MATRIX SUBSPACES

- Subspaces of a matrix:
 - Column space
 - Null space
 - Row space
- Bases for matrix subspaces
- Dimensions of matrix subspaces
- Rank of a matrix and the rank theorem

Revision: subspace, basis, dimension

Definition: A subspace H of a linear space V is a subset of elements with the following properties:

(i) H is closed under addition: $\forall (\mathbf{u}, \mathbf{v}) \in H, (\mathbf{u} + \mathbf{v}) \in H$

(ii) H is closed under multiplication by scalars: $\forall \mathbf{u} \in H$ and $\forall c \in \mathbb{R}, c \mathbf{u} \in H$

Definition: Set $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_p} \in V$ is a **basis** for V if (i) \mathcal{B} is a linearly independent set, and (ii) $V = \text{Span}{\mathbf{b}_1, \dots, \mathbf{b}_p}$

Definition: If V is spanned by a finite set, then V is called a *finite-dimensional* space, and the **dimension** of V, written as $\dim V = n$, is the number n of elements in a basis for V.

A specific set of vector subspaces arises in relation to linear systems of equations.

For a given matrix \mathbf{A} , the following spaces are defined:

- Column space
- Null space
- Row space

Definition: The column space of an $m \times n$ matrix **A** is the set of all linear combinations of the columns of **A**:

$$\operatorname{Col} \mathbf{A} = \operatorname{Span} \{ \mathbf{a}_1, \, \mathbf{a}_2, \, \dots \, \mathbf{a}_n \}$$

- Each a_i ∈ ℝ^m, therefore Col A is a subspace of ℝ^m
 (a spanning set is a subspace of the corresponding vector space)
- In terms of solving linear systems:
 Col A = {b} such that b = Ax for x ∈ ℝⁿ
 (since Ax is a linear combination of the columns of A)
- $\operatorname{Col} \mathbf{A} = \mathbb{R}^m$ if and only if $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution $\forall \, \mathbf{b} \in \mathbb{R}^m$

Column space, example

Example: Determine then if the following vectors are in Col A:

$$\mathbf{v} = \begin{bmatrix} 2\\5\\7 \end{bmatrix}, \qquad \mathbf{u} = \begin{bmatrix} 0\\-7\\7 \end{bmatrix}; \qquad \mathbf{A} = \begin{bmatrix} 1 & 1\\6 & -1\\-7 & 0 \end{bmatrix}$$

Solution: Check if Ax = v, Ax = u have a solution:

$$\mathbf{v}: \qquad \mathbf{A} = \begin{bmatrix} 1 & 1 & | & 2 \\ 6 & -1 & | & 5 \\ -7 & 0 & | & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & | & 2 \\ 0 & -7 & | & -7 \\ 0 & 0 & | & 14 \end{bmatrix}$$

so the system is inconsistent, thus $\mathbf{v}\notin\operatorname{Col}\mathbf{A}$

$$\mathbf{u}: \qquad \mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 6 & -1 & -7 \\ -7 & 0 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

so the system is consistent, thus $\, {f u} \in {\rm Col}\, {f A} \,$

Column space, example

Example: Find matrix \mathbf{A} such that $W = \operatorname{Col} \mathbf{A}$ if

$$W = \left\{ \begin{bmatrix} a+b\\6a-b\\-7a \end{bmatrix} \right\}, \quad a, b \in \mathbb{R}$$

Solution: Write W as a linear combination

$$W = \left\{ a \begin{bmatrix} 1\\6\\-7 \end{bmatrix} + b \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \right\} = \operatorname{Span} \left\{ \begin{bmatrix} 1\\6\\-7 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \right\}$$

The vectors in the above spanning set are the columns of \mathbf{A} :

$$\mathbf{A} = \begin{bmatrix} 1 & 1\\ 6 & -1\\ -7 & 0 \end{bmatrix} \quad \text{and} \quad W = \operatorname{Col} \mathbf{A}$$

Basis and dimension of $\operatorname{Col} \mathbf{A}$

Theorem:

- \bullet Pivot columns of ${\bf A}$ form a basis for $\operatorname{Col} {\bf A}$;
- $\dim(\operatorname{Col} \mathbf{A})$ is the number of pivot columns.

