
An introduction to R: free software for
modeling & computing

Juri Hinz1

1University of Technology Sydney

February 16, 2021

What is R

R can be considered as a free implementation of the Splus
Splus is a value-added version of S sold by Insightful
Corporation (formerly Math- Soft, Inc.
S is a very high level language and an environment for
data analysis and graphics.

S was written by Richard A. Becker, John M. Chambers, and
Allan R. Wilks at Lucent Technologies (formerly AT&T Bell
Laboratories) Statistics Research Department.

S is a very general tool, so that applications are not restricted to
any particular subject area. S has been used for business,
finance and experimental science.

S is a language. That is why the authors of S prefer that you not
call S a statistics package, despite the fact that S is used in
statistics and graphics.

S System was recognized with the ’Association for Computing
Machinery (ACM) Software Systems Award’. Software systems
recognized by this previous awards include UNIX operating
system, World Wide Web, TCP/IP, and Postscript language.

The ACM named John M. Chambers as the recipient of the
Award, mentioning that Chambers’s work ‘forever altered the
way people analyze, visualize, and manipulate data... S is an
elegant, widely accepted, and enduring software system, with
conceptual integrity...

S-Plus is a fully supported and documented (statistical)
application based on S. It is available in both UNIX, Windows,
and Linux. S-Plus is a very comprehensive environment with
over 4,000 built-in functions. There are add-on packages for
financial data analysis, see http://www.insightful.com.

The disadvantages to use R instead of Splus are
no graphical surface (unlike in Splus)
no support (unlike for Splus users)
some packages are less user-friendly than in Splus
some packages have a better documentation in Splus and
less bugs

However, the advantages to use R instead of Splus are
R is free (under GNU)
there are many contributed packages for R
broad scientific community can be connected
(http://www.r-project.org/)

For these reasons, we focus on R instead on Splus in this
lecture. Both systems are closely related. In most applications,
it should be not difficult to modify an R-scripts to run on Splus.

Getting started

The latest copy of R can be downloaded from the CRAN
(Comprehensive R Archive Network) web site:

http://lib.stat.cmu.edu/R/CRAN/

For some problems additional packages are required. R
packages can also be downloaded from the same site. An
easier way, however is to install R first, to run it and to install
packages via R. Manuals, FAQ, mailing lists, reference material
can be found on the R web page.

Most frequently, R is used as a dialog-like environment
user keys in a command
R gives a response (text or graphical output)

There is no graphical surface. It turns out that the work
becomes much more efficient, if the user communicates with R
via

Rstudio

RStudio is a set of integrated tools designed to help you be
more productive with R. It includes a console,
syntax-highlighting editor that supports direct code execution,
as well as tools for plotting, history, debugging and workspace
management.

https://www.rstudio.com/products/rstudio/download/

After start, the R language expects input after the prompt
>

you can finish the program by typing

>q()

any specific named function, for example solve, the command is

> help(solve)

You can obtain help from the system.
to launch a Web browser that allows to show the help
pages type
>help.start()

to obtain help on particular topic, (say, on solve routine)
type
>?solve

R operates on named data structures. The simplest such
structure is the numeric vector, which is a single entity
consisting of an ordered collection of numbers. To set up a
vector named x, say, consisting of five numbers, namely 10.4,
5.6, 3.1, 6.4 and 21.7, use the R command

> x <- c(10.4, 5.6, 3.1, 6.4, 21.7)

In this context, the concatenation function c() creates the
vector, which is assigned to the object x . Equivalent commands
are

> assign("x", c(10.4, 5.6, 3.1, 6.4, 21.7))
> c(10.4, 5.6, 3.1, 6.4, 21.7) -> x

If an expression is used as a complete command, the value is
printed and lost. So now if we were to use the command

> 1/x

the reciprocals of the five values would be printed at the
terminal (and the value of x, of course, unchanged). If you want
to recall and to save the value of the last calculation (say as an
object with name value), type

>value <- .Last.value

If you want to look at an object, just type its name, for instance

>value

gives the result of the last calculation, according to the previous
assignment.

The entities that R creates and manipulates are known as
objects. These may be variables, arrays of numbers, character
strings, functions, or more general structures built from such
components.

During an R session, objects are created and stored by name
(we discuss this process in the next session). The R command

> objects()

can be used to display the names of (most of) the objects which
are currently stored within R. The collection of objects currently
stored is called the workspace.

