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Scalar product and orthogonality 2

Definition:

A real linear space E is called an Euclidian space, if there is an
operation of scalar product defined for this space, such that

∀ {x, y, z} ∈ E and ∀c ∈ R :

x · y = y · x

(x+ y) · z = x · z+ y · z

(cx) · y = c (x · y) = x · (cy)

x · x ⩾ 0 , and

x · x = 0 if and only if x = 0

Definition: Elements x and y in E are called orthogonal to
each other if x · y = 0. The notation is: x ⊥ y.



Euclidean spaces: general examples 3

1 A set of all functions continuous on some t ∈ [a, b] interval,
is a Euclidian space with scalar product defined as

x(t) · y(t) =
b∫

a

x(t)y(t) dt

2 For P2 , scalar product can be also introduced as

p1(t) · p2(t) = p1(−1)p2(−1) + p1(0)p2(0) + p1(1)p2(1)

3 In the space of continuous in t ∈ [−π, π] interval functions

with standard scalar product f1(t) · f2(t) =
π∫

−π

f1(t)f2(t) dt ,

functions sin(t) and cos(t) are orthogonal.



Scalar product for vectors 4

Definition: For v, w ∈ Rn the scalar product (sometimes called

also inner product, or dot product) is defined as: v ·w =
n∑

i=1
viwi

Note: ∀v ∈ Rn, v ⊥ 0 because 0 · v = 0 ∀v

Note: Vectors in Rn can be written as: v =

v1
...

vn

 , w =

w1

...
wn


Their transposes are: vT =

[
v1 . . . vn

]
, wT =

[
w1 . . . wn

]
The result of vTw is a 1× 1 matrix, that is, a scalar:

v ·w ≡ vTw =
[
v1 . . . vn

] w1

...
wn

 = v1w1 + v2w2 + . . .+ vnwn



Norm and distance 5

Definitions:

The length, or norm, of v is: ∥v∥ =
√
v · v =

√
vTv

∀ c, ∥cv∥ = |c| ∥v∥

A vector with a unit norm (length) is called a unit vector.

If we divide a non-zero vector v by its length ∥v∥ we will
obtain a unit (or normalised) vector u with unit norm:

∥u∥ =

∥∥∥∥ v

∥v∥

∥∥∥∥ =
∥v∥
∥v∥

= 1

Definition: The distance between two vectors v and w in Rn is

dist(v,w) = ∥v −w∥

Pythagorean theorem: If and only if v ⊥ w ,

∥v +w∥2 = ∥v∥2 + ∥w∥2



Orthogonal complements 6

Definition: If a vector z is orthogonal to every vector in a
subspace W of Rn then z is said to be orthogonal to W .

The set of all vectors that are orthogonal to W is called the
orthogonal complement of W and is denoted by W⊥ .

Note: W⊥ is a subspace of Rn and dimW⊥ + dimW = n .

Example in R3:

Let W be a plane through the origin and L be a
line through the origin and perpendicular to W .

If z ∈ L and w ∈ W then z ·w = 0.

L consists of all vectors orthogonal to w ∈ W and
W consists of all vectors orthogonal to z ∈ L, so

L = W⊥ and W = L⊥



Orthogonal complements in matrix subspaces 7

Theorem: Let A be an m× n matrix. Then

(RowA)⊥ = NulA and (ColA)⊥ = Nul
(
AT

)



Orthogonal complements in matrix subspaces 8

Proof: If x ∈ NulA , then x is orthogonal to each row of A
because each row multiplied by x yields 0:

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn




x1
x2
...
xn

 =


0
0
...
0


Since the rows of A span RowA , x is orthogonal to RowA .

Conversely, if x is orthogonal to RowA , then x is certainly
orthogonal to each row of A , and hence Ax = 0 .

Thus (RowA)⊥ = NulA is true for any matrix; so also for AT ;

but RowAT = ColA , thus (ColA)⊥ =
(
Row

(
AT

))⊥
= NulAT .



Orthogonal sets 9

Definition: A set of vectors {v1, . . . vp} in Rn is called an
orthogonal set if each pair of vectors from the set is orthogonal:

vi · vj = 0 ∀ i ̸= j

Example: Show that this set is orthogonal:

u1 =

 3
1
1

 , u2 =

 −1
2
1

 , u3 =

 −1
−4
7

 .

