FUNDAMENTALS OF LINEAR ALGEBRA

- Scalar product and distance
- Orthogonality
- Orthogonal basis
- Orthogonal projections and decompositions
- Gram-Schmidt process
- Orthogonal matrices

Definition:

A real linear space E is called an Euclidian space, if there is an operation of *scalar product* defined for this space, such that

$$\forall \{\mathbf{x}, \, \mathbf{y}, \, \mathbf{z}\} \in E \text{ and } \forall c \in \mathbb{R}:$$

•
$$\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$$

•
$$(\mathbf{x} + \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z}$$

•
$$(c \mathbf{x}) \cdot \mathbf{y} = c (\mathbf{x} \cdot \mathbf{y}) = \mathbf{x} \cdot (c \mathbf{y})$$

•
$$\mathbf{x}\cdot\mathbf{x} \geqslant 0$$
, and

•
$$\mathbf{x} \cdot \mathbf{x} = 0$$
 if and only if $\mathbf{x} = \mathbf{0}$

Definition: Elements \mathbf{x} and \mathbf{y} in E are called *orthogonal* to each other if $\mathbf{x} \cdot \mathbf{y} = 0$. The notation is: $\mathbf{x} \perp \mathbf{y}$.

Euclidean spaces: general examples

 A set of all functions continuous on some t ∈ [a, b] interval, is a Euclidian space with scalar product defined as

$$x(t) \cdot y(t) = \int_{a}^{b} x(t)y(t) dt$$

- In the space of continuous in $t \in [-\pi, \pi]$ interval functions with standard scalar product $f_1(t) \cdot f_2(t) = \int_{-\pi}^{\pi} f_1(t) f_2(t) dt$, functions $\sin(t)$ and $\cos(t)$ are orthogonal.

Scalar product for vectors

Definition: For $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ the scalar product (sometimes called also *inner product*, or *dot product*) is defined as: $\mathbf{v} \cdot \mathbf{w} = \sum_{i=1}^n v_i w_i$

Note: $\forall \mathbf{v} \in \mathbb{R}^n$, $\mathbf{v} \perp \mathbf{0}$ because $\mathbf{0} \cdot \mathbf{v} = 0 \ \forall \mathbf{v}$

Note: Vectors in \mathbb{R}^n can be written as: $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix}$ Their transposes are: $\mathbf{v}^{\mathsf{T}} = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix}$, $\mathbf{w}^{\mathsf{T}} = \begin{bmatrix} w_1 & \dots & w_n \end{bmatrix}$ The result of $\mathbf{v}^{\mathsf{T}}\mathbf{w}$ is a 1×1 matrix, that is, a scalar:

$$\mathbf{v} \cdot \mathbf{w} \equiv \mathbf{v}^{\mathsf{T}} \mathbf{w} = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix} \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix} = v_1 w_1 + v_2 w_2 + \dots + v_n w_n$$

Norm and distance

Definitions:

• The length, or *norm*, of **v** is:
$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{\mathbf{v}^{\mathsf{T}} \mathbf{v}}$$

 $\forall c, \|c\mathbf{v}\| = |c| \|\mathbf{v}\|$

A vector with a unit norm (length) is called a *unit vector*.
 If we divide a non-zero vector v by its length ||v|| we will obtain a *unit* (or *normalised*) vector u with unit norm:

$$\|\mathbf{u}\| = \left\|\frac{\mathbf{v}}{\|\mathbf{v}\|}\right\| = \frac{\|\mathbf{v}\|}{\|\mathbf{v}\|} = 1$$

Definition: The distance between two vectors \mathbf{v} and \mathbf{w} in \mathbb{R}^n is $\operatorname{dist}(\mathbf{v}, \mathbf{w}) = \|\mathbf{v} - \mathbf{w}\|$

Pythagorean theorem: If and only if $\mathbf{v} \perp \mathbf{w}$,

$$\|\mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2$$

Orthogonal complements

Definition: If a vector \mathbf{z} is orthogonal to every vector in a subspace W of \mathbb{R}^n then \mathbf{z} is said to be orthogonal to W.

The set of all vectors that are orthogonal to W is called the *orthogonal complement* of W and is denoted by W^{\perp} .

Note: W^{\perp} is a subspace of \mathbb{R}^n and $\dim W^{\perp} + \dim W = n$.

Example in \mathbb{R}^3 :

Let W be a plane through the origin and L be a line through the origin and perpendicular to W.

If $\mathbf{z} \in L$ and $\mathbf{w} \in W$ then $\mathbf{z} \cdot \mathbf{w} = 0$.

