SUPPLEMENTARY SLIDES ON LINEAR TRANSFORMATIONS

One-to-one linear transformations

Theorem: A linear transformation $\widehat{T} : \mathbb{R}^n \mapsto \mathbb{R}^m$ is a one-to-one transformation if and only if the equation $\widehat{T}(\mathbf{x}) = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$.

Proof: Since \widehat{T} is linear then $\widehat{T}(\mathbf{0}) = \mathbf{0}$. If \widehat{T} is one-to-one, then the equation $\widehat{T}(\mathbf{x}) = \mathbf{0}$ has at most one solution, $\mathbf{x} = \mathbf{0}$. Suppose \widehat{T} is *not* one-to-one. Then $\exists \mathbf{b} \in \mathbb{R}^m$ which is the image of at least 2 different vectors $\mathbf{u} \neq \mathbf{v}$ in \mathbb{R}^n : $\widehat{T}(\mathbf{u}) = \mathbf{b}$, $\widehat{T}(\mathbf{v}) = \mathbf{b}$. But since \widehat{T} is linear, $\widehat{T}(\mathbf{u} - \mathbf{v}) = \widehat{T}(\mathbf{u}) - \widehat{T}(\mathbf{v}) = \mathbf{b} - \mathbf{b} = \mathbf{0}$. However $\mathbf{u} - \mathbf{v} \neq \mathbf{0}$ and then the equation $\widehat{T}(\mathbf{x}) = \mathbf{0}$ is going to have more than one solution: $\mathbf{0}$ and $\mathbf{u} - \mathbf{v}$.

Therefore, the assumption that \widehat{T} is not one-to-one is inconsistent with only having a trivial solution, so it is one-to-one then.

One-to-one linear transformations

Theorem: Let $\widehat{T}: \mathbb{R}^n \mapsto \mathbb{R}^m$ be a linear transformation with the standard matrix \mathbf{T} . Then:

- (a) \widehat{T} maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of T span \mathbb{R}^m .
- (b) \widehat{T} is one-to-one if and only if the columns of \mathbf{T} are linearly independent.

Proof:

(a) The columns of T span \mathbb{R}^m if and only if $\forall \mathbf{b} \in \mathbf{R}^m$ the equation Tx = b is consistent, so it has a solution for every b. This is true only when \widehat{T} maps \mathbb{R}^n onto \mathbb{R}^m .

(b) From the previous theorem, if \hat{T} is one-to-one, the equation Tx = 0 has only the trivial solution. This can only happen if the columns of \mathbf{T} are linearly independent.

Coordinate mapping as a linear transformation

Theorem: Let $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ be a basis for a linear space V. Then coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is a one-to-one linear transformation from V onto \mathbb{R}^n .

Proof: Consider two arbitrary elements in V,

$$\mathbf{u} = c_1 \mathbf{b}_1 + \ldots + c_n \mathbf{b}_n$$
$$\mathbf{v} = d_1 \mathbf{b}_1 + \ldots + d_n \mathbf{b}_n$$

Then $\mathbf{u} + \mathbf{v} = (c_1 + d_1)\mathbf{b}_1 + \ldots + (c_n + d_n)\mathbf{b}_n$ and

$$\left[\mathbf{u} + \mathbf{v}\right]_{\mathcal{B}} = \begin{bmatrix} c_1 + d_1 \\ \vdots \\ c_n + d_n \end{bmatrix} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} + \begin{bmatrix} d_1 \\ \vdots \\ d_n \end{bmatrix} = \left[\mathbf{u}\right]_{\mathcal{B}} + \left[\mathbf{v}\right]_{\mathcal{B}}$$

Thus coordinate mapping preserves addition.

Coordinate mapping

Proof (continuation): If r is an arbitrary scalar, then

$$r\mathbf{u} = r(c_1\mathbf{b}_1 + \ldots + c_n\mathbf{b}_n) =$$
$$= (rc_1)\mathbf{b}_1 + \ldots + (rc_n)\mathbf{b}_n$$

so

$$\left[r\mathbf{u}\right]_{\mathcal{B}} = \begin{bmatrix} rc_1\\ \vdots\\ rc_n \end{bmatrix} = r\begin{bmatrix} c_1\\ \vdots\\ c_n \end{bmatrix} = r\left[\mathbf{u}\right]_{\mathcal{B}}$$

Thus coordinate mapping also preserves scalar multiplication.

Therefore, coordinate mapping $\mathbf{x} \mapsto \left[\mathbf{x}\right]_{\mathcal{B}}$ is a linear mapping.

Since \mathcal{B} is a basis, the elements $\mathbf{b}_1 \dots \mathbf{b}_n$ are linearly independent, therefore the transformation is one-to-one.