At the end of each R session you are given the opportunity to
save all the currently available objects. If you indicate that you
want to do this, the objects are written to a file called ’.RData’ in
the current directory, and the command lines used in the
session are saved to a file called ’.Rhistory’.
When R is started at later time from the same directory it
reloads the workspace from this file. At the same time the
associated commands history is reloaded. It is recommended
that you should use separate working directories for analysis
conducted with R.

Sometimes objects from the previous calculations need to be
removed. Here the functions rm() or remove() are used. To
remove the object value type

> rm(value)

to remove a collection of objects, list them inside the command

> rm(obj1, obj2, obj3)

to remove all objects (to start anew) type

rm(list=ls(all=TRUE))

If commands (script file) are stored in an external file, say
’commands.R’ in the working directory ’work’, they may be
executed at any time in an R session with the command

> source("commands.R")

The function sink(),

> sink("record.lis")

will divert all subsequent output from the console to an external
file (say ’record.lis’). The command

> sink()

restores it to the console once again.

There are four atomic data types in R.
Numeric
> value <- 605
> value
[1] 605

Character
> string <- "Hello World"
> string
[1] "Hello World"

Logical
> 2 <- 4
[1] TRUE

Complex number
> cn <- 2 + 3i
> cn
[1] 2+3i

The attribute of an object becomes important when
manipulating objects. All objects have two attributes, the mode
and their length. The R function mode can be used to
determine the mode of each object, while the function length
will help to determine each object’s length.

> mode(value)
[1] "numeric"
> length(value)
[1] 1

In many practical examples, some of the data elements will not
be known and will therefore be assigned a missing value. The
code for missing values in R is NA. This indicates that the value
or element of the object is unknown. Any operation on an NA
results in an NA. The is.na() function can be used to check for
missing values in an object.

> value <- c(3,6,23,NA)
> is.na(value)
[1] FALSE FALSE FALSE TRUE
> any(is.na(value))
[1] TRUE
> na.omit(value)
[1] 3 6 23

Indefinite and Infinite values (Inf, -Inf and NaN) can also be
tested using the

is.finite, is.infinite, is.nan, is.number

functions in a similar way as shown above.

> value1 <- 5/0
> value2 <- log(0)
> value3 <- 0/0
> cat("value1 = ",value1," value2 = ",value2,
" value3 = ",value3,"\n")
>value1 = Inf value2 = -Inf value3 = NaN

The following list of arithmetic and logical operations available

Operator Description Example
+ Addition > 2+5

[1] 7

− Subtraction > 2-5

[1] -3

× Multiplication >2*5
[1] 10

/ Division > 2/5

[1] 0.4

∧ Exponentiation > 2∧ 5
[1] 32

%/% Integer Divide > 5%/%2

[1] 2

%% Modulo > 5%%2

[1] 1

Operator Description Example
== Equals > value1

[1] 3 6 23
> value1==23
[1] FALSE FALSE TRUE

! = Not Equals > value1 != 23
[1] TRUE TRUE FALSE

< Less Than > value1 < 6
[1] TRUE FALSE FALSE

> Greater Than > value1 > 6
[1] FALSE FALSE TRUE

<= Less Than or Equal To > value1 <= 6
[1] TRUE TRUE FALSE

>= Greater Than or Equal To > value1 >= 6
[1] FALSE FALSE TRUE

& Elementwise And > value2
[1] 1 2 3
> value1==6 & value2 <= 2
[1] FALSE TRUE FALSE

| Elementwise Or > value1==6 | value2 <= 2
[1] TRUE TRUE FALSE

&& Control And > value1[1] <- NA
> is.na(value1) && value2 == 1
[1] TRUE

| Control Or > is.na(value1) || value2 == 4
[1] TRUE

xor Elementwise Exclusive Or > xor(is.na(value1), value2 == 2)
[1] TRUE TRUE FALSE

! Logical Negation > !is.na(value1)
[1] FALSE TRUE TRUE

The four most frequently used types of data objects in R are
vectors: vector represents a set of elements of the same
mode
matrices: matrix is a set of elements appearing in rows
and columns where the elements are of the same mode
data frames: data frame is similar to a matrix object but
the columns can be of different modes
lists list is a generalization of a vector and represents a
collection of data objects

Vectors.

