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Scalar product and orthogonality

Definition:
A real linear space F is called an Euclidian space, if there is an
operation of scalar product defined for this space, such that

V{x,y,z} € E and Vc € R:
@ X 'y=y-X
° (x+y)z=x-z+y- 2
o (cx) y=c(x-y)=x-(cy)
@ x-x>0, and
o x-x=0ifandonlyif x=0

Definition:  Elements x and y in E are called orthogonal to
each other if x-y = 0. The notation is: x | y.



Euclidean spaces: general examples

@ A set of all functions continuous on some t € [a, b] interval,
is a Euclidian space with scalar product defined as

b

2(t) - y(t) = / £(tyy(t) dt

a

© For Py, scalar product can be also introduced as

p1(t) - p2(t) = p1(=1)pa(—1) + p1(0)p2(0) + p1(1)p2(1)

@ In the space of continuous in ¢t € [—7, 7] mterval functions
with standard scalar product fi(t) /f1 ) fa(t)

functions sin(¢) and cos(t) are orthogonal.



Scalar product for vectors

Definition: For v, w € R" the scalar product (sometimes called
n

also inner product, or dot product) is defined as: v -w = Y vw;
i=1

Note: VveR” v .10 because 0-v=0Vv

U1 w1
Note: Vectors in R™ can be writtenas: v=| |, w= :

Un Wn,
Their transposes are: vI = [ V1 ... Up ] , W= [ w; ... Wy ]

The result of vi'w is a 1 x 1 matrix, that is, a scalar:

w1

v-WEVTw:[v1 vn] | =viwr + vawe 4. VW



Norm and distance

Definitions:
@ The length, or norm, of v is: ||v||= /v v =4/V'v
Ve, levl=lc v
@ A vector with a unit norm (length) is called a unit vector.

If we divide a non-zero vector v by its length ||v|| we will
obtain a unit (or normalised) vector u with unit norm:

[ull =

v

INgl

_ v
v

Definition: The distance between two vectors v and w in R"” is

dist(v,w) = ||v — w||

Pythagorean theorem: If and only if v | w,

v +wlf* = [[v]* + [ w]?



Orthogonal complements

Definition: If a vector z is orthogonal to every vector in a
subspace W of R™ then z is said to be orthogonal to .
The set of all vectors that are orthogonal to W is called the
orthogonal complement of W and is denoted by W-=.

Note: W+ is a subspace of R" and dim W+ + dim W = n.

Example in R3:

Let W be a plane through the origin and L be a
line through the origin and perpendicular to W.

w
Ifzec Landw e W thenz-w =0. i
0 Zr

L consists of all vectors orthogonal to w € W and
W consists of all vectors orthogonal to z € L, so o«

L=W* and W=L"



Orthogonal complements in matrix subspaces

Theorem: Let A be an m X n matrix. Then

(RowA): =NulA  and  (ColA)' = Nul(AT)

g’ Coty



Orthogonal complements in matrix subspaces

Proof: If x € Nul A, then x is orthogonal to each row of A
because each row multiplied by x yields 0:

ail a19 .. Q1 T1 0
a1 az2 ... Q92p o 0
Aml Om2 .- Gmn Tn 0

Since the rows of A span Row A, x is orthogonal to Row A..

Conversely, if x is orthogonal to Row A, then x is certainly
orthogonal to each row of A, and hence Ax = 0.

Thus (Row A)*+ = Nul A is true for any matrix; so also for AT;

1
but Row AT = Col A, thus (Col A)* = (Row(AT)) = Nul AT,



Orthogonal sets 9

Definition: A set of vectors {vi,... v,,} in R” is called an
orthogonal set if each pair of vectors from the set is orthogonal:

Vi-Vj:() Vl;’é]

Example: Show that this set is orthogonal:

3 -1 -1
u; — 1 , Uy = 2 , U3 = —4
1 1 7

Solution: Consider all the possible pairs:
u-upy=3-(-1)+1-24+1-1=0
111113:3(—1)+1(—4)+17:0
u-uz=—-1-(-1)+2-(-4)4+1-7=0
Each pair is orthogonal, thus {u;,ug,us} is an orthogonal set.




Orthogonal sets 10

Theorem: If S ={vy,... v,} € R" is an orthogonal set of
non-zero vectors, then S is a linearly independent set.