Proof: Let B be the REF form of A. The pivot columns of B are linearly independent. Then the corresponding columns of A are also linearly independent (any linear relation between a_i implies the same linear relation for b_i , via row-equivalence).

Thus, any non-pivot column of \mathbf{A} is a linear combination of the pivot columns of \mathbf{A} . Then the non-pivot columns can be discarded from the spanning set for $\operatorname{Col} \mathbf{A}$, by the spanning set theorem. This leaves the pivot columns of \mathbf{A} as a basis for $\operatorname{Col} \mathbf{A}$.

Note: It is important that the pivot columns of \mathbf{A} itself, and not those of the REF form, are a basis for $\operatorname{Col} \mathbf{A}$. The column space of \mathbf{B} is not necessarily the same as the column space of \mathbf{A} .

Basis for $\operatorname{Col} \mathbf{A}$: example

Example: Find a basis for Col A of A =
$$\begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{bmatrix}$$

We obtain with row reduction

$$\rightarrow \quad \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 0 & 0 & 2 & -2 & 13 \\ 0 & 0 & 1 & -1 & 8 \\ 0 & 0 & 0 & 0 & -4 \end{bmatrix} \quad \rightarrow \quad \begin{bmatrix} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \equiv \mathbf{B}$$

The REF form shows that three columns (e.g. \mathbf{b}_1 , \mathbf{b}_3 and \mathbf{b}_5) are linearly independent, whereas $\mathbf{b}_2 = 4\mathbf{b}_1$ and $\mathbf{b}_4 = 2\mathbf{b}_1 - \mathbf{b}_3$.

Therefore we can retain a_1 , a_3 and a_5 while $a_2 = 4a_1$ and $a_4 = 2a_1 - a_3$ can be discarded from the spanning set.

Thus $\mathcal{A} = \{\mathbf{a}_1, \, \mathbf{a}_3, \, \mathbf{a}_5\}$ is a basis for $\operatorname{Col} \mathbf{A}$.

Basis for $\operatorname{Col} \mathbf{A}$: example

More explicitly, with that example we found the bases as:

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0\\0 \end{bmatrix} \right\} \quad \text{for} \quad \operatorname{Col} \left(\begin{bmatrix} 1 & 4 & 0 & 2 & 0\\0 & 0 & 1 & -1 & 0\\0 & 0 & 0 & 0 & 1\\0 & 0 & 0 & 0 & 0 \end{bmatrix} \right)$$
$$\mathcal{A} = \left\{ \begin{bmatrix} 1\\3\\2\\5 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\2\\5 \end{bmatrix}, \begin{bmatrix} -1\\5\\2\\8\\8 \end{bmatrix} \right\} \quad \text{for} \quad \operatorname{Col} \left(\begin{bmatrix} 1 & 4 & 0 & 2 & -1\\3 & 12 & 1 & 5 & 5\\2 & 8 & 1 & 3 & 2\\5 & 20 & 2 & 8 & 8 \end{bmatrix} \right)$$

However even though matrices \mathbf{A} and \mathbf{B} are row equivalent, neither \mathcal{A} is a basis for $\operatorname{Col} \mathbf{B}$, nor \mathcal{B} is for $\operatorname{Col} \mathbf{A}$.

Only the indices of the columns which make the basis are the same.

Null space

Definition: The **null space** of an $m \times n$ matrix **A** is the set of all solutions to Ax = 0:

$$\operatorname{Nul} \mathbf{A} = \{ \mathbf{x} : \ \mathbf{x} \in \mathbb{R}^n \text{ and } \mathbf{A}\mathbf{x} = \mathbf{0} \}$$

Null space

For an $m \times n$ matrix **A**, Nul **A** is a subspace of \mathbb{R}^n .

Proof: Consider $\{\mathbf{u}, \mathbf{v}\} \in \mathbb{R}^n$ such that $\{\mathbf{u}, \mathbf{v}\} \in \text{Nul} \mathbf{A}$. This implies that $\mathbf{A}\mathbf{u} = \mathbf{0}$ and $\mathbf{A}\mathbf{v} = \mathbf{0}$. Then $\mathbf{A}(\mathbf{u} + \mathbf{v}) = \mathbf{A}\mathbf{u} + \mathbf{A}\mathbf{v} = \mathbf{0} + \mathbf{0} = \mathbf{0}$ so $(\mathbf{u} + \mathbf{v}) \in \text{Nul} \mathbf{A}$. Also $\mathbf{A}(c \mathbf{u}) = c(\mathbf{A}\mathbf{u}) = c \cdot \mathbf{0} = \mathbf{0}$, so $c \mathbf{u} \in \text{Nul} \mathbf{A}$.