L consists of all vectors orthogonal to $\mathbf{w} \in W$ and W consists of all vectors orthogonal to $\mathbf{z} \in L$, so

$$L = W^{\perp}$$
 and $W = L^{\perp}$

Orthogonal complements in matrix subspaces

Theorem: Let A be an $m \times n$ matrix. Then

 $(\operatorname{Row} \mathbf{A})^{\perp} = \operatorname{Nul} \mathbf{A}$ and $(\operatorname{Col} \mathbf{A})^{\perp} = \operatorname{Nul}(\mathbf{A}^{\mathsf{T}})$

Orthogonal complements in matrix subspaces

 $\label{eq:proof: If $\mathbf{x} \in \operatorname{Nul} \mathbf{A}$, then \mathbf{x} is orthogonal to each row of \mathbf{A} because each row multiplied by \mathbf{x} yields 0:}$

ſ	a_{11}	a_{12}		a_{1n}	$\left[\begin{array}{c} x_1 \end{array}\right]$		[0]
	a_{21}	a_{22}		a_{2n}	x_2		0
	÷	÷	۰.	÷		=	:
	a_{m1}	a_{m2}		a_{mn}	$\begin{bmatrix} x_n \end{bmatrix}$		

Since the rows of A span $\operatorname{Row} A$, x is orthogonal to $\operatorname{Row} A$. Conversely, if x is orthogonal to $\operatorname{Row} A$, then x is certainly orthogonal to each row of A, and hence Ax = 0.

Thus $(\operatorname{Row} \mathbf{A})^{\perp} = \operatorname{Nul} \mathbf{A}$ is true for any matrix; so also for \mathbf{A}^{T} ; but $\operatorname{Row} \mathbf{A}^{\mathsf{T}} = \operatorname{Col} \mathbf{A}$, thus $(\operatorname{Col} \mathbf{A})^{\perp} = \left(\operatorname{Row}(\mathbf{A}^{\mathsf{T}})\right)^{\perp} = \operatorname{Nul} \mathbf{A}^{\mathsf{T}}$.

Orthogonal sets

Definition: A set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is called an *orthogonal set* if each pair of vectors from the set is orthogonal:

$$\mathbf{v}_i \cdot \mathbf{v}_j = 0 \qquad \forall \ i \neq j$$

Example: Show that this set is orthogonal:

$$\mathbf{u}_1 = \begin{bmatrix} 3\\1\\1 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} -1\\2\\1 \end{bmatrix}, \ \mathbf{u}_3 = \begin{bmatrix} -1\\-4\\7 \end{bmatrix}$$

Solution: Consider all the possible pairs: $\mathbf{u}_1 \cdot \mathbf{u}_2 = 3 \cdot (-1) + 1 \cdot 2 + 1 \cdot 1 = 0$ $\mathbf{u}_1 \cdot \mathbf{u}_3 = 3 \cdot (-1) + 1 \cdot (-4) + 1 \cdot 7 = 0$ $\mathbf{u}_2 \cdot \mathbf{u}_3 = -1 \cdot (-1) + 2 \cdot (-4) + 1 \cdot 7 = 0$ u₃ u₁ x₁ x₂

Each pair is orthogonal, thus $\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\}$ is an orthogonal set.

Orthogonal sets

Theorem: If $S = {\mathbf{v}_1, \dots, \mathbf{v}_p} \in \mathbb{R}^n$ is an orthogonal set of non-zero vectors, then S is a linearly independent set.

Proof: Consider the equation for linear independence:

$$\mathbf{0} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_p \mathbf{v}_p$$

Multiply this relation by \mathbf{v}_1 on each side:

$$\mathbf{0} \cdot \mathbf{v}_1 = (c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_p \mathbf{v}_p) \cdot \mathbf{v}_1$$

$$0 = c_1 (\mathbf{v}_1 \cdot \mathbf{v}_1) + c_2 (\mathbf{v}_2 \cdot \mathbf{v}_1) + \ldots + c_p (\mathbf{v}_p \cdot \mathbf{v}_1)$$

$$0 = c_1 (\mathbf{v}_1 \cdot \mathbf{v}_1)$$

only the first term on the right remains since $\mathbf{v}_1 \perp \{\mathbf{v}_2, \dots, \mathbf{v}_p\}$. However $\mathbf{v}_1 \neq \mathbf{0}$ so $\mathbf{v}_1 \cdot \mathbf{v}_1 \neq 0$ and thus we must have $c_1 = 0$. Similarly, multiplying by $\mathbf{v}_2, \dots, \mathbf{v}_p$, we find c_2, \dots, c_p are all zero. Thus S is linearly independent.