A vector may created by using concatenation function, c. This
function binds elements together, whether they are of character
form, numeric or logical.

> value.num <- c(3,4,2,6,20)
> value.char <- c("koala","kangaroo","echidna")
> value.logical.1 <- c(F,F,T,T)
or
> value.logical.2 <- c(FALSE,FALSE,TRUE,TRUE)

Also, rep and seq functions can be used. The rep function
replicates elements of vectors. For example,

> value <- rep(5,6)
> value
[1] 5 5 5 5 5 5

The seq function creates a regular sequence of values to form
a vector.

The following script shows some simple examples of creating
vectors using this function.

> seq(from=2,to=10,by=2)
[1] 2 4 6 8 10
> seq(from=2,to=10,length=5)
[1] 2 4 6 8 10
> 1:5
[1] 1 2 3 4 5

As well as using each of these functions individually to create a
vector, the functions can be used in combination. For example,

> value <- c(1,3,4,rep(3,4),seq(from=1,to=6,by=2))
> value
[1] 1 3 4 3 3 3 3 1 3 5

uses the rep and seq functions inside the concatenation
function to create the vector value.

It is important to remember that elements of a vector are
expected to be of the same mode. So an expression

> c(1:3,"a","b","c")

will produce an error message.

The scan function is used to enter in data at the terminal. This
is useful for small data sets.

> value <- scan()
1: 3 4 2 6 20
6:
> value
[1] 3 4 2 6 20

Computation with vectors is achieved using an
element-by-element operation. This is useful when writing code
because it avoids ’for loops’. However, care must be taken
when doing arithmetic with vectors, especially when one vector
is shorter than another.

In the latter circumstance, short vectors are recycled. This
could lead to problems if ’recycling’ was not meant to happen.
An example is shown below. Other functions return a single
value when applied to a vector small

> x <- runif(10) # generates random vector
of length 10 iid

> x
[1] 0.3565455 0.8021543 0.6338499 0.9511269
[5] 0.9741948 0.1371202 0.2457823 0.7773790
[9] 0.2524180 0.5636271
> y <- 2*x + 1 # recycling short vectors
> y
[1] 1.713091 2.604309 2.267700 2.902254 2.948390
[6] 1.274240 1.491565 2.554758 1.504836 2.127254

Some functions take vectors of values and produce results of
the same length.

> z <- (x-mean(x))/sd(x) # see also ’scale’
> z
[1] -0.69326707 0.75794573 0.20982940 1.24310440
[5] 1.31822981 -1.40786896 -1.05398941 0.67726018
[9] -1.03237897 -0.01886511
> mean(z)
[1] -1.488393e-16
> sd(z)

Function Description
cos, sin, tan Cosine, Sine, Tangent
acos, asin, atan Inverse functions
cosh, sinh, tanh Hyperbolic functions
acosh, asinh, atanh Inverse hyperbolic functions
log Logarithm (any base, default is natural logarithm)
log10 Logarithm (base 10)
exp Exponential (e raised to a power)
round Rounding
abs Absolute value
ceiling, floor, trunc Truncating to integer values
gamma Gamma function
lgamma Log of gamma function
sqrt Square root

p g
Function Description
sum Sum elements of a vector
mean arithmetic mean
max, min Maximum and minimum
prod Product of elements of a vector
sd standard deviation
var variance
median 50th percentile

The dim function can be used to convert a vector to a matrix

> value <- rnorm(6)
> dim(value) <- c(2,3) #here one defines dimensions
> value
[,1] [,2] [,3]
[1,] 0.7093460 -0.8643547 -0.1093764
[2,] -0.3461981 -1.7348805 1.8176161

This fills the matrix column by column.

To convert back to a vector we simply use the dim function
again.