Therefore, $\operatorname{Nul} \mathbf{A}$ is a subspace of \mathbb{R}^n .

Null space, example

Consider the following system of homogeneous equations:

$$\begin{cases} x_1 - 3x_2 - 2x_3 = 0\\ -5x_1 + 9x_2 + x_3 = 0 \end{cases} \Leftrightarrow \mathbf{A} = \begin{bmatrix} 1 & -3 & -2\\ -5 & 9 & 1 \end{bmatrix}$$

Check if $\mathbf{u} = \begin{bmatrix} 5\\ 3\\ -2 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 5\\ 3\\ 2 \end{bmatrix}$ belong to Nul A:
$$\mathbf{Au} = \begin{bmatrix} 1 & -3 & -2\\ -5 & 9 & 1 \end{bmatrix} \begin{bmatrix} 5\\ 3\\ -2 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

$$\mathbf{A}\mathbf{w} = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} -8 \\ 4 \end{bmatrix}$$

Thus $\mathbf{u} \in \operatorname{Nul} \mathbf{A}$ however $\mathbf{w} \notin \operatorname{Nul} \mathbf{A}$.

Example: Let *H* be the set of all vectors of the form $\mathbf{h} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$ with the coordinates satisfying equations: $\begin{cases} b = c - a \\ d = a - 2b + 5c \end{cases}$

By rearranging the governing equations we obtain

$$\begin{cases} -a - b + c = 0\\ a - 2b + 5c - d = 0 \end{cases} \Leftrightarrow \begin{bmatrix} -1 & -1 & 1 & 0\\ 1 & -2 & 5 & -1 \end{bmatrix} \mathbf{h} = \mathbf{0}$$

Therefore H is the null space of the above matrix. Given the earlier theorem, H is a subspace of \mathbb{R}^4 .

Note: For a relation between the coordinates such that the corresponding system were *inhomogeneous*, the set would *not* be a subspace (as 0 is not a solution of an inhomogeneous system).

Explicit description of $\operatorname{Nul} \mathbf{A}$

There is no immediate connection between Nul A and a_{ij} . Solving Ax = 0 provides an explicit description of Nul A.

Example: Find a spanning set for the null space of

$$\mathbf{A} = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

(1): find a general solution of Ax = 0 in terms of free variables:

$$\rightarrow \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 0 & 0 & 5 & 10 & -10 \\ 0 & 0 & 13 & 26 & -26 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

So, x_1 , x_3 are basic, and x_2 , x_4 , x_5 are free variables: $x_1 = 2x_2 + x_4 - 3x_5$ and $x_3 = -2x_4 + 2x_5$.

Explicit description of $\operatorname{Nul} \mathbf{A}$

(2): Using $x_1 = 2x_2 + x_4 - 3x_5$ and $x_3 = -2x_4 + 2x_5$ we decompose the general solution as a linear combination:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$

where we can introduce

$$\mathbf{u}_{2} = \begin{bmatrix} 2\\1\\0\\0\\0 \end{bmatrix}, \quad \mathbf{u}_{4} = \begin{bmatrix} 1\\0\\-2\\1\\0 \end{bmatrix}, \quad \mathbf{u}_{5} = \begin{bmatrix} -3\\0\\2\\0\\1 \end{bmatrix}$$

and thereby $\operatorname{Nul} \mathbf{A} = \operatorname{Span} \{ \mathbf{u}_2, \, \mathbf{u}_4, \, \mathbf{u}_5 \}.$

Explicit description of $\operatorname{Nul} A$

Note: Each of \mathbf{u}_2 , \mathbf{u}_4 , \mathbf{u}_5 vectors corresponds to a free variable so it has an entry which is only given by that free variable, and cannot be obtained through the other free variables:

$$\mathbf{x} = \begin{bmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$

So all the three vectors are essential for the spanning set.

Thereby the spanning set for Nul A is linearly independent, and so $x_2\mathbf{u}_2 + x_4\mathbf{u}_4 + x_5\mathbf{u}_5 = \mathbf{0}$ is only true if $x_2 = x_4 = x_5 = 0$.

