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Question 1

Vectors u1 and u2 are orthogonal so they form an orthogonal basis for W = Span{u1, u2} .
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(b) dist(y1, W ) = ‖z1‖ = 7 and dist(y2, W ) = 0.

Question 2

First, we need to make sure the vectors are linearly independent; they obviously are.

Then
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Normalising these vectors we get u1 =
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Question 3

(a) After checking the vectors are linearly independent, apply Gram-Schmidt process:
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where v′2 can be introduced (but this is not required) for simplifications, so then
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It makes sense to verify (not shown) that the obtained vectors vi are orthogonal.

(b) Normalising these vectors we get

u1 =


2/3
2/3
1/3
0

 , u2 =


2/3
−1/3
−2/3

0

 , u3 =


0.2
−0.4

0.4
0.8



Question 4

To extend the basis for W towards entire R3 , we require a vector of unit length, which

is orthogonal to u1 and to u2 . Such a vector is easily found as u3 =

−1/3
−2/3
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(a) Vectors qi are of unit length each and are mutually orthogonal, as can be quickly
checked for each pair, or alternatively by calculating QTQ = I . Thus they are three
linearly independent orthonormal vectors in R3 and therefore form a basis for R3 .

(b) Multiplication shows that QQT = I . Given that Q is an orthonormal basis for R3 ,
the projection of an arbitrary vector y ∈ R3 onto Q = R3 is given by

projQ y = QQTy = Iy = y

which is certainly true, as the projection of any y ∈ R3 onto R3 equals to y itself.

(c) The change of basis matrix can be calculated by row-reducing [q1 q2 q3 |u1 u2 u3 ] →

· · · →

1 0 0 2/3 −2/3 −1/3
0 4/5 3/5 1/3 2/3 −2/3
0 0 −5/4 5/12 −1/6 7/6

 →
1 0 0 2/3 −2/3 −1/3
0 1 0 2/3 11/15 −2/15
0 0 1 −1/3 2/15 −14/15


which yields the change of basis orthogonal matrix

PQ←U ≡ [p1 p2 p3 ] =

 2/3 −2/3 −1/3
2/3 11/15 −2/15
−1/3 2/15 −14/15


(d) The orthogonality can be verified by checking for orthonormality of its columns:

p1 · p1 = 1, p1 · p1 = 1, p1 · p1 = 1,

p1 · p2 = 0, p2 · p3 = 0, p3 · p1 = 0,

or, likewise, for the rows, which requires essentially the same calculation.

Orthogonality makes it easy to get the matrix for the reverse basis change as

PU←Q = P−1Q←U = PT
Q←U =

 2/3 2/3 −1/3
−2/3 11/15 2/15
−1/3 −2/15 −14/15


which is much faster than finding that by row-reduction from [u1 u2 u3 |q1 q2 q3 ] →

→

2/3 −2/3 −1/3 1 0 0
0 1 −1/2 −1/2 4/5 3/5
0 0 3/2 −1/2 −1/5 −7/5

 →
1 0 0 2/3 2/3 −1/3
0 1 0 −2/3 11/15 2/15
0 0 1 −1/3 −2/15 −14/15

 .