Solution: Consider all the possible pairs:

u1 · u2 = 3 · (−1) + 1 · 2 + 1 · 1 = 0
u1 · u3 = 3 · (−1) + 1 · (−4) + 1 · 7 = 0
u2 · u3 = −1 · (−1) + 2 · (−4) + 1 · 7 = 0

Each pair is orthogonal, thus {u1,u2,u3} is an orthogonal set.



Orthogonal sets 10

Theorem: If S = {v1, . . . vp} ∈ Rn is an orthogonal set of
non-zero vectors, then S is a linearly independent set.

Proof: Consider the equation for linear independence:

0 = c1v1 + c2v2 + . . .+ cpvp

Multiply this relation by v1 on each side:

0 · v1 = (c1v1 + c2v2 + . . .+ cpvp) · v1

0 = c1(v1 · v1) + c2(v2 · v1) + . . .+ cp(vp · v1)

0 = c1(v1 · v1)

only the first term on the right remains since v1 ⊥ {v2, . . . vp} .
However v1 ̸= 0 so v1 · v1 ̸= 0 and thus we must have c1 = 0 .

Similarly, multiplying by v2, . . .vp , we find c2, . . . cp are all zero.

Thus S is linearly independent.



Orthogonal basis 11

Definition: An orthogonal basis for a subspace V of Rn is
such a basis for V which is an orthogonal set.

Coordinates with respect to an orthogonal basis are easily found:

Theorem: Let {v1, . . . vp} be an orthogonal basis for a
subspace V of Rn . For each x ∈ V , the linear combination

x = c1v1 + . . .+ cpvp has the weights ci =
x · vi

vi · vi

Proof: Compute all the scalar products, as in the previous proof

x · vi = (c1v1 + . . .+ cpvp) · vi = ci(vi · vi)

Since vi ̸= 0 (why?) then vi · vi ̸= 0 and so ci =
x · vi

vi · vi



Orthogonal basis, example 12

Example: Find [y]B in the orthogonal basis B = {v1,v2,v3} :

v1 =

 3
1
1

 , v2 =

 −1
2
1

 , v3 =

 −1
−4
7

 ; y =

 6
1

−8


Solution: To find the coordinates [y]B we compute

y · v1 = 6 · 3 + 1 · 1− 8 · 1 = 11, v1 · v1 = 32 + 12 + 12 = 11

y · v2 = −6 · 1 + 1 · 2− 8 · 1 = −12, v2 · v2 = (−1)2 + 22 + 12 = 6

y · v3 = −6 · 1− 1 · 4− 8 · 7 = −66, v3 · v3 = (−1)2 + (−4)2 + 72 = 66

Thus y =
11

11
v1 −

12

6
v2 −

66

66
v3 and [y]B =

 1
−2
−1


It is quite easy to find coordinates in an orthogonal basis.
For a non-orthogonal case we would need to solve a linear system.



Orthogonal basis, geometric illustration 13

For two orthogonal basis
vectors u1,u2 ∈ R2:

y = c1u1 + c2u2

with

ck =
y · uk

uk · uk

The first term is the projection of y onto the line Span{u1} , and

the second term is the projection of y onto the line Span{u2} .



Orthogonal projections 14

Given a non-zero vector u ∈ Rn , consider decomposing another
vector y ∈ Rn into the sum of two vectors, such that

y = y̌ + z, y̌ = αu, z ⊥ u

Consider z = y − αu , which is orthogonal to u if and only if

0 = z · u = (y − αu) · u = y · u− α(u · u)

Hence

α =
y · u
u · u

, y̌ =
y · u
u · u

u

y̌ is the orthogonal projection
of y onto u, and z is called the
component orthogonal to u.



Orthogonal projections 15

The orthogonal projection y̌ does not depend on the length of u .
Indeed, if we replace u by u′ = ku , then

y̌ =
y · u′

u′ · u′ u
′ =

y · (ku)
(ku) · (ku)

(ku) =
k (y · u)
k2 (u · u)

k u =
y · u
u · u

u.