Solving $\mathbf{A}\mathbf{x} = \mathbf{0}$ automatically produces a basis for $\operatorname{Nul} \mathbf{A}$.

Basis and dimension for $\operatorname{Nul} \mathbf{A}$

Generally, when $\operatorname{Nul} A \neq 0$, the number of linearly independent vectors in its spanning set equals to the number of free variables.

Thus the resulting spanning vectors form a basis for $\operatorname{Nul} A$, and $\dim(\operatorname{Nul} A)$ equals to the number of free variables.

Example: returning to the above example

$$\mathbf{x} = x_2 \begin{bmatrix} 2\\1\\0\\0\\0 \end{bmatrix} + x_4 \begin{bmatrix} 1\\0\\-2\\1\\0 \end{bmatrix} + x_5 \begin{bmatrix} -3\\0\\2\\0\\1 \end{bmatrix} \equiv x_2 \mathbf{u}_2 + x_4 \mathbf{u}_4 + x_5 \mathbf{u}_5$$

Vectors \mathbf{u}_2 , \mathbf{u}_4 , \mathbf{u}_5 span Nul \mathbf{A} and are linearly independent, therefore $\mathcal{U} = \{\mathbf{u}_2, \mathbf{u}_4, \mathbf{u}_5\}$ is a basis for Nul $\begin{pmatrix} \begin{bmatrix} -3 & 6 & -1 & 1 & -7\\ 1 & -2 & 2 & 3 & -1\\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$.

Analysing $\operatorname{Nul} \mathbf{A}$ and $\operatorname{Col} \mathbf{A}$ — examples

Example: Check if \mathbf{u} and \mathbf{v} belong to $\operatorname{Nul} \mathbf{A}$, $\operatorname{Col} \mathbf{A}$ if

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}, \qquad \mathbf{u} = \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix}, \qquad \mathbf{v} = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}$$

(a) Clearly, $\mathbf{u} \notin \operatorname{Col} \mathbf{A}$, because $\operatorname{Col} \mathbf{A}$ is a subspace of \mathbb{R}^3 .

(b) To find out if $\mathbf{u} \in \operatorname{Nul} \mathbf{A}$, there is no need for an explicit description of $\operatorname{Nul} \mathbf{A}$; we just check if $\mathbf{Au} = \mathbf{0}$:

$$\begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -3 \\ 3 \end{bmatrix} \neq \mathbf{0} \qquad \Rightarrow \quad \mathbf{u} \notin \operatorname{Nul} \mathbf{A}$$

Analysing $\operatorname{Nul} \mathbf{A}$ and $\operatorname{Col} \mathbf{A}$ — examples

Example: Check if \mathbf{u} and \mathbf{v} belong to $\operatorname{Nul} \mathbf{A}$, $\operatorname{Col} \mathbf{A}$ if

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}, \qquad \mathbf{u} = \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix}, \qquad \mathbf{v} = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}$$

(c) Clearly, $\mathbf{v} \notin \operatorname{Nul} \mathbf{A}$, because $\operatorname{Nul} \mathbf{A}$ is a subspace of \mathbb{R}^4 .

(d) If $\mathbf{v} \in \operatorname{Col} \mathbf{A}$, it must be a solution to $\mathbf{A}\mathbf{x} = \mathbf{v}$, so we form the required augmented matrix and check with row reduction:

$$\begin{bmatrix} 2 & 4 & -2 & 1 & | & 3 \\ -2 & -5 & 7 & 3 & | & -1 \\ 3 & 7 & -8 & 6 & | & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 4 & -2 & 1 & | & 3 \\ 0 & 1 & -5 & -4 & | & -2 \\ 0 & 0 & 0 & 17 & | & 1 \end{bmatrix}$$

We see that $\mathbf{A}\mathbf{x} = \mathbf{v}$ is consistent, so $\mathbf{v} \in \operatorname{Col} \mathbf{A}$.

Analysing $\operatorname{Nul} \mathbf{A}$ and $\operatorname{Col} \mathbf{A}$ — examples

Examples: Revisit a couple of earlier examples:

$$\mathbf{A} = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Pivot columns are 1 and 3, and free variables are x_2 , x_4 and x_5 . Therefore dim(Nul \mathbf{A}) = 3 and dim(Col \mathbf{A}) = 2.

$$\mathbf{B} = \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Pivot columns are 1, 3 and 5, and free variables are x_2 and x_4 . Therefore dim(Nul **B**) = 2 and dim(Col **B**) = 3.