Orthogonal basis

Definition: An *orthogonal basis* for a subspace V of \mathbb{R}^n is such a basis for V which is an orthogonal set.

Coordinates with respect to an orthogonal basis are easily found:

Theorem: Let $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ be an orthogonal basis for a subspace V of \mathbb{R}^n . For each $\mathbf{x} \in V$, the linear combination

$$\mathbf{x} = c_1 \mathbf{v}_1 + \ldots + c_p \mathbf{v}_p$$
 has the weights $c_i = rac{\mathbf{x} \cdot \mathbf{v}_i}{\mathbf{v}_i \cdot \mathbf{v}_i}$

Proof: Compute all the scalar products, as in the previous proof

$$\mathbf{x} \cdot \mathbf{v}_i = (c_1 \mathbf{v}_1 + \ldots + c_p \mathbf{v}_p) \cdot \mathbf{v}_i = c_i (\mathbf{v}_i \cdot \mathbf{v}_i)$$

Since $\mathbf{v}_i \neq \mathbf{0}$ (why?) then $\mathbf{v}_i \cdot \mathbf{v}_i \neq 0$ and so $c_i = \frac{\mathbf{x} \cdot \mathbf{v}_i}{\mathbf{v}_i \cdot \mathbf{v}_i}$

Orthogonal basis, example

Example: Find $[\mathbf{y}]_{\mathcal{B}}$ in the orthogonal basis $\mathcal{B} = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$:

$$\mathbf{v}_1 = \begin{bmatrix} 3\\1\\1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1\\2\\1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -1\\-4\\7 \end{bmatrix}; \quad \mathbf{y} = \begin{bmatrix} 6\\1\\-8 \end{bmatrix}$$

Solution: To find the coordinates $[\mathbf{y}]_{\mathcal{B}}$ we compute

$$\mathbf{y} \cdot \mathbf{v}_1 = 6 \cdot 3 + 1 \cdot 1 - 8 \cdot 1 = 11, \qquad \mathbf{v}_1 \cdot \mathbf{v}_1 = 3^2 + 1^2 + 1^2 = 11$$
$$\mathbf{y} \cdot \mathbf{v}_2 = -6 \cdot 1 + 1 \cdot 2 - 8 \cdot 1 = -12, \qquad \mathbf{v}_2 \cdot \mathbf{v}_2 = (-1)^2 + 2^2 + 1^2 = 6$$
$$\mathbf{y} \cdot \mathbf{v}_3 = -6 \cdot 1 - 1 \cdot 4 - 8 \cdot 7 = -66, \qquad \mathbf{v}_3 \cdot \mathbf{v}_3 = (-1)^2 + (-4)^2 + 7^2 = 66$$

Thus
$$\mathbf{y} = \frac{11}{11} \mathbf{v}_1 - \frac{12}{6} \mathbf{v}_2 - \frac{66}{66} \mathbf{v}_3$$
 and $[\mathbf{y}]_{\mathcal{B}} = \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$

It is quite easy to find coordinates in an orthogonal basis. For a non-orthogonal case we would need to solve a linear system.

Orthogonal basis, geometric illustration

The first term is the projection of y onto the line $\text{Span}\{u_1\}$, and the second term is the projection of y onto the line $\text{Span}\{u_2\}$.

Orthogonal projections

Given a non-zero vector $\mathbf{u} \in \mathbb{R}^n$, consider decomposing another vector $\mathbf{y} \in \mathbb{R}^n$ into the sum of two vectors, such that

$$\mathbf{y} = \check{\mathbf{y}} + \mathbf{z}, \qquad \check{\mathbf{y}} = \alpha \mathbf{u}, \qquad \mathbf{z} \perp \mathbf{u}$$

Consider $\mathbf{z} = \mathbf{y} - \alpha \mathbf{u}$, which is orthogonal to \mathbf{u} if and only if

$$0 = \mathbf{z} \cdot \mathbf{u} = (\mathbf{y} - \alpha \mathbf{u}) \cdot \mathbf{u} = \mathbf{y} \cdot \mathbf{u} - \alpha (\mathbf{u} \cdot \mathbf{u})$$

Hence

$$\alpha = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}, \qquad \check{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \, \mathbf{u}$$

 $\check{\mathbf{y}}$ is the orthogonal projection of \mathbf{y} onto \mathbf{u} , and \mathbf{z} is called the component orthogonal to \mathbf{u} .

