UNIVERSITY OF TECHNOLOGY SYDNEY School of Mathematical and Physical Sciences

37233 Linear Algebra

Class test help sheet

$(\mathbf{u} + \mathbf{v}) \in V$	$c \mathbf{u} \in V$
(i) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$	$(\mathbf{v}) \qquad 1 \cdot \mathbf{u} = \mathbf{u}$
(ii) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$	(vi) $c(d\mathbf{u}) = (cd)\mathbf{u}$
(iii) $\exists 0 : \mathbf{u} + 0 = \mathbf{u}$	(vii) $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
(iv) $\forall \mathbf{u} \exists (-\mathbf{u}) : \mathbf{u} + (-\mathbf{u}) = 0$	(v) $1 \cdot \mathbf{u} = \mathbf{u}$ (vi) $c(d\mathbf{u}) = (cd)\mathbf{u}$ (vii) $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ (viii) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$

The invertible matrix theorem — equivalent statements for $n \times n$ matrix A:

- There is an $n \times n$ matrix \mathbf{A}^{-1} such that $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$
- \mathbf{A}^{T} is invertible
- A has *n* pivot positions in the REF form
- Ax = 0 has only the trivial solution
- The columns (rows) of **A** form a linearly independent set
- The columns (rows) of **A** span \mathbb{R}^n
- The columns (rows) of **A** form a basis of \mathbb{R}^n
- \widehat{T} : $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ is one-to-one
- $\widehat{T}: \mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n
- The range of \widehat{T} : $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ is \mathbb{R}^n
- $\operatorname{Col} \mathbf{A} = \operatorname{Row} \mathbf{A} = \mathbb{R}^n$
- Nul $\mathbf{A} = \{\mathbf{0}\}$ and dim(Nul \mathbf{A}) = 0
- $\dim(\operatorname{Col} \mathbf{A}) = \dim(\operatorname{Row} \mathbf{A}) = n$
- rank $\mathbf{A} = n$
- The eigenvalues of **A** are non-zero

— Additional technical working space —