> dim(value) <- NULL

Alternatively we can use the matrix function to convert a vector
to a matrix

> matrix(value,2,3)
[,1] [,2] [,3]
[1,] 0.7093460 -0.8643547 -0.1093764
[2,] -0.3461981 -1.7348805 1.8176161

If we want to fill by rows instead then we can use the following
script

> matrix(value,2,3,byrow=T)
[,1] [,2] [,3]
[1,] 0.709346 -0.3461981 -0.8643547
[2,] -1.734881 -0.1093764 1.8176161

To bind a row onto an already existing matrix, the rbind function
can be used

> value <- matrix(rnorm(6),2,3,byrow=T)
> value2 <- rbind(value,c(1,1,2))
> value2
[,1] [,2] [,3]
[1,] 0.5037181 0.2142138 0.3245778
[2,] -0.3206511 -0.4632307 0.2654400
[3,] 1.0000000 1.0000000 2.0000000

To bind a column onto an already existing matrix, the cbind
function can be used

> value3 <- cbind(value2,c(1,1,2))
[,1] [,2] [,3] [,4]
[1,] 0.5037181 0.2142138 0.3245778 1
[2,] -0.3206511 -0.4632307 0.2654400 1
[3,] 1.0000000 1.0000000 2.0000000 2

The function data.frame converts a matrix or collection of
vectors into a data frame

> value3 <- data.frame(value3)
> value3
X1 X2 X3 X4
1 0.5037181 0.2142138 0.3245778 1
2 -0.3206511 -0.4632307 0.2654400 1
3 1.0000000 1.0000000 2.0000000 2

Observe that this function automatically assigns names to rows
and columns.

Another example joins two columns of data together.

> value4 <- data.frame(rnorm(3),runif(3))
> value4
rnorm.3. runif.3.
1 -0.6786953 0.8105632
2 -1.4916136 0.6675202
3 0.4686428 0.6593426

Row and column names are already assigned to a data frame
but they may be changed using the names and row.names
functions.

To view the row and column names of a data frame:

> names(value3)
[1] "X1" "X2" "X3" "X4"
> row.names(value3)
[1] "1" "2" "3"

Alternative labels can be assigned by doing the following

> names(value3) <- c("C1","C2","C3","C4")
> row.names(value3) <- c("R1","R2","R3")

Names can also be specified within the data.frame function
itself.

> data.frame(C1=rnorm(3),C2=runif(3),
row.names=c("R1","R2","R3")
C1 C2
R1 -0.2177390 0.8652764
R2 0.4142899 0.2224165
R3 1.8229383 0.5382999

Accessing elements (of a vector or matrix) is achieved through
a process called indexing. Indexing may be done by

a vector of positive integers: to indicate inclusion
a vector of negative integers: to indicate exclusion
a vector of logical values: to indicate which are in and
which are out
a vector of names: if the object has a names attribute

The first example involves producing a random sample of
values between one and five, twenty times and determining
which elements are equal to 1.

> x <- sample(1:5, 20, rep=T)
> x
[1] 3 4 1 1 2 1 4 2 1 1 5 3 1 1 1 2 4 5 5 3
> x == 1
[1] FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE
[10] TRUE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE
[19] FALSE FALSE
> ones <- (x == 1) # parentheses unnecessary

We now want to replace the ones appearing in the sample with
zeros and store the values greater than 1 into an object called y.

> x[ones] <- 0
> x
[1] 3 4 0 0 2 0 4 2 0 0 5 3 0 0 0 2 4 5 5 3
> others <- (x > 1) # parentheses unnecessary
> y <- x[others]
> y
[1] 3 4 2 4 2 5 3 2 4 5 5 3

The following command queries the x vector and reports the
position of each element that is greater than 1.

> which(x > 1)
[1] 1 2 5 7 8 11 12 16 17 18 19 20

To exclude values, negative index vectors are used. Thus

> y <- x[-(1:5)]

gives y all but the first five elements of x.

Here one more example where an object has a names attribute
to identify its components. In this case a sub-vector of the
names vector may be used

> fruit <- c(5, 10, 1, 20)
> names(fruit) <- c("orange", "banana", "apple", "peach")
> lunch <- fruit[c("apple","orange")]

Lists

Lists can be created using the list function. Like data frames,
they can incorporate a mixture of modes into the one list and
each component can be of a different length or size. For
example, the following is an example of how we might create a
list from scratch.