Orthogonal projections

The orthogonal projection $\check{\mathbf{y}}$ does not depend on the length of \mathbf{u} . Indeed, if we replace \mathbf{u} by $\mathbf{u}' = k\mathbf{u}$, then

$$\check{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}'}{\mathbf{u}' \cdot \mathbf{u}'} \mathbf{u}' = \frac{\mathbf{y} \cdot (k\mathbf{u})}{(k\mathbf{u}) \cdot (k\mathbf{u})} (k\mathbf{u}) = \frac{k (\mathbf{y} \cdot \mathbf{u})}{k^2 (\mathbf{u} \cdot \mathbf{u})} k \mathbf{u} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}.$$

Definition:

$$\check{\mathbf{y}} \equiv \operatorname{proj}_L \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$$

is the orthogonal projection of y onto $L = \text{Span}\{\mathbf{u}\}$ $z = y - \hat{y} \qquad y$ $0 \qquad \hat{y} = \alpha u \qquad u$

(subspace $L = \text{Span}\{\mathbf{u}\}$ is a line through \mathbf{u} and $\mathbf{0}$).

Orthogonal projections

Example: Find orthogonal projection of \mathbf{y} onto \mathbf{v} and decompose \mathbf{y} as the sum of $\check{\mathbf{y}} \in \operatorname{Span}\{\mathbf{v}\}$ and $\mathbf{z} \perp \mathbf{v}$, given

$$\mathbf{y} = \left[\begin{array}{c} 7\\6 \end{array} \right], \qquad \mathbf{v} = \left[\begin{array}{c} 4\\2 \end{array} \right]$$

Solution: First we compute $\mathbf{y} \cdot \mathbf{v}$ and $\mathbf{v} \cdot \mathbf{v}$:

$$\mathbf{y} \cdot \mathbf{v} = \mathbf{y}^{\mathsf{T}} \mathbf{v} = \begin{bmatrix} 7 & 6 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 40,$$
$$\mathbf{v} \cdot \mathbf{v} = \mathbf{u}^{\mathsf{T}} \mathbf{v} = \begin{bmatrix} 4 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 20.$$

Then the orthogonal projection and the orthogonal component are

$$\check{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} = \frac{40}{20} \begin{bmatrix} 4\\2 \end{bmatrix} = \begin{bmatrix} 8\\4 \end{bmatrix}$$
$$\mathbf{z} = \mathbf{y} - \check{\mathbf{y}} = \begin{bmatrix} 7\\6 \end{bmatrix} - \begin{bmatrix} 8\\4 \end{bmatrix} = \begin{bmatrix} -1\\2 \end{bmatrix}$$

Theorem: (the orthogonal decomposition theorem)

Let W be a subspace of \mathbb{R}^n . Then $\forall \mathbf{y} \in \mathbb{R}^n$ there is a unique decomposition

$$\mathbf{y} = \check{\mathbf{y}} + \mathbf{z},$$

where $\check{\mathbf{y}} \in W$ and $\mathbf{z} \in W^{\perp}$.

If $\{\mathbf{v}_1,\ldots\,\mathbf{v}_p\}$ is any orthogonal basis in W,

$$\check{\mathbf{y}} = \sum_{i=1}^{p} \frac{\mathbf{y} \cdot \mathbf{v}_{i}}{\mathbf{v}_{i} \cdot \mathbf{v}_{i}} \mathbf{v}_{i}$$
 and $\mathbf{z} = \mathbf{y} - \check{\mathbf{y}}.$

 $\check{\mathbf{y}} \equiv \operatorname{proj}_W \mathbf{y}$ is called the *orthogonal projection* of \mathbf{y} onto W.

Notes:

- The uniqueness of the decomposition indicates that the orthogonal projection $\check{\mathbf{y}}$ depends only on W but not on a particular orthogonal basis used in W.
- If $\mathbf{y} \in W$ then $\operatorname{proj}_W \mathbf{y} = \mathbf{y}$.

Example: Let

$$\mathbf{v}_1 = \begin{bmatrix} 2\\5\\-1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -2\\1\\1 \end{bmatrix}, \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$

The set $\{\mathbf{v}_1, \mathbf{v}_2\}$ is an orthogonal basis for $W = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ (check: $\mathbf{v}_1 \cdot \mathbf{v}_2 = -4 + 5 - 1 = 0$ so the vectors are orthogonal). Decompose \mathbf{y} into a vector in W and a vector orthogonal to W.

$$\mathbf{v}_1 = \begin{bmatrix} 2\\5\\-1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -2\\1\\1 \end{bmatrix}, \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}.$$