Summary: for a given $m \times n$ matrix \mathbf{A}

- Nul A is a subspace of ℝⁿ;
 Col A is a subspace of ℝ^m.
- Nul A is implicitly defined by Ax = 0; Col A is explicitly defined as Span{a_i}.
- A vector of Nul A is obtained by solving Ax = 0; A vector of Col A is obtained as a linear combination of $\{a_i\}$.
- Checking if $\mathbf{v} \in \operatorname{Nul} \mathbf{A}$ is done by computing if $\mathbf{Av} = \mathbf{0}$; Checking if $\mathbf{v} \in \operatorname{Col} \mathbf{A}$ requires solving $\mathbf{Ax} = \mathbf{v}$.
- dim(Nul A) equals to the number of free variables;
 dim(Col A) equals to the number of pivot columns.
- Nul $\mathbf{A} = \{\mathbf{0}\}$ if and only if $\mathbf{A}\mathbf{x} = \mathbf{0}$ only for $\mathbf{x} = \mathbf{0}$; Col $\mathbf{A} = \mathbb{R}^m$ if and only if $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution $\forall \mathbf{b} \in \mathbb{R}^m$.

Row space

If A is an $m \times n$ matrix, each row of A has n entries and thus can be identified with a vector in \mathbb{R}^n .

Definition:

The set of all linear combinations of row vectors of \mathbf{A} is called the *row space* of \mathbf{A} , denoted as $\operatorname{Row} \mathbf{A}$.

Notes:

- Each row has n entries, so $\operatorname{Row} \mathbf{A}$ is a subspace of \mathbb{R}^n .
- Since the rows of \mathbf{A} are the columns of \mathbf{A}^{T} ,

 $\operatorname{Row} \mathbf{A} = \operatorname{Col} \mathbf{A}^{\mathsf{T}}$ as well as $\operatorname{Row} \mathbf{A}^{\mathsf{T}} = \operatorname{Col} \mathbf{A}$

Row space

Theorem: If two matrices A and B are row-equivalent, then their row spaces are equal. If B is in echelon form, the non-zero rows of B form a basis for the row space of both A and B.

Proof: If **B** is obtained from **A** by row operations, then every row of **B** is a linear combinations of the rows of **A**.

Thereby, any linear combination of the rows of ${\bf B}$ is a linear combination of the rows of ${\bf A}$. Thus ${\rm Row}\,{\bf B}\subset {\rm Row}\,{\bf A}$.

Given that row operations are reversible, the same arguments lead to the conclusion that $\operatorname{Row} A \subset \operatorname{Row} B$.

Therefore, it must be that $\operatorname{Row} A = \operatorname{Row} B$.

Finally, if \mathbf{B} is in echelon form, its non-zero rows are linearly independent. Thus the non-zero rows of \mathbf{B} form a basis of the common row space of \mathbf{B} and \mathbf{A} .

Matrix spaces, example

Example: Find bases and dimensions for $\operatorname{Col} A$, $\operatorname{Nul} A$, $\operatorname{Row} A$.

$$\mathbf{A} = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix} \rightarrow$$
$$\rightarrow \begin{bmatrix} 2 & 5 & -8 & 0 & 17 \\ 0 & 1 & -2 & 2 & -7 \\ 0 & 0 & 0 & -4 & 20 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \equiv \mathbf{B}$$

Matrix spaces, example

A basis for $\operatorname{Row} A$ (and $\operatorname{Row} B$) is given by non-zero rows of B:

$$\left\{ \begin{bmatrix} 2\\5\\-8\\0\\17 \end{bmatrix}, \begin{bmatrix} 0\\1\\-2\\2\\-7 \end{bmatrix}, \begin{bmatrix} 0\\0\\-4\\20 \end{bmatrix} \right\}$$

A basis for $\operatorname{Col} \mathbf{A}$ (but *not* $\operatorname{Col} \mathbf{B}$) is given by pivot columns in \mathbf{A} :

$$\left\{ \begin{bmatrix} -2\\1\\3\\1 \end{bmatrix}, \begin{bmatrix} -5\\3\\11\\7 \end{bmatrix}, \begin{bmatrix} 0\\1\\7\\5 \end{bmatrix} \right\}$$

