37233 Linear Algebra

MID-TERM REVISION

Key topics

- Linear systems, homogeneous and inhomogeneous
- Linear spaces and subspaces
- Span and linear (in)dependence
- Basis and dimension
- Coordinates and change of basis
- Linear transformations, eigenvalues, eigenvectors
- The invertible matrix theorem

Homogeneous and inhomogeneous systems

Suppose Ax = b is consistent for some b and let p be a solution.

Then the solution set of Ax = bis a set of all vectors in the form $w = p + v_0$, where v_0 is any solution of the homogeneous equation Ax = 0.

For $m \times n$ matrix **A**, the following statements are equivalent:

- For each $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution
- The columns of ${f A}$ span ${\Bbb R}^m$
- A has a pivot position in every row.

Linear spaces

A *linear space* is a non-empty set V of objects, on which two operations — addition and multiplication by scalars — are defined, subject to these axioms: $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\forall c, d \in \mathbb{R}$

(i)
$$(\mathbf{u} + \mathbf{v}) \in V$$

(ii) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
(iii) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
(iv) $\exists \mathbf{0} : \mathbf{u} + \mathbf{0} = \mathbf{u}$
(v) $\forall \mathbf{u} \exists (-\mathbf{u}) : \mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
(vi) $c \mathbf{u} \in V$
(vii) $1 \cdot \mathbf{u} = \mathbf{u}$
(viii) $c (d \mathbf{u}) = (c d) \mathbf{u}$
(ix) $(c + d) \mathbf{u} = c \mathbf{u} + d \mathbf{u}$
(x) $c (\mathbf{u} + \mathbf{v}) = c \mathbf{u} + c \mathbf{v}$
Properties: $\mathbf{0} \cdot \mathbf{u} = \mathbf{0}$, $(-1) \cdot \mathbf{u} = -\mathbf{u}$, $c \cdot \mathbf{0} = \mathbf{0}$, etc.

Subspaces

Definition: A subspace H of a linear space V is a subset of elements with the following properties:

- $\bullet\,$ Any element of $H\,$ belongs to $V\,$
- H is closed under addition: $\forall (\mathbf{u}, \mathbf{v}) \in H, \ (\mathbf{u} + \mathbf{v}) \in H$
- H is closed under multiplication by scalars: $\forall \mathbf{u} \in H$ and $\forall c \in \mathbb{R}, c \mathbf{u} \in H$

Note: H necessarily includes the zero element of V

Every subspace is a linear space and satisfies the axioms.

Linear combinations and linear independence

Definition: $\mathbf{y} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots c_n \mathbf{v}_n, \quad \mathbf{v}_i \in V, \quad c_i \in \mathbb{R}$ is called a *linear combination* of the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ with coefficients $\{c_1, c_2, \dots, c_n\}$.

Definition: For elements $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p \in V$, the set of all their linear combinations is denoted by $\text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ and is called the subset of V spanned (generated) by $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$.

Definition: A set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ is *linearly independent* if $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_m\mathbf{v}_m = \mathbf{0}$ has only the trivial solution (with all $c_i = 0$).

• If a set contains 0, then this set is linearly dependent.

• Any set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\} \in \mathbb{R}^n$ is linearly dependent if p > n.

Basis

Definition: An indexed set $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_p}$ is a **basis** in V if: \mathcal{B} is a linearly independent set, and $V = \text{Span}{\{\mathbf{b}_1, \dots, \mathbf{b}_p\}}$

- A basis is a smallest possible spanning set.
- A basis is a largest possible linearly independent set.

Definition: If V is spanned by a finite set, then V is called a finite-dimensional space, and the **dimension** of V, written as $\dim V = n$, is the number n of elements in a basis for V.

Warning: the dimension is a number of elements in a basis, not a number of components in each element.

The dimension of the $\{0\}$ vector space is defined to be zero. If V is not spanned by a finite set then V is *infinite-dimensional*.

Coordinate systems

Definition: Let $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ be a basis for V, and $\mathbf{x} \in V$. The *coordinates* of \mathbf{x} relative to basis \mathcal{B} (or \mathcal{B} -coordinates of \mathbf{x}) are the coefficients x_1, \dots, x_n such that

$$\mathbf{x} = x_1 \mathbf{b}_1 + \ldots + x_n \mathbf{b}_n$$

If $x_1, \ldots x_n$ are the \mathcal{B} -coordinates of \mathbf{x} , then the vector in \mathbb{R}^n

$$\left[\mathbf{x}\right]_{\mathcal{B}} = \left(\begin{array}{c} x_1\\ \vdots\\ x_n \end{array}\right)$$

provides the \mathcal{B} -coordinates of \mathbf{x} (coordinates relative to \mathcal{B}).

Mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is unique for a given \mathcal{B} .

Change of basis

Let $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ and $\mathcal{C} = {\mathbf{c}_1, \dots, \mathbf{c}_n}$ be bases of space V. Then there is a unique $n \times n$ matrix $\mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}}$ such that

$$\left[\mathbf{x}\right]_{\mathcal{C}} = \mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}} \left[\mathbf{x}\right]_{\mathcal{B}}$$

Columns of $\mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}}$ are the \mathcal{C} -coordinates of the elements of \mathcal{B} . That is, $\mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{bmatrix} \mathbf{[b_1]}_{\mathcal{C}} & \mathbf{[b_2]}_{\mathcal{C}} & \dots & \mathbf{[b_n]}_{\mathcal{C}} \end{bmatrix}$

 $\mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}}$ is called the *change of coordinate matrix* from \mathcal{B} to \mathcal{C} .