Proof: Consider the equation for linear independence:
0=civi +cova+...+¢cpvp
Multiply this relation by v; on each side:
0-vi=(avi+cava+...+cpvp) - Vi
O0=ci(vi-vi)+ca(va-vi)+...+cp(vp-v1)

0= Cl(Vl . V1)

only the first term on the right remains since v; L {vo,... v,}.
However vi # 0 so vy - vy # 0 and thus we must have ¢; = 0.
Similarly, multiplying by va,...v,, we find c,...¢c, are all zero.

Thus S is linearly independent.



Orthogonal basis

Definition:  An orthogonal basis for a subspace V of R" is
such a basis for V' which is an orthogonal set.

Coordinates with respect to an orthogonal basis are easily found:

Theorem: Let {vy,... v,} be an orthogonal basis for a
subspace V of R™. For each x € V', the linear combination

X-V;

X=cC1vi+...+ vy has the weights = ——
1 Vi

Proof: Compute all the scalar products, as in the previous proof

x-v;=(aavi+...+cpvp) - vi =ci(vi-v;)

X V;

Since v; #0 (why?) then v;-v; #0 andso ¢ =
V; - V;

11



Orthogonal basis, example 12

Example: Find [y]z in the orthogonal basis B = {vi,va,v3}:

3 -1 -1 6
vi=| 1], vg= 21, vs=| —4 |; y = 1
1 1 7 -8

Solution: To find the coordinates [y]s we compute

y vi=6-34+1-1-8-1=11, v;-vi=324+124+12=11
y vo=-6-14+1-2-8-1=-12, vy-vo=(-1)2+224+12=6
y-vi=—6-1-1-4—-8-7=—66, v3-vg=(-1)2+(-4)2+72=66

1

11 12 66
Thus y:ﬁvl_gv2_%v3 and [Y]B: —2
-1

It is quite easy to find coordinates in an orthogonal basis.
For a non-orthogonal case we would need to solve a linear system.



Orthogonal basis, geometric illustration

u,

For two orthogonal basis

¥, = projection onto u
vectors uy, up € R?: 2 2

\:*Y
Yy = ciug + coug '
with

Yy u; 'lir] = projection onto u,

ug - ug

C —

The first term is the projection of y onto the line Span{u;}, and

the second term is the projection of y onto the line Span{us}.

13



Orthogonal projections 14

Given a non-zero vector u € R", consider decomposing another
vector y € R™ into the sum of two vectors, such that

y=y+z, y = au, zlu

Consider z =y — au, which is orthogonal to u if and only if

0=z-u=(y—au)-u=y-u—afu-u)

Hence
i y . u o y . u
“uw YTy =y-§ 3
y is the orthogonal projection ‘/ .
of y onto u, and z is called the 0| y=ou "

component orthogonal to u.



Orthogonal projections

The orthogonal projection y does not depend on the length of u.
Indeed, if we replace u by u’ = ku, then

!/

youw ooyl gy kyew o yeu

vV = u = = u.
Y= w o (ku) - (ku) k2 (u-u)
Definition:
. X y - z =Y—3’ ¥
y=proj,y=>"—u ]/'
u-u ;
. . O .
is the orthogonal projection 0| §=ou u

of y onto L = Span{u}

(subspace L = Span{u} is a line through u and 0).



Orthogonal projections

Example: Find orthogonal projection of y onto v and
decompose y as the sum of y € Span{v} and z L v, given

1) [

Solution: First we compute y-v and v-v:

y-V:yTv:[7 6] [;1]:40,

4
2

Then the orthogonal projection and the orthogonal component are

V_y-vv_@ 41 |8
y_v-v 202 |4

rer= (1] [1]-[ 5]

viv=uv=][4 2]{ }—20.

16



Orthogonal decomposition 17

Theorem: (the orthogonal decomposition theorem)

Let W be a subspace of R™.

Then Vy € R” there is a
unique decomposition

y=y+z,
where y € W and z € W+,

If {vi,...v,} is any orthogonal basis in W,

P

. y-v; .
= g \'Z and Z=y—Y.
y i—1 V; -V ! y y

Y = projy y is called the orthogonal projection of y onto W'.



Orthogonal decomposition 18

Notes:

@ The uniqueness of the decomposition indicates that the
orthogonal projection y depends only on W but not on
a particular orthogonal basis used in W.

o If y e W then projyy =y.

Example: Let

2 -2 1
V] = 5, va= 1], and y=| 2
-1 1 3

The set {vy,va} is an orthogonal basis for W = Span{vj, va}
(check: vi-vy=—445—1=0 so the vectors are orthogonal).