> L1 <- list(x = sample(1:5, 20, rep=T),
y = rep(letters[1:5], 4), z = rpois(20, 1))
> L1
$x
[1] 2 1 1 4 5 3 4 5 5 3 3 3 4 3 2 3 3 2 3 1
$y
[1] "a" "b" "c" "d" "e" "a" "b" "c" "d" "e" "a" "b"
[13] "c" "d" "e" "a" "b" "c" "d" "e"
$z
[1] 1 3 0 0 3 1 3 1 0 1 2 2 0 3 1 1 0 1 2 0

There are a number of ways of accessing the first component of
a list. We can either access it through the name of that
component (if names are assigned) or by using a number
corresponding to the position the component corresponds to.
The former approach can be performed using subsetting ([[]])
or alternatively, by the extraction operator ($). Here are a few
examples:

> L1[["x"]]
[1] 2 1 1 4 5 3 4 5 5 3 3 3 4 3 2 3 3 2 3 1
> L1$x
[1] 2 1 1 4 5 3 4 5 5 3 3 3 4 3 2 3 3 2 3 1
> L1[[1]]
[1] 2 1 1 4 5 3 4 5 5 3 3 3 4 3 2 3 3 2 3 1

To extract a sublist, we use single brackets. The following
example extracts the first component only.

> L1[1]
$x
[1] 2 1 1 4 5 3 4 5 5 3 3 3 4 3 2 3 3 2 3 1

Working with Lists The length of a list is equal to the number of
components in that list. So in the previous example, the number
of components in L1 equals 3.

We confirm this result using the following line of code:

> length(L1)
[1] 3

To determine the names assigned to a list, the names function
can be used. Names of lists can also be altered in a similar way
to that shown for data frames.

> names(L1) <- c("Item1","Item2","Item3")

Indexing components of the list (if they are vectors) can be
achieved in a similar way to how data frames are indexed:

> L1$Item1[L1$Item1>2]
[1] 4 3 4 5 3 3 3 5 3 3 5

Joining two lists can be achieved either using the concatenation
function or the append function. The following two scripts show
how to join two lists together using both functions.

Concatenation function:

> L2 <- list(x=c(1,5,6,7),
y=c("apple","orange","melon","grapes"))
> c(L1,L2)
$Item1
[1] 2 4 3 4 1 5 3 1 1 2 3 3 5 2 1 3 2 3 5 1
$Item2
[1] "a" "b" "c" "d" "e" "a" "b" "c" "d" "e" "a" "b"
[13]"c" "d" "e" "a" "b" "c" "d" "e"
$Item3
[1] 0 0 2 1 1 0 2 0 0 1 1 1 0 0 1 1 1 3 0 2
$x
[1] 1 5 6 7
$y
[1] "apple" "orange" "melon" "grapes"

Append Function: (actually inseart)

> append(L1,L2,after=2)
$Item1
[1] 2 4 3 4 1 5 3 1 1 2 3 3 5 2 1 3 2 3 5 1
$Item2
[1] "a" "b" "c" "d" "e" "a" "b" "c" "d" "e" "a"
[12]"b" "c" "d" "e" "a" "b" "c" "d" "e"
$x
[1] 1 5 6 7
$y
[1] "apple" "orange" "melon" "grapes"
$Item3
[1] 0 0 2 1 1 0 2 0 0 1 1 1 0 0 1 1 1 3 0 2

Adding elements to a list can be achieved by
adding a new component name:
> L1$Item4 <- c("apple","orange","melon","grapes")
alternative way
> L1[["Item4"]] <- c("apple","orange","melon","grapes")

adding a new component element, whose index is greater
than the length of the list
L1[[4]] <- c("apple","orange","melon","grapes")
> names(L1)[4] <- c("Item4")

It is important to understand lists, since there are also many
functions within R that produce a list as output

Data sorting

Ordering is usually best done indirectly: Find an index vector
that achieves the sort operation and use it for all vectors that
need to remain together. The function order allows sorting with
tie-breaking: Find an index vector that arranges the first of its
arguments in increasing order.

Ties are broken by the second argument and any remaining
ties are broken by a third argument.

> x <- sample(1:5, 20, rep=T)
> y <- sample(1:5, 20, rep=T)
> z <- sample(1:5, 20, rep=T)
> xyz <- rbind(x, y, z)
> dimnames(xyz)[[2]] <- letters[1:20]
> xyz
a b c d e f g h i j k l m n o p q r s t
x 4 4 2 4 3 4 4 1 2 2 5 3 1 5 5 3 4 5 3 4
y 5 5 2 5 2 3 5 4 4 2 4 2 1 4 3 4 4 2 2 2
z 4 5 3 2 4 2 4 5 5 2 4 2 4 5 3 4 3 4 4 3
> o <- order(x, y, z)
> xyz[, o]
m h j c i l e s p t f q d a g b r o k n
x 1 1 2 2 2 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5
y 1 4 2 2 4 2 2 2 4 2 3 4 5 5 5 5 2 3 4 4
z 4 5 2 3 5 2 4 4 4 3 2 3 2 4 4 5 4 3 4 5

The operator %*% is used for matrix multiplication. An n × 1 or
1 × n matrix may of course be used as an n-vector if in the
context such is appropriate.
Conversely, vectors which occur in matrix multiplication
expressions are automatically promoted either to row or column
vectors, whichever is multiplicatively coherent, if possible,
(although this is not always unambiguously possible, as we see
later).