(but a basis for \mathbf{B} is given by the pivot columns of \mathbf{B})

Matrix spaces, example

Continue to REF to solve Ax = 0; free variables are x_3 and x_5 :

$$\mathbf{B} = \begin{bmatrix} 2 & 5 & -8 & 0 & 17 \\ 0 & 1 & -2 & 2 & -7 \\ 0 & 0 & 0 & -4 & 20 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -2 & 0 & 3 \\ 0 & 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \equiv \mathbf{C}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -x_3 & -x_5 \\ 2x_3 & -3x_5 \\ x_3 \\ 5x_5 \\ x_5 \end{bmatrix} = x_3 \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -1 \\ -3 \\ 0 \\ 5 \\ 1 \end{bmatrix}.$$

Therefore basis for Nul A is:
$$\left\{ \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 0 \\ 5 \\ 1 \end{bmatrix} \right\}.$$

Definition: rank $\mathbf{A} = \dim(\operatorname{Col} \mathbf{A})$

(the *rank* of matrix A is the dimension of the column space of A)

Notes

- Since $\operatorname{Row} \mathbf{A} = \operatorname{Col} \mathbf{A}^T$, then $\operatorname{dim}(\operatorname{Row} \mathbf{A}) = \operatorname{rank} \mathbf{A}^T$.
- The dimension of $\operatorname{Nul} A$ is sometimes called the *nullity* of A.

Theorem (the rank theorem): For an $m \times n$ matrix **A**:

(i) $\dim(\operatorname{Col} \mathbf{A}) = \dim(\operatorname{Row} \mathbf{A}) = \operatorname{rank} \mathbf{A}$

(ii) rank $\mathbf{A} + \dim(\operatorname{Nul} \mathbf{A}) = n$

The rank theorem (proof)

Proof: By definition, rank $\mathbf{A} = \dim(\operatorname{Col} \mathbf{A})$, which equals to the number of basis vectors for $\operatorname{Col} \mathbf{A}$, which is the number of pivot columns in \mathbf{A} . Equivalently, rank \mathbf{A} is then the number of pivot columns in an echelon form \mathbf{B} of \mathbf{A} .

Because B has a non-zero row for each pivot, and these rows form a basis for ${\rm Row}\,A$, ${\rm rank}\,A$ is also the dimension of ${\rm Row}\,A$,

 $\dim(\operatorname{Row} \mathbf{A}) = \dim(\operatorname{Col} \mathbf{A})$

The dimension of $Nul \mathbf{A}$ is the number of columns of \mathbf{A} which correspond to free variables, so which are *not* the pivot columns.

The total number of columns n is the sum of the number of pivot columns and the number of columns without pivots, and therefore

 $\operatorname{rank} \mathbf{A} + \operatorname{dim}(\operatorname{Nul} \mathbf{A}) = n$

$\operatorname{rank} \mathbf{A}$ — examples

Revisit again these earlier examples:

$$\mathbf{A} = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

There are two pivot columns and three free variables.

Therefore rank $\mathbf{A} = \dim(\operatorname{Col} \mathbf{A}) = 2$ and $\dim(\operatorname{Nul} \mathbf{A}) = 3$, so rank $\mathbf{A} + \dim(\operatorname{Nul} \mathbf{A}) = 5$, equals to the number of columns of \mathbf{A} .

	[1	4	0	2	-1		[1	4	0	2	0
р	3	12	1	5	5	,	0	0	1	-1	0
$\mathbf{B} =$	2	8	1	3	2	\rightarrow	0	0	0	0	1
	5	20	2	8	8		0	0	0	$\begin{array}{c} 2 \\ -1 \\ 0 \\ 0 \end{array}$	0

There are three pivot columns and two free variables.

Therefore rank $\mathbf{B} = \dim(\operatorname{Col} \mathbf{B}) = 3$ and $\dim(\operatorname{Nul} \mathbf{B}) = 2$, so rank $\mathbf{B} + \dim(\operatorname{Nul} \mathbf{B}) = 5$, equals to the number of columns of \mathbf{B} .

