UNIVERSITY OF TECHNOLOGY SYDNEY School of Mathematical and Physical Sciences

37233 LINEAR ALGEBRA

Tutorial 9

Question 1

Let

$$\mathbf{y} = \begin{bmatrix} 7\\1 \end{bmatrix}$$
 and $\mathbf{u} = \begin{bmatrix} 8\\-6 \end{bmatrix}$

- (a) Write an orthogonal decomposition of $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$ where $\hat{\mathbf{y}} = \text{proj}_{\mathbf{u}} \mathbf{y}$ and $\mathbf{z} \perp \mathbf{u}$.
- (b) Compute the distance from \mathbf{y} to the line through \mathbf{u} and the origin.

Question 2

Consider the following vectors:

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1\\3\\-2 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} -1\\4\\3 \end{bmatrix}$$

- (a) Find the length of each vector.
- (b) Determine if any of these vectors are orthogonal to each other.
- (c) Specify if \mathbf{v}_1 , \mathbf{v}_2 form a basis for $W = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$, and what kind of basis.
- (d) Obtain an orthogonal decomposition of $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$ where $\hat{\mathbf{y}} \in W$ and $\mathbf{z} \in W^{\perp}$.
- (e) Find the distance from \mathbf{y} to W.

Question 3

Consider the following basis for $W = \text{Span}\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$:

$$\mathbf{a}_1 = \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix}, \qquad \mathbf{a}_2 = \begin{bmatrix} 4\\2\\2\\0 \end{bmatrix}, \qquad \mathbf{a}_3 = \begin{bmatrix} 4\\3\\2\\1 \end{bmatrix}$$

- (a) Construct an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ for W using the Gram–Schmidt process.
- (b) Obtain an orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ from the orthogonal set found in (a).

Question 4

Let

$$\mathbf{U} = \begin{bmatrix} \mathbf{u}_1 \, \mathbf{u}_2 \end{bmatrix} = \begin{bmatrix} 2/3 & -2/3 \\ 1/3 & 2/3 \\ 2/3 & 1/3 \end{bmatrix} \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} 4 \\ 8 \\ 1 \end{bmatrix}$$

(a) Using U (not by $\mathbf{u}_1 \cdot \mathbf{u}_2$) check if \mathbf{u}_1 and \mathbf{u}_2 form an orthonormal basis for $W = \operatorname{Col} \mathbf{U}$.

(b) Calculate $\operatorname{proj}_W \mathbf{y}$ using $\mathbf{U}.$

Question 5

Figure out if it is possible for an orthogonal matrix to have all the entries positive.