Decompose y into a vector in W and a vector orthogonal to W'.



Orthogonal decomposition
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Solution:
- y-vi NERD!
y = v+ V.

V1V V9 - Vo
y'vi=2+10-3=9 y-vo=-2+4+2+3=3
Vi-vi=4+25+1=30 vy-vp=44+1+1=6

2 -2 —2/5

9 3
-1 1 1/5
and

1 —2/5 7/5

y-y=1|2]| - 2 = 0

3 1/5 14/5

19



Orthogonal decomposition

: —2 —2/5
V1 = |: < ] s Vo = |: 1 ] s y: |: 2 ] s Y—y:
1 1 1/5

(G200 \)

|

7/5

14/5

The theorem ensures that (y —y) € W+,
We can verify that (y —y)-vi=0and (y —y) -va=0.
So the decomposition is

1 —2/5 7/5
2= 2 |[+| o
3 1/5 14/5

] |

20



Projection and distance

Definition: The distance from a point y in R™ to a subspace W
is defined as the distance from y to the nearest point in .

Theorem: (the best approximation theorem)

Let W be a subspace of R", y € R", and y = projy, y.
Then y is the point in W closest to y in the sense that

ly =yl <ly—vl vv#y

Consequence:

The nearest point to y in W is its projection ¥ = projy y,
and the distance from y to W is given by ||y —y]||.

21



Projection and distance 22

Example: Find the distance from y to W = Span{vy, va} where

) 1 -1
V] = —2 , Vg = 2 and y = -5
1 -1 10

Solution: Distance from y to W is ||y —¥||, where ¥ = projy y.

Vectors vi, vy form an orthogonal basis for W, and

y-vi=-5+10+10=15 y-vp=-1-10-10=—21
vi-vi=2+4+1=30 Vo-vo=14+4+1=6

Then

. y- Vi y - Vo 15 21
y= vi+ Vo = o= -8
V1V, Vo V9 30 1 6 -1 4




Projection and distance 23

Then
-1 -1 0
y-y=| 5 |—-| -8|=1]3
10 4 6

and the distance from y to W is

ly — ¥l = V02 +32+62 = V45 = 3V5

So, y is the best approximation for y within Span{vy, va}; any
other vector in Span{vy, vy} will have a greater distance from y.



Orthonormal set and basis 24

Definition: A set {uy,... u,} is called an orthonormal set
if it is an orthogonal set of unit vectors.

If V' is the subspace spanned by such a set, then {uy,... u,} is
an orthonormal basis for V', since this set is linearly independent.

The simplest example of an orthonormal set
is the standard basis {ej,... e,} for R".

Any non-empty subset of {ej,... e,} is orthonormal too, and
forms an orthonormal basis for the corresponding subspace.



Orthonormal basis and projection
Theorem: If U =[u;uy ... up], where {uj, ... u,} is an
orthonormal basis for a subspace W of R", then Vy € R™:
° projy = (y -w)uw +(y-up)uy+...+(y-up)up

o projyyy = UUTy

Proof: By the definition of projection

y u y-u
u + ...+ pup
up - up Up - Up

y =
and taking into account that the basis is orthonormal

ucu =1 uu=1, ... uy,-uy,=1
we immediately obtain

projyy y = (y-ur)ug + (y - ug)ug + ... + (y - up) u,.

25



Orthonormal basis and projection

Proof (continuing):

From projpyy=(y uw)uwm +(y-u2)uz+...+(y-u,)u,
we see that projy, y is a linear combination of the columns of U

with the coefficients (y-w1), (y-u2), ... (y-up).
y w
. y - u2 : .
Denoting x = ) we can write proj,, y = Ux.
y-u

In turn, the elements of x can be written as
uly, wy, ... upy
which are the entries of UTy.

Thus x = Uy and so projyy = UUTy

26



Orthonormal matrices

Consider a matrix formed from orthonormal vectors (as columns).

Theorem: U has orthonormal columns if and only if UTU =1.

Theorem: If U has orthonormal columns, then Vx, y € R":
(i) lUx]| = x|

(i) (Ux)-(Uy) =x-y

(i) (Ux)-(Uy)=0ifandonlyif x-y =0

These properties imply that the linear transformation x — Ux
preserves length, scalar product, and orthogonality.

27



Orthogonal matrices

Definition: An orthogonal matrix U is a square
invertible matrix such that U~! =TUT.

