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Question 1
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(b) dim(Nul A) =2, dim(Col A) = 3 and dim(Row A) = 3.

(c) Bases for Nul A, Row A, and, with grey colour, for Col A, are shown in (a).

Question 2

There are 9 equations so possible vectors of the right-hand side b € R? and since there is a solution
Vb, for the corresponding 9 x 10 matrix A we can state that ColA = R? so dim(ColA) = 9.
Applying the rank theorem with n = 10, we see

dim(NulA) =10-9 = 1.

Therefore, it is not possible to find two linearly independent solutions to the homogeneous system
of A. There is only one linearly independent vector in Nul A..
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Question 3

(1) Note that cases (a) and (c) immediately imply that the size of A can only be 3 x 3.

, with rank A = 3
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(a) For example: A = |2
3

(b) There is no such matrix. If v were in Nul A and Row A, then each row of A, and any linear
combination of the rows, should give zero when multiplied by v.
In particular, it should be 0 = v'v = 12 + 22 + 32 which is certainly not true.

(¢) If v.€ NulA, then dimNul A > 1, then rank A = 3 — dim Nul A < 2.

11 -1
An example of satisfying matrix of rank 2is A = [2 2 -2
3 0 -1

(2) All these facts can be established without knowing the explicit form of B:
(d) Given that v ¢ ColB, the columns of B must be linearly dependent, so rank B < 3. At the

same time, given that v ¢ Nul B, the matrix is non-zero, so then rank B > 0. Thus the rank
of B is either 1 or 2.

(e) As the columns of B are linearly dependent, det B = 0.

Additional questions

Question 4

Reductions towards REF yield
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Notes: Nul AT is essentially different and unrelated to Nul A, whereas Col AT = Row A and
Row AT = Col A. The bases written above, being deduced from the REF form of AT, look dif-
ferent but in fact they describe the same subspaces as the corresponding bases obtained in (a) and
(b), as can be checked with row reduction.

Question 5

For the corresponding 12 x 8 matrix, it is therefore known that dim(Nul A) = 2. Applying the rank
theorem with n = 8, we find

dim(Col A) =8 — 2 =6, SO rank A = 6.

Hence the complete solution set for the system is covered by just 6 out of the 12 equations (and row
reduction of A would result in 6 rows of only zeros out of 12).

Question 6
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whereby it is found that dim(Nul A) = 3 and dim(Col A) = 2.



Question 7

Reductions (no row swaps) towards REF yield
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(d)
NulA" ={0}  and dim(NulAT)=0

(thus, the homogeneous system of AT has only a trivial solution).
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