Solution:

$$\check{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \frac{\mathbf{y} \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2.$$

$$\mathbf{y} \cdot \mathbf{v}_1 = 2 + 10 - 3 = 9 \qquad \mathbf{y} \cdot \mathbf{v}_2 = -2 + 2 + 3 = 3$$

$$\mathbf{v}_1 \cdot \mathbf{v}_1 = 4 + 25 + 1 = 30 \qquad \mathbf{v}_2 \cdot \mathbf{v}_2 = 4 + 1 + 1 = 6$$

$$\check{\mathbf{y}} = \frac{9}{30} \begin{bmatrix} 2\\5\\-1 \end{bmatrix} + \frac{3}{6} \begin{bmatrix} -2\\1\\1 \end{bmatrix} = \begin{bmatrix} -2/5\\2\\1/5 \end{bmatrix}$$

 and

$$\mathbf{y} - \check{\mathbf{y}} = \begin{bmatrix} 1\\2\\3 \end{bmatrix} - \begin{bmatrix} -2/5\\2\\1/5 \end{bmatrix} = \begin{bmatrix} 7/5\\0\\14/5 \end{bmatrix}$$

.

$$\mathbf{v}_1 = \begin{bmatrix} 2\\5\\-1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -2\\1\\1 \end{bmatrix}, \quad \check{\mathbf{y}} = \begin{bmatrix} -2/5\\2\\1/5 \end{bmatrix}, \quad \mathbf{y} - \check{\mathbf{y}} = \begin{bmatrix} 7/5\\0\\14/5 \end{bmatrix}$$

The theorem ensures that $(\mathbf{y} - \check{\mathbf{y}}) \in W^{\perp}$.

We can verify that $(\mathbf{y} - \check{\mathbf{y}}) \cdot \mathbf{v}_1 = 0$ and $(\mathbf{y} - \check{\mathbf{y}}) \cdot \mathbf{v}_2 = 0$.

So the decomposition is

$$\begin{bmatrix} 1\\2\\3 \end{bmatrix} = \begin{bmatrix} -2/5\\2\\1/5 \end{bmatrix} + \begin{bmatrix} 7/5\\0\\14/5 \end{bmatrix}.$$

Definition: The distance from a point \mathbf{y} in \mathbb{R}^n to a subspace W is defined as the distance from \mathbf{y} to the nearest point in W.

Theorem: (the best approximation theorem) Let W be a subspace of \mathbb{R}^n , $\mathbf{y} \in \mathbb{R}^n$, and $\check{\mathbf{y}} = \operatorname{proj}_W \mathbf{y}$. Then $\check{\mathbf{y}}$ is the point in W closest to \mathbf{y} in the sense that

$$\|\mathbf{y} - \check{\mathbf{y}}\| < \|\mathbf{y} - \mathbf{v}\| \qquad \forall \, \mathbf{v} \neq \check{\mathbf{y}}$$

Consequence:

The nearest point to \mathbf{y} in W is its projection $\check{\mathbf{y}} = \operatorname{proj}_W \mathbf{y}$, and the distance from \mathbf{y} to W is given by $\|\check{\mathbf{y}} - \mathbf{y}\|$.

Projection and distance

Example: Find the distance from \mathbf{y} to $W = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ where

$$\mathbf{v}_1 = \begin{bmatrix} 5\\-2\\1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\2\\-1 \end{bmatrix} \text{ and } \mathbf{y} = \begin{bmatrix} -1\\-5\\10 \end{bmatrix}$$

Solution: Distance from \mathbf{y} to W is $\|\mathbf{y} - \check{\mathbf{y}}\|$, where $\check{\mathbf{y}} = \operatorname{proj}_W \mathbf{y}$. Vectors $\mathbf{v}_1, \mathbf{v}_2$ form an orthogonal basis for W, and

$$\mathbf{y} \cdot \mathbf{v}_1 = -5 + 10 + 10 = 15 \qquad \mathbf{y} \cdot \mathbf{v}_2 = -1 - 10 - 10 = -21 \mathbf{v}_1 \cdot \mathbf{v}_1 = 25 + 4 + 1 = 30 \qquad \mathbf{v}_2 \cdot \mathbf{v}_2 = 1 + 4 + 1 = 6$$

Then

$$\check{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \frac{\mathbf{y} \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 = \frac{15}{30} \begin{bmatrix} 5\\-2\\1 \end{bmatrix} - \frac{21}{6} \begin{bmatrix} 1\\2\\-1 \end{bmatrix} = \begin{bmatrix} -1\\-8\\4 \end{bmatrix}$$