$\operatorname{rank} \mathbf{A}$ — examples

Further examples:

$$\mathbf{A} = \begin{bmatrix} -3 & -1 & 1\\ 1 & 2 & 3\\ 2 & 5 & 9 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

There are three pivot columns and no free variables.

Therefore rank $\mathbf{A} = \dim(\operatorname{Col} \mathbf{A}) = 3$ and $\dim(\operatorname{Nul} \mathbf{A}) = 0$, so rank $\mathbf{A} + \dim(\operatorname{Nul} \mathbf{A}) = 3$, equals to the number of columns of \mathbf{A} .

$$\mathbf{B} = \begin{bmatrix} 1 & 0 & 2 \\ 3 & 1 & 5 \\ 2 & 1 & 3 \\ 5 & 2 & 8 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

There are two pivot columns and one free variable.

Therefore rank $\mathbf{B} = \dim(\operatorname{Col} \mathbf{B}) = 2$ and $\dim(\operatorname{Nul} \mathbf{B}) = 1$, so rank $\mathbf{B} + \dim(\operatorname{Nul} \mathbf{B}) = 3$, equals to the number of columns of \mathbf{B} .

$\operatorname{rank} \mathbf{A}$ — examples

Examples:

- (a) If A is a 7×9 matrix with a two-dimensional null space, what is the rank of A?
- As A has 9 columns, $\operatorname{rank} A + 2 = 9$ and hence $\operatorname{rank} A = 7$.
- (b) Could a 6×9 matrix **B** have a two-dimensional null space?
- If a 6×9 matrix had a two-dimensional null space it would have to have rank 7 by the rank theorem.

However the columns of \mathbf{B} are vectors in \mathbb{R}^6 , and so $\dim(\operatorname{Col} \mathbf{B}) \leqslant 6$; therefore $\operatorname{rank} \mathbf{B} \leqslant 6$.

Thus **B** cannot have a two-dimensional null space.

Example:

Suppose the solution set of a homogeneous system of 40 equations in 42 variables is based on two solution vectors (so that any other solution is a linear combination of those two vectors).

The two vectors are linearly independent and span $\,\mathrm{Nul}\,\mathbf{A}\,.$

Therefore $\dim(\operatorname{Nul} \mathbf{A}) = 2$.

The matrix of the system A is a 40×42 matrix, so n = 42.

By the rank theorem, $\dim(\operatorname{Col} \mathbf{A}) = 42 - 2 = 40$.

Since \mathbb{R}^{40} is the only subspace of \mathbb{R}^{40} with dimension of 40, $Col \mathbf{A}$ must be all of \mathbb{R}^{40} .

Then the inhomogeneous system Ax = b has a solution $\forall b$.

The invertible matrix theorem (summary of results)

Statements equivalent to A being an $n \times n$ invertible matrix:

• There is an $n\times n$ matrix \mathbf{A}^{-1} such that $\mathbf{A}^{-1}\mathbf{A}=\mathbf{A}\mathbf{A}^{-1}=\mathbf{I}$

33

- A has n pivot positions in the REF form
- $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the trivial solution
- \bullet The columns (rows) of ${\bf A}$ form a linearly independent set
- The columns (rows) of \mathbf{A} span \mathbb{R}^n
- The columns (rows) of ${f A}$ form a basis of ${\Bbb R}^n$
- $\widehat{T}: \mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ is one-to-one
- $\widehat{T}: \mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n
- $\operatorname{Col} \mathbf{A} = \operatorname{Row} \mathbf{A} = \mathbb{R}^n$
- $\operatorname{Nul} \mathbf{A} = \{\mathbf{0}\}$ and $\operatorname{dim}(\operatorname{Nul} \mathbf{A}) = 0$
- $\dim(\operatorname{Col} \mathbf{A}) = \dim(\operatorname{Row} \mathbf{A}) = n$
- rank $\mathbf{A} = n$

- Column space, row space and null space of a matrix
- Basis for column, row and null spaces
- Dimensions of column, row and null spaces
- Rank of a matrix: $\operatorname{rank} \mathbf{A} = \operatorname{dim}(\operatorname{Col} \mathbf{A})$
- Rank theorem: rank A + dim(Nul A) = n
 (for an m × n matrix A)

Questions?

Quick test 6 this week (linear transformations)

No classes next week (StuVac)

Major Class Test (40 marks) on Friday 26 April