Equivalent definitions:

@ U has orthonormal columns and orthonormal rows:
n n
E Uk Uy = 5ij and E UipUjk = (51']'
k=1 k=1

@ Given two different orthonormal bases in R™, the change of
basis matrices between such bases are orthogonal matrices.

Note: For an orthogonal matrix U: |detU| =1

(warning: but |det A| =1 does not mean that A is orthogonal)

28



Examples of orthogonal matrices

Example 1: The most trivial example: unitary matrix in R"

Example 2: Matrix of a rotation transformation in R?:

_ |cosp —singp
R, = [sinap Ccos (p]

Example 3: Permutation matrix, for example cyclic permutation:

0 01
P=|[1 00
010

29



Gram-Schmidt process

Theorem: Given a basis x1,

... Xp for a subspace W of R", define

V] = X1
X9 V1
V2 =X — Vi
V1 -V
X3'Vi X3 V2
V3 = X3 — V1 — Vo
vVi-Vvi V2 - V2
Xp V1 Xp * Vo Xp*Vp—-1
v, =X, — vy — -2 Vy— .2 v
Vi -V] V9 - V9 Vp—1-+Vp-1
Then {vi,... v,} is an orthogonal basis for .

In addition, Span{vy,..

Orthonormal basis is then obtained by normalising v; to unit vectors.

. Vit = Span{xy,... xi} for 1 <k <p.

30



Gram-Schmidt process 31

Gram-Schmidt process is an algorithm for producing an orthogonal
or orthonormal basis for any non-zero subspace of R™.

Example: Consider a linearly independent set

0

X1 = X3 =

— =
— = =
— = O O

which is a basis for a subspace W in R%.

We aim to construct an orthogonal basis {vi,ve,vs} for W.

Solution:

Step 1: Let vi =x; and W = Span{x;} = Span{v,}.



Gram-Schmidt process

Step 2: Vector vy is then produced by subtracting from x5 its
projection onto the subspace Wi. That is,

. X2 - Vi
V2 = X2 — PIojyy, (X2) = X2 — Fe— vi.
0 1 —3/4
| o3| | 14
B T R O R R B!
1 1 1/4

For the ease of further calculations, renormalise va into v}:

-3

vh =4dvy = and then Wy = Span{vy, vj}

— =

32



Gram-Schmidt process

=0 O

—_

Step 3: Get vs by subtracting its Ws-projection from x3 = [
. X3 V] X3 - V-
projyy, (x3) = - ,2 v
V1 -V Vo -V,
1 -3 0
2|1 2 | 1 2/3
= —|— —_ =
Al1] 2] 1 2/3
1 1 2/3
Then v3 = x3 — projy, (x3) is
0 0 0 0
10 2/3 _ —2/3 ) P
vsT 23 |~ | 13 |7 V3T 1
1 2/3 1/3 1



Gram-Schmidt process

Illustration to step 3:

1
W, = Span{v,, v;}

Thus {v1,v},v3} is an orthogonal set in W and it is basis for W'.

The same is true for {vi,va,vs} or {vi, v, vi} or {vi,va,vi}

34



Gram-Schmidt process

Example: Construct an orthonormal basis for

3 1
Span 6 |, 2
0 2
Solution:
15
2 ; 3-146-240-2 2
Vi = s Vo — — =
S R 32+62+0° |
—_——
45
The corresponding orthonormal basis is
1/V5
S/ B (- I R
[[va 0 [[vall 1

35



Gram-Schmidt process 36

But what happens if we swap the order of the vectors?

1 3
Span 2 |, 6
2 0
Then:
15
1 31 31462402 L 4/3
V] = 2 5 Vo = 6 - ) ) ) 2 = 8/3
2 0 17 +27+2 2 ~10/3
————
9
The corresponding orthonormal basis is (please check!)
1/3 2/3v5
U1:L: 2/3 |, u2:£ 4/3v5

Vil ] 5s v~ | 25/



Summary

Scalar product u-v=uv=> uv;

i
Norm: ||v|| = v/v-v and distance: dist(u, v) = [ju—v]||
Orthogonal / orthonormal vectors, sets, bases

Orthogonal complements ~ dim W+ 4+ dim W =n

Orthogonal projections and decompositions

Gram-Schmidt process: vi = x71, then

i—1 v
i Vj .
vizxi—kg — v 1=2,...p
- V-V
Jj=1

Orthogonal and orthonormal matrices

37



Questions?

This week: quick test 7

(matrix subspaces)

Next week: quick test 8

(orthogonality)
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