Projection and distance

$$\mathbf{v}_1 = \begin{bmatrix} 5\\-2\\1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} -1\\-5\\10 \end{bmatrix}, \quad \check{\mathbf{y}} = \begin{bmatrix} -1\\-8\\4 \end{bmatrix}$$

Then

$$\mathbf{y} - \check{\mathbf{y}} = \begin{bmatrix} -1\\ -5\\ 10 \end{bmatrix} - \begin{bmatrix} -1\\ -8\\ 4 \end{bmatrix} = \begin{bmatrix} 0\\ 3\\ 6 \end{bmatrix}$$

and the distance from $\, {\bf y} \,$ to $\, W \,$ is

$$\|\mathbf{y} - \check{\mathbf{y}}\| = \sqrt{0^2 + 3^2 + 6^2} = \sqrt{45} = 3\sqrt{5}$$

So, $\check{\mathbf{y}}$ is the best approximation for \mathbf{y} within $\operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$; any other vector in $\operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ will have a greater distance from \mathbf{y} .

Definition: A set $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is called an *orthonormal set* if it is an orthogonal set of unit vectors.

If V is the subspace spanned by such a set, then $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an *orthonormal basis* for V, since this set is linearly independent.

The simplest example of an orthonormal set is the standard basis $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ for \mathbb{R}^n .

Any non-empty subset of $\{e_1, \dots, e_n\}$ is orthonormal too, and forms an orthonormal basis for the corresponding subspace.

Orthonormal basis and projection

Theorem: If $\mathbf{U} = [\mathbf{u}_1 \, \mathbf{u}_2 \, \dots \, \mathbf{u}_p]$, where $\{\mathbf{u}_1, \, \dots \, \mathbf{u}_p\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then $\forall \mathbf{y} \in \mathbb{R}^n$:

•
$$\operatorname{proj}_W \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_1) \mathbf{u}_1 + (\mathbf{y} \cdot \mathbf{u}_2) \mathbf{u}_2 + \ldots + (\mathbf{y} \cdot \mathbf{u}_p) \mathbf{u}_p$$

•
$$\operatorname{proj}_W \mathbf{y} = \mathbf{U}\mathbf{U}^\mathsf{T}\mathbf{y}$$

Proof: By the definition of projection

$$\check{\mathbf{y}} = rac{\mathbf{y}\cdot\mathbf{u}_1}{\mathbf{u}_1\cdot\mathbf{u}_1} \, \mathbf{u}_1 + \ldots + rac{\mathbf{y}\cdot\mathbf{u}_p}{\mathbf{u}_p\cdot\mathbf{u}_p} \, \mathbf{u}_p$$

and taking into account that the basis is orthonormal

$$\mathbf{u}_1 \cdot \mathbf{u}_1 = 1, \quad \mathbf{u}_2 \cdot \mathbf{u}_2 = 1, \quad \dots \quad \mathbf{u}_p \cdot \mathbf{u}_p = 1$$

we immediately obtain

$$\operatorname{proj}_{W} \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_{1}) \, \mathbf{u}_{1} + (\mathbf{y} \cdot \mathbf{u}_{2}) \, \mathbf{u}_{2} + \ldots + (\mathbf{y} \cdot \mathbf{u}_{p}) \, \mathbf{u}_{p}$$

Proof (continuing):

From $\operatorname{proj}_W \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_1) \mathbf{u}_1 + (\mathbf{y} \cdot \mathbf{u}_2) \mathbf{u}_2 + \ldots + (\mathbf{y} \cdot \mathbf{u}_p) \mathbf{u}_p$ we see that $\operatorname{proj}_W \mathbf{y}$ is a linear combination of the columns of \mathbf{U} with the coefficients $(\mathbf{y} \cdot \mathbf{u}_1), (\mathbf{y} \cdot \mathbf{u}_2), \ldots (\mathbf{y} \cdot \mathbf{u}_p).$

Denoting
$$\mathbf{x} = \begin{bmatrix} \mathbf{y} \cdot \mathbf{u}_1 \\ \mathbf{y} \cdot \mathbf{u}_2 \\ \vdots \\ \mathbf{y} \cdot \mathbf{u}_p \end{bmatrix}$$
 we can write $\operatorname{proj}_W \mathbf{y} = \mathbf{U}\mathbf{x}$.

In turn, the elements of ${\bf x}$ can be written as

$$\mathbf{u}_1^{\mathsf{T}}\mathbf{y}, \quad \mathbf{u}_2^{\mathsf{T}}\mathbf{y}, \quad \dots \quad \mathbf{u}_p^{\mathsf{T}}\mathbf{y}$$

which are the entries of $\mathbf{U}^{\mathsf{T}}\mathbf{y}$.