Definition:

y̌ ≡ projL y =
y · u
u · u

u

is the orthogonal projection
of y onto L = Span{u}

(subspace L = Span{u} is a line through u and 0).



Orthogonal projections 16

Example: Find orthogonal projection of y onto v and
decompose y as the sum of y̌ ∈ Span{v} and z ⊥ v , given

y =

[
7
6

]
, v =

[
4
2

]
.

Solution: First we compute y · v and v · v :

y · v = yTv =
[
7 6

] [ 4
2

]
= 40,

v · v = uTv =
[
4 2

] [ 4
2

]
= 20.

Then the orthogonal projection and the orthogonal component are

y̌ =
y · v
v · v

v =
40

20

[
4
2

]
=

[
8
4

]

z = y − y̌ =

[
7
6

]
−
[
8
4

]
=

[
−1
2

]



Orthogonal decomposition 17

Theorem: (the orthogonal decomposition theorem)

Let W be a subspace of Rn.

Then ∀y ∈ Rn there is a
unique decomposition

y = y̌ + z,

where y̌ ∈ W and z ∈ W⊥.

If {v1, . . . vp} is any orthogonal basis in W ,

y̌ =

p∑
i=1

y · vi

vi · vi
vi and z = y − y̌.

y̌ ≡ projW y is called the orthogonal projection of y onto W .



Orthogonal decomposition 18

Notes:

The uniqueness of the decomposition indicates that the
orthogonal projection y̌ depends only on W but not on
a particular orthogonal basis used in W .

If y ∈ W then projW y = y .

Example: Let

v1 =

 2
5

−1

 , v2 =

 −2
1
1

 , and y =

 1
2
3

 .

The set {v1,v2} is an orthogonal basis for W = Span{v1,v2}

(check: v1 · v2 = −4 + 5− 1 = 0 so the vectors are orthogonal).

Decompose y into a vector in W and a vector orthogonal to W .



Orthogonal decomposition 19

v1 =

 2
5

−1

 , v2 =

 −2
1
1

 , and y =

 1
2
3

 .

Solution:
y̌ =

y · v1

v1 · v1
v1 +

y · v2

v2 · v2
v2.

y · v1 = 2 + 10− 3 = 9

v1 · v1 = 4 + 25 + 1 = 30

y · v2 = −2 + 2 + 3 = 3

v2 · v2 = 4 + 1 + 1 = 6

y̌ =
9

30

 2
5

−1

+
3

6

 −2
1
1

 =

 −2/5
2
1/5


and

y − y̌ =

 1
2
3

−

 −2/5
2

1/5

 =

 7/5
0

14/5

 .



Orthogonal decomposition 20

v1 =

 2
5

−1

 , v2 =

 −2
1
1

 , y̌ =

 −2/5
2
1/5

 , y − y̌ =

 7/5
0

14/5

 .

The theorem ensures that (y − y̌) ∈ W⊥ .

We can verify that (y − y̌) · v1 = 0 and (y − y̌) · v2 = 0 .

So the decomposition is 1
2
3

 =

 −2/5
2
1/5

+

 7/5
0

14/5

.



Projection and distance 21

Definition: The distance from a point y in Rn to a subspace W
is defined as the distance from y to the nearest point in W .

Theorem: (the best approximation theorem)

Let W be a subspace of Rn , y ∈ Rn , and y̌ = projW y .

Then y̌ is the point in W closest to y in the sense that

∥y − y̌∥ < ∥y − v∥ ∀v ̸= y̌

Consequence:

The nearest point to y in W is its projection y̌ = projW y ,

and the distance from y to W is given by ∥y̌ − y∥ .



Projection and distance 22

Example: Find the distance from y to W = Span{v1,v2} where

v1 =

 5
−2
1

 , v2 =

 1
2

−1

 and y =

 −1
−5
10


Solution: Distance from y to W is ∥y− y̌∥ , where y̌ = projW y .

