

Transformation T̂ : Rn 7→ Rm is a one-to-one linear transformation

if ∀b ∈ Rm equation Tx = b (where T is the matrix of T̂ )

has either a unique solution or no solutions.

Theorem: Let T̂ : Rn 7→ Rm be a linear transformation
with the standard matrix T . Then:

(a) T̂ maps Rn onto Rm if and only if
the columns of T span Rm

(b) T̂ is one-to-one if and only if the
columns of T are linearly independent



Coordinate transformations 24

Isomorphism between linear spaces is established
with a one-to-one linear transformation

Coordinate mapping is a one-to-one linear transformation

Change of basis is a one-to-one linear transformation

(and change of basis matrix is the matrix of transformation)

Linearity of transformation ensures that coordinate vector of a
linear combination of elements is a linear combinations of their
coordinate vectors, taken with the same coefficients:

[c1u1 + . . .+ cnun]B = c1 [u1]B + . . .+ cn [un]B



Analysing linear transformations, examples 25

Example: Consider a transformation T̂ with standard matrix

T =

 1 −4 8 1
0 2 −1 3
0 0 0 5


Check if this transformation is a one-to-one linear transformation,
and specify the domain, codomain, and range of T̂ .

T̂ is presented as Tx so it is a linear transformation.

The domain of T̂ is R4 and the codomain is R3 .

There are three pivots in T so the columns of T span R3 ,
thus the range of T̂ is the entire R3 .

The columns of T are not linearly independent,
therefore T̂ is not one-to-one.



Analysing linear transformations, examples 26

Example: Check if the transformation T̂ (x1, x2) =

 3x1 + x2
5x1 + 7x2
x1 + 3x2


is a one-to-one linear transformation, and find its range.

This transformation can be written in a matrix form:

T̂ (x) =

 3x1 + x2
5x1 + 7x2
x1 + 3x2

 =

 3 1
5 7
1 3

[
x1
x2

]
= Tx

The columns of T are linearly independent
therefore T̂ is a one-to-one linear transformation.

x ∈ R2 so domain of T̂ is R2 ; Tx ∈ R3 so codomain is R3 .

The two linearly independent columns of T span a plane
within R3 : this plane is the range of T̂ .



Revision: Eigenvectors and eigenvalues 27

(this topic officially is a pre-requisite knowledge

— but there are some new details)



Eigenvectors and eigenvalues 28

Definition: An eigenvector of a square matrix A is a nonzero
vector v such that Av = λv for some scalar λ .

A scalar λ is called an eigenvalue of A if there is
a nontrivial solution v of Av = λv .

(then this v is an eigenvector corresponding to λ).

As a linear transformation A performs scaling of its eigenvectors

λ is an eigenvalue for A if and only there is a nontrivial solution to

(A− λI)v = 0

Therefore, λ can be found by solving a characteristic equation:

det (A− λI) = 0

Note: there may be complex roots to the characteristic equation.



Eigenvectors and eigenvalues: example 29

Example: Find eigenvalues and eigenvectors for A =

[
2 5
6 1

]
.

Solution: Construct characteristic equation det (A− λI) = 0 :∣∣∣∣[2 5
6 1

]
− λ

[
1 0
0 1

]∣∣∣∣ = ∣∣∣∣[2− λ 5
6 1− λ

]∣∣∣∣ = 0

(2− λ)(1− λ)− 30 = 0

λ2 − 3λ− 28 = 0

which yields the eigenvalues as the solution:

λ1 = 7 λ2 = −4

For each of these eigenvalues, we need to solve (A− λI)x = 0 .



Eigenvectors and eigenvalues: example 30

Example: For A =

[
2 5
6 1

]
we found λ1 = 7, λ2 = −4

A− 7I =

[
2 5
6 1

]
−
[
7 0
0 7

]
=

[
−5 5
6 −6

]

→
[
1 −1
0 0

]
⇒ v1 = c ·

[
1
1

]

A+ 4I =

[
2 5
6 1

]
−
[
−4 0
0 −4

]
=

[
6 5
6 5

]

→
[
6 5
0 0

]
⇒ v2 = c ·

[
5

−6

]



Eigenvectors and eigenvalues: example 31

Example: Find eigenvalues and eigenvectors for A =

[
2 5
6 1

]
.

So the eigenvalues are: λ1 = 7 and λ2 = −4

and the corresponding eigenvectors are v1 =

[
1
1

]
, v2 =

[
5

−6

]

We can verify this back with the original matrix:

Av1 =

[
2 5
6 1

] [
1
1

]
=

[
7
7

]
= 7 ·

[
1
1

]
= λ1v1

Av2 =

[
2 5
6 1

] [
5

−6

]
=

[
−20
24

]
= −4 ·

[
5

−6

]
= λ2v2



Eigenvectors and eigenvalues 32

0 is an eigenvalue of A if and only if A is singular.

All the eigenvectors of A corresponding to a given eigenvalue,
span the corresponding eigenspace

If v1, . . . vp are eigenvectors corresponding
to different eigenvalues λ1, . . . λp , then the
set {v1, . . . vp} is linearly independent.

For a triangular matrix, eigenvalues are the diagonal entries:

A =

a11 a12 a13
0 a22 a23
0 0 a33

 ⇒


λ1 = a11
λ2 = a22
λ3 = a33

(because its determinant is the product of its main diagonal)



Eigenvectors and eigenvalues: example 33

Example: for A =

4 −1 6
2 1 6
2 −1 8

 find bases for its eigenspaces.

Solution:

det (A− λI) =

∣∣∣∣∣∣
4− λ −1 6

2 1− λ 6
2 −1 8− λ

∣∣∣∣∣∣
= (4− λ)(1− λ)(8− λ)− 12− 12 + 6(4− λ) + 2(8− λ)− 12(1− λ)

= −λ3 + 13λ2 − 40λ+ 36

· · · = · · ·
= (9− λ)(2− λ)(2− λ) = 0

so λ1 = 9 and λ2,3 = 2 .



Eigenvectors and eigenvalues: example 34

Example: for A =

4 −1 6
2 1 6
2 −1 8

 find bases for its eigenspaces.

. . . so λ1 = 9 and λ2,3 = 2 ; then we solve (A− λI)x = 0

A− 9I =

−5 −1 6
2 −8 6
2 −1 −1

 →

1 0 −1
0 1 −1
0 0 0

 ⇒ x = x3

11
1


A− 2I =

2 −1 6
2 −1 6
2 −1 6

 →

1 − 1
2 3

0 0 0
0 0 0

 ⇒ x = x2

0.51
0

+ x3

−3
0
1


So the bases are:

11
1

 for λ1 and


12
0

 ,

−3
0
1

 for λ2,3



Examples in relation to linear transformations 35

Dilation e.g.

[
2 0
0 2

]
we have λ1,2 = 2 and ∀v ∈ R2

Shear e.g.

[
1 1
0 1

]
we have λ1,2 = 1 and v =

[
1
0

]

Projection e.g.

[
1 0
0 0

]
we have λ1 = 1 for v =

[
1
0

]
and λ2 = 0 for v =

[
0
1

]
Swap e.g.

[
0 1
1 0

]
we have λ1,2 = 1 and v =

[
1
1

]

Rotation e.g.

[
0 1

−1 0

]
we have λ1,2 = ±i and ∀v ∈ C2



Questions? 36

This week: quick test 5

(change of coordinates)

Next week: quick test 6

(linear transformations)