Thus
$$\mathbf{x} = \mathbf{U}^\mathsf{T} \mathbf{y}$$
 and so $\operatorname{proj}_W \mathbf{y} = \mathbf{U} \mathbf{U}^\mathsf{T} \mathbf{y}$

Consider a matrix formed from orthonormal vectors (as columns).

Theorem: U has orthonormal columns if and only if $U^TU = I$.

Theorem: If U has orthonormal columns, then $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$: (i) $\|\mathbf{U}\mathbf{x}\| = \|\mathbf{x}\|$ (ii) $(\mathbf{U}\mathbf{x}) \cdot (\mathbf{U}\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ (iii) $(\mathbf{U}\mathbf{x}) \cdot (\mathbf{U}\mathbf{y}) = 0$ if and only if $\mathbf{x} \cdot \mathbf{y} = 0$

These properties imply that the linear transformation $\mathbf{x} \mapsto \mathbf{U}\mathbf{x}$ preserves length, scalar product, and orthogonality.

Orthogonal matrices

Definition: An orthogonal matrix \mathbf{U} is a square invertible matrix such that $\mathbf{U}^{-1} = \mathbf{U}^{\mathsf{T}}$.

Equivalent definitions:

• U has orthonormal columns and orthonormal rows:

$$\sum_{k=1}^{n} u_{ki} u_{kj} = \delta_{ij} \quad \text{and} \quad \sum_{k=1}^{n} u_{ik} u_{jk} = \delta_{ij}$$

 Given two different orthonormal bases in ℝⁿ, the change of basis matrices between such bases are orthogonal matrices.

Note: For an orthogonal matrix \mathbf{U} : $|\det \mathbf{U}| = 1$ (warning: but $|\det \mathbf{A}| = 1$ does not mean that \mathbf{A} is orthogonal) **Example 1:** The most trivial example: unitary matrix in \mathbb{R}^n

Example 2: Matrix of a rotation transformation in \mathbb{R}^2 :

$$\mathbf{R}_{\varphi} = \begin{bmatrix} \cos\varphi & -\sin\varphi\\ \sin\varphi & \cos\varphi \end{bmatrix}$$

Example 3: Permutation matrix, for example cyclic permutation:

$$\mathbf{P} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

 $v_1 = x_1$

Theorem: Given a basis $\mathbf{x}_1, \ldots, \mathbf{x}_p$ for a subspace W of \mathbb{R}^n , define

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}$$
...
$$\mathbf{v}_{p} = \mathbf{x}_{p} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} - \dots - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \mathbf{v}_{p-1}$$

Then $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is an orthogonal basis for W.

In addition, $\operatorname{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_k\} = \operatorname{Span}\{\mathbf{x}_1, \ldots, \mathbf{x}_k\}$ for $1 \leq k \leq p$.

Orthonormal basis is then obtained by normalising \mathbf{v}_i to unit vectors.

Gram-Schmidt process is an algorithm for producing an orthogonal or orthonormal basis for any non-zero subspace of \mathbb{R}^n .

Example: Consider a linearly independent set

$$\mathbf{x}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \quad \mathbf{x}_3 = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$$

which is a basis for a subspace W in \mathbb{R}^4 .

We aim to construct an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ for W.

Solution:

Step 1: Let $\mathbf{v}_1 = \mathbf{x}_1$ and $W_1 = \operatorname{Span}\{\mathbf{x}_1\} = \operatorname{Span}\{\mathbf{v}_1\}.$

Step 2: Vector \mathbf{v}_2 is then produced by subtracting from \mathbf{x}_2 its projection onto the subspace W_1 . That is,

$$\mathbf{v}_2 = \mathbf{x}_2 - \operatorname{proj}_{W_1}(\mathbf{x}_2) = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1.$$
$$= \begin{bmatrix} 0\\1\\1\\1\\1 \end{bmatrix} - \frac{3}{4} \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} -3/4\\1/4\\1/4\\1/4 \end{bmatrix}$$

For the ease of further calculations, renormalise v_2 into v'_2 :

$$\mathbf{v}_2' = 4\mathbf{v}_2 = \begin{bmatrix} -3\\1\\1\\1 \end{bmatrix} \text{ and then } W_2 = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2'\}$$