Vectors v1,v2 form an orthogonal basis for W , and

y · v1 = −5 + 10 + 10 = 15

v1 · v1 = 25 + 4 + 1 = 30

y · v2 = −1− 10− 10 = −21

v2 · v2 = 1 + 4 + 1 = 6

Then

y̌ =
y · v1

v1 · v1
v1+

y · v2

v2 · v2
v2 =

15

30

 5
−2
1

− 21

6

 1
2

−1

 =

 −1
−8
4





Projection and distance 23

v1 =

 5
−2
1

 , v2 =

 1
2

−1

 , y =

 −1
−5
10

 , y̌ =

 −1
−8
4



Then

y − y̌ =

 −1
−5
10

−

 −1
−8
4

 =

 0
3
6


and the distance from y to W is

∥y − y̌∥ =
√
02 + 32 + 62 =

√
45 = 3

√
5

So, y̌ is the best approximation for y within Span{v1,v2} ; any
other vector in Span{v1,v2} will have a greater distance from y .



Orthonormal set and basis 24

Definition: A set {u1, . . . up} is called an orthonormal set
if it is an orthogonal set of unit vectors.

If V is the subspace spanned by such a set, then {u1, . . . up} is
an orthonormal basis for V , since this set is linearly independent.

The simplest example of an orthonormal set
is the standard basis {e1, . . . en} for Rn .

Any non-empty subset of {e1, . . . en} is orthonormal too, and
forms an orthonormal basis for the corresponding subspace.



Orthonormal basis and projection 25

Theorem: If U = [u1 u2 . . . up] , where {u1, . . . up} is an
orthonormal basis for a subspace W of Rn , then ∀y ∈ Rn :

projW y = (y · u1)u1 + (y · u2)u2 + . . .+ (y · up)up

projW y = UUTy

Proof: By the definition of projection

y̌ =
y · u1

u1 · u1
u1 + . . .+

y · up

up · up
up

and taking into account that the basis is orthonormal

u1 · u1 = 1, u2 · u2 = 1, . . . up · up = 1

we immediately obtain

projW y = (y · u1)u1 + (y · u2)u2 + . . .+ (y · up)up.



Orthonormal basis and projection 26

Proof (continuing):

From projW y = (y · u1)u1 + (y · u2)u2 + . . .+ (y · up)up

we see that projW y is a linear combination of the columns of U
with the coefficients (y · u1), (y · u2), . . . (y · up).

Denoting x =


y · u1

y · u2

...
y · up

 we can write projW y = Ux.

In turn, the elements of x can be written as

uT
1y, uT

2y, . . . uT
py

which are the entries of UTy .

Thus x = UTy and so projW y = UUTy



Orthonormal matrices 27

Consider a matrix formed from orthonormal vectors (as columns).

Theorem: U has orthonormal columns if and only if UTU = I .

Theorem: If U has orthonormal columns, then ∀ x, y ∈ Rn :

(i) ∥Ux∥ = ∥x∥
(ii) (Ux) · (Uy) = x · y
(iii) (Ux) · (Uy) = 0 if and only if x · y = 0

These properties imply that the linear transformation x 7→ Ux
preserves length, scalar product, and orthogonality.



Orthogonal matrices 28

Definition: An orthogonal matrix U is a square

invertible matrix such that U−1 = UT.

Equivalent definitions:

U has orthonormal columns and orthonormal rows:

n∑
k=1

ukiukj = δij and
n∑

k=1

uikujk = δij

Given two different orthonormal bases in Rn , the change of
basis matrices between such bases are orthogonal matrices.

Note: For an orthogonal matrix U : | detU| = 1

(warning: but |detA| = 1 does not mean that A is orthogonal)



Examples of orthogonal matrices 29

Example 1: The most trivial example: unitary matrix in Rn

Example 2: Matrix of a rotation transformation in R2 :

Rφ =

[
cosφ − sinφ
sinφ cosφ

]

Example 3: Permutation matrix, for example cyclic permutation:

P =

0 0 1
1 0 0
0 1 0





Gram-Schmidt process 30

Theorem: Given a basis x1, . . . xp for a subspace W of Rn , define

v1 = x1

v2 = x2 −
x2 · v1

v1 · v1
v1

v3 = x3 −
x3 · v1

v1 · v1
v1 −

x3 · v2

v2 · v2
v2

· · ·

vp = xp −
xp · v1

v1 · v1
v1 −

xp · v2

v2 · v2
v2 − . . .− xp · vp−1

vp−1 · vp−1
vp−1

Then {v1, . . . vp} is an orthogonal basis for W .