Calculating a change of basis matrix for n-dimensional space:

$$\begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_n & | & \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_n \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{I} & | & \mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}} \end{bmatrix}$$

Linear transformations

Definition: Transformation (mapping, functional) \widehat{T} from \mathbb{R}^n into \mathbb{R}^m is a rule assigning a vector $\widehat{T}(\mathbf{x}) = \mathbf{y} \in \mathbb{R}^m$ to each vector $\mathbf{x} \in \mathbb{R}^n$

- \mathbb{R}^n is called the **domain**, and \mathbb{R}^m the **codomain** of \widehat{T}
- Vector $\mathbf{y} = \widehat{T}(\mathbf{x})$ is called the image of \mathbf{x}
- The set of all images $\left\{ \widehat{T}(\mathbf{x}) \right\}$ is called the range of \widehat{T}
- For $\mathbf{x} \in \mathbb{R}^n$, a linear transformation $\widehat{T}(\mathbf{x})$ into \mathbb{R}^m can be computed as $\mathbf{A}\mathbf{x}$ where \mathbf{A} is an $m \times n$ matrix lf the domain of \widehat{T} is \mathbb{R}^n then \mathbf{A} has n columns \mathbf{a}_i , and if the codomain of \widehat{T} is \mathbb{R}^m then \mathbf{A} has m rows
- The range of \widehat{T} is $\operatorname{Span}\{\mathbf{a}_1 \dots \mathbf{a}_n\}$ and image of $\mathbf x$ is $\mathbf A \mathbf x$

Linear transformations

Definition: Transformation $\widehat{T} : \mathbb{R}^n \to \mathbb{R}^m$ is said to be *one-to-one* if each **b** in \mathbb{R}^m is the image of at most one **x** in \mathbb{R}^n

Generally in \mathbb{R}^n $\mathbf{x} = x_1 \mathbf{e}_1 + \ldots + x_n \mathbf{e}_n$ with $\mathbf{e}_n : e_n^{(i)} = \delta_{ni}$ So $\widehat{T}(\mathbf{x}) = \mathbf{T}\mathbf{x}$ with standard matrix $\mathbf{T} = \begin{bmatrix} \widehat{T}(\mathbf{e}_1) & | \dots & | \widehat{T}(\mathbf{e}_n) \end{bmatrix}$ \widehat{T} is one-to-one if and only if \mathbf{T} columns are linearly independent.

Visualisation of linear transformations

A convenient way to visualise transformations in \mathbb{R}^2 is to depict their action on a unit square: a square made by vectors

Plotting the resulting points and connecting these with lines (transformation is linear) shows how the shape is changed.

Eigenvectors and eigenvalues

Definition: An *eigenvector* of a square matrix \mathbf{A} is a nonzero vector \mathbf{v} such that $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$ for some scalar λ . A scalar λ is called an *eigenvalue* of \mathbf{A} if there is a nontrivial solution \mathbf{v} of $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$. Such an \mathbf{v} is an *eigenvector corresponding to* λ .

As a linear transformation A performs scaling of its eigenvectors

 λ is an eigenvalue for ${\bf A}$ if and only there is a nontrivial solution to

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$$

Therefore, λ can be found by solving a *characteristic equation*:

$$\det\left(\mathbf{A} - \lambda \mathbf{I}\right) = 0$$

Note: there may be complex roots to the characteristic equation.

Eigenvectors and eigenvalues

- 0 is an eigenvalue of A if and only if A is singular.
- All the eigenvectors of **A** corresponding to a given eigenvalue, span the corresponding *eigenspace*
- If v₁,... v_p are eigenvectors corresponding to different eigenvalues λ₁,... λ_p, then the set {v₁,... v_p} is linearly independent.
- For a triangular matrix, eigenvalues are the diagonal entries:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} \qquad \Rightarrow \qquad \begin{cases} \lambda_1 = a_{11} \\ \lambda_2 = a_{22} \\ \lambda_3 = a_{33} \end{cases}$$

The invertible matrix theorem (summary of results)

Statements equivalent to \mathbf{A} being an $n \times n$ invertible matrix:

- There is an $n \times n$ matrix \mathbf{A}^{-1} such that $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$
- A has n pivot positions in the REF form
- $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the trivial solution
- The columns (rows) of A form a linearly independent set
- The columns (rows) of $\mathbf A$ span $\mathbb R^n$
- The columns (rows) of $\mathbf A$ form a basis of $\mathbb R^n$
- $\widehat{T}: \mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ is one-to-one
- $\widehat{T}: \mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n
- $\operatorname{Col} \mathbf{A} = \operatorname{Row} \mathbf{A} = \mathbb{R}^n$
- $\operatorname{Nul} \mathbf{A} = \{\mathbf{0}\}$ and $\operatorname{dim}(\operatorname{Nul} \mathbf{A}) = 0$
- $\dim(\operatorname{Col} \mathbf{A}) = \dim(\operatorname{Row} \mathbf{A}) = n$
- rank $\mathbf{A} = n$
- ullet The eigenvalues of f A are non-zero

Advice for solving test problems

- Identify and attack easier problems first
- If stuck, switch to another problem and retry later

• Keep to explicit radicals and rational fractions (such as
$$\frac{5}{\sqrt{3}}$$
, not "2.88675")

- If the numbers get really uncomfortable, something is probably wrong
- Articulate your solutions as much as possible (explain what you are doing)
- Check back the final answer where possible

- 4 problems (with sub-questions):
 10 marks per problem, 40 marks in total
- Topics 1, 3, 4, 5 and 7; as well as 2 for solving (as numbered in Canvas modules)

• 110 minutes time for completion