Step 3: Get \mathbf{v}_3 by subtracting its W_2 -projection from $\mathbf{x}_3 = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$:

$$\operatorname{proj}_{W_2}(\mathbf{x}_3) = \frac{\mathbf{x}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \frac{\mathbf{x}_3 \cdot \mathbf{v}_2'}{\mathbf{v}_2' \cdot \mathbf{v}_2'} \mathbf{v}_2'$$
$$= \frac{2}{4} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + \frac{2}{12} \begin{bmatrix} -3\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\2/3\\2/3\\2/3 \end{bmatrix}.$$

Then $\mathbf{v}_3 = \mathbf{x}_3 - \operatorname{proj}_{W_2}(\mathbf{x}_3)$ is

$$\mathbf{v}_{3} = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} - \begin{bmatrix} 0\\2/3\\2/3\\2/3 \end{bmatrix} = \begin{bmatrix} 0\\-2/3\\1/3\\1/3 \end{bmatrix}; \quad \mathbf{v}_{3}' = \begin{bmatrix} 0\\-2\\1\\1 \end{bmatrix}$$

Illustration to step 3:

Thus $\{\mathbf{v}_1, \mathbf{v}'_2, \mathbf{v}_3\}$ is an orthogonal set in W and it is basis for W.

The same is true for $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ or $\{\mathbf{v}_1,\mathbf{v}_2',\mathbf{v}_3'\}$ or $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3'\}$

Example: Construct an orthonormal basis for

$$\operatorname{Span}\left\{ \begin{bmatrix} 3\\6\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\2 \end{bmatrix} \right\}$$

Solution:

$$\mathbf{v}_{1} = \begin{bmatrix} 3\\ 6\\ 0 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} 1\\ 2\\ 2 \end{bmatrix} - \underbrace{\frac{3 \cdot 1 + 6 \cdot 2 + 0 \cdot 2}{3^{2} + 6^{2} + 0^{2}}}_{45} \begin{bmatrix} 3\\ 6\\ 0 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 2 \end{bmatrix}$$

The corresponding orthonormal basis is

$$\mathbf{u}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \\ 0 \end{bmatrix}, \qquad \mathbf{u}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

.

But what happens if we swap the order of the vectors?

$$\operatorname{Span}\left\{ \left[\begin{array}{c} 1\\2\\2 \end{array} \right], \left[\begin{array}{c} 3\\6\\0 \end{array} \right] \right\}$$

Then:

$$\mathbf{v}_{1} = \begin{bmatrix} 1\\ 2\\ 2 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} 3\\ 6\\ 0 \end{bmatrix} - \underbrace{\frac{3 \cdot 1 + 6 \cdot 2 + 0 \cdot 2}{\underbrace{1^{2} + 2^{2} + 2^{2}}_{9}}}_{9} \begin{bmatrix} 1\\ 2\\ 2 \end{bmatrix} = \begin{bmatrix} 4/3\\ 8/3\\ -10/3 \end{bmatrix}$$

The corresponding orthonormal basis is (please check!)

$$\mathbf{u}_{1} = \frac{\mathbf{v}_{1}}{\|\mathbf{v}_{1}\|} = \begin{bmatrix} 1/3\\ 2/3\\ 2/3 \end{bmatrix}, \qquad \mathbf{u}_{2} = \frac{\mathbf{v}_{2}}{\|\mathbf{v}_{2}\|} = \begin{bmatrix} 2/3\sqrt{5}\\ 4/3\sqrt{5}\\ -\sqrt{5}/3 \end{bmatrix}$$

Summary

- Scalar product $\mathbf{u} \cdot \mathbf{v} \equiv \mathbf{u}^{\mathsf{T}} \mathbf{v} = \sum_{i} \mathbf{u}_{i} \mathbf{v}_{i}$
- \bullet Norm: $\|\mathbf{v}\| = \sqrt{\mathbf{v}\cdot\mathbf{v}}$ and distance: $\operatorname{dist}(\mathbf{u},\,\mathbf{v}) = \|\mathbf{u}-\mathbf{v}\|$
- Orthogonal / orthonormal vectors, sets, bases
- Orthogonal complements $\dim W^{\perp} + \dim W = n$
- Orthogonal projections and decompositions
- $\bullet~\mbox{Gram-Schmidt process:}~ {\bf v}_1 = {\bf x}_1$, then

$$\mathbf{v}_i = \mathbf{x}_i + \sum_{j=1}^{i-1} \left(-\frac{\mathbf{x}_i \cdot \mathbf{v}_j}{\mathbf{v}_j \cdot \mathbf{v}_j} \mathbf{v}_j \right) \qquad i = 2, \dots p$$

Orthogonal and orthonormal matrices

This week: quick test 7 (matrix subspaces)

Next week: quick test 8

(orthogonality)