In addition, Span{v1, . . . vk} = Span{x1, . . . xk} for 1 ⩽ k ⩽ p .

Orthonormal basis is then obtained by normalising vi to unit vectors.



Gram-Schmidt process 31

Gram-Schmidt process is an algorithm for producing an orthogonal
or orthonormal basis for any non-zero subspace of Rn .

Example: Consider a linearly independent set

x1 =


1
1
1
1

 , x2 =


0
1
1
1

 , x3 =


0
0
1
1

 .

which is a basis for a subspace W in R4 .

We aim to construct an orthogonal basis {v1,v2,v3} for W .

Solution:

Step 1: Let v1 = x1 and W1 = Span{x1} = Span{v1} .



Gram-Schmidt process 32

Step 2: Vector v2 is then produced by subtracting from x2 its
projection onto the subspace W1 . That is,

v2 = x2 − projW1
(x2) = x2 −

x2 · v1

v1 · v1
v1.

=


0
1
1
1

− 3

4


1
1
1
1

 =


−3/4
1/4
1/4
1/4


For the ease of further calculations, renormalise v2 into v′

2 :

v′
2 = 4v2 =


−3
1
1
1

 and then W2 = Span{v1,v
′
2}



Gram-Schmidt process 33

Step 3: Get v3 by subtracting its W2 -projection from x3 =

[
0
0
1
1

]
:

projW2
(x3) =

x3 · v1

v1 · v1
v1 +

x3 · v′
2

v′
2 · v′

2

v′
2

=
2

4


1
1
1
1

+
2

12


−3
1
1
1

 =


0
2/3
2/3
2/3

 .

Then v3 = x3 − projW2
(x3) is

v3 =


0
0
1
1

−


0

2/3
2/3
2/3

 =


0

−2/3
1/3
1/3

 ; v′
3 =


0

−2
1
1





Gram-Schmidt process 34

Illustration to step 3:

Thus {v1,v
′
2,v3} is an orthogonal set in W and it is basis for W .

The same is true for {v1,v2,v3} or {v1,v
′
2,v

′
3} or {v1,v2,v

′
3}



Gram-Schmidt process 35

Example: Construct an orthonormal basis for

Span


 3

6
0

 ,

 1
2
2


Solution:

v1 =

 3
6
0

 , v2 =

 1
2
2

−
15︷ ︸︸ ︷

3 · 1 + 6 · 2 + 0 · 2
32 + 62 + 02︸ ︷︷ ︸

45

 3
6
0

 =

 0
0
2

 .

The corresponding orthonormal basis is

u1 =
v1

∥v1∥
=

 1/
√
5

2/
√
5

0

 , u2 =
v2

∥v2∥
=

 0
0
1


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But what happens if we swap the order of the vectors?

Span


 1

2
2

 ,

 3
6
0


Then:

v1 =

 1
2
2

 , v2 =

 3
6
0

−
15︷ ︸︸ ︷

3 · 1 + 6 · 2 + 0 · 2
12 + 22 + 22︸ ︷︷ ︸

9

 1
2
2

 =

 4/3
8/3

−10/3

 .

The corresponding orthonormal basis is (please check!)

u1 =
v1

∥v1∥
=

 1/3
2/3
2/3

 , u2 =
v2

∥v2∥
=

 2/3
√
5

4/3
√
5

−
√
5/3


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Scalar product u · v ≡ uTv =
∑
i
uivi

Norm: ∥v∥ =
√
v · v and distance: dist(u, v) = ∥u− v∥

Orthogonal / orthonormal vectors, sets, bases

Orthogonal complements dimW⊥ + dimW = n

Orthogonal projections and decompositions

Gram-Schmidt process: v1 = x1 , then

vi = xi +

i−1∑
j=1

(
−xi · vj

vj · vj
vj

)
i = 2, . . . p

Orthogonal and orthonormal matrices
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This week: quick test 7

(matrix subspaces)

Next week: quick test 8

(orthogonality)