If, for example, A and B are square matrices of the same size,
then

> A * B

is the matrix of element by element products and

> A %*% B

is the matrix product. If x is a vector, then

> x %*% A %*% x

is a quadratic form.

The function t(X) calculates the transpose of X .

Example

> (mat.1 <- matrix(c(1,0,1,1), nrow=2))
[,1] [,2]
[1,] 1 1
[2,] 0 1
> (mat.2 <- matrix(c(1,1,0,1), nrow=2))
[,1] [,2]
[1,] 1 0
[2,] 1 1
> solve(mat.1) # This inverts the matrix
[,1] [,2]
[1,] 1 -1
[2,] 0 1

> mat.1 %*% mat.2 # Matrix multiplication
[,1] [,2]
[1,] 2 1
[2,] 1 1
> mat.1 + mat.2 # Matrix addition
[,1] [,2]
[1,] 2 1
[2,] 1 2
> t(mat.1) # Matrix transposition
[,1] [,2]
[1,] 1 0
[2,] 1 1
> det(mat.1) # Matrix determinant
[1] 1

The meaning of diag() depends on its argument.
diag(v), where v is a vector, gives a diagonal matrix with
elements of the vector as the diagonal entries
diag(M), where M is a matrix, gives the vector of main
diagonal entries of M.
somewhat confusingly, if k is a single integer value then
diag(k) is the k × k identity matrix!

In R,

> solve(A,b)

solves the linear system Ax = b. The inverse of the matrix A
can be computed by

solve(A)

The function eigen(Sm) calculates the eigenvalues and
eigenvectors of a symmetric matrix Sm. The result of this
function is a list of two components named values and vectors.
The assignment

> ev <- eigen(Sm)

will assign this list to ev . Then ev$val is the vector of
eigenvalues of Sm and ev$vec is the matrix of corresponding
eigenvectors.

By default the routine eigen() checks the input matrix for
symmetry, but it is probably better to specify whether the matrix
is symmetric by construction or not using the parameter
symmetric.

> J <- cbind(c(20,3),c(3,18))
> j <- eigen(J,symmetric=T)
> j$vec%*%diag(j$val)%*%t(j$vec)

[,1] [,2]
[1,] 20 3
[2,] 3 18

If the more general singular value decomposition is desired, we
use instead svd(). For the QR factorization, we use qr().

R can numerically minimize an arbitrary function using either
nlm() or optim(). The latter because it lets the user choose
which optimization method.

The nlm() function takes as an argument a function and a
starting vector at which to evaluate the function.

The fist argument of the user-defined function should be the
parameter(s) over which R will minimize the function, additional
arguments to the function (constants) should be specified by
name in the nlm() call.

> g <- function(x,A,B){
+ out <- sin(x[1])-sin(x[2]-A)+x[3]^2+B
+ out
+ }
> results <- nlm(g,c(1,2,3),A=4,B=2)
> results$min
[1] 6.497025e-13
> results$est
[1] -1.570797e+00 -7.123895e-01 -4.990333e-07

If function maximization is wanted one should multiply the
function by -1 and minimize.
If optim() is used, one can instead pass the parameter
control=list(fnscale=-1), which indicates a multiplier for the
objective function and gradient. It can also be used to scale up
functions that are nearly flat so as to avoid numerical
inaccuracies.

Other optimization functions which may be of interest are

optimize() for one-dimensional minimization,

uniroot() for root finding, and

deriv() for calculating numerical derivatives. Also,

constrOptim() provides constrained optimization functionality.

We can use the function integrate() from the stats package to
do one-dimensional integration of a known function. For
example,

> g <- function(x){
+ exp(-1/2*((.12-x)^2+(.07-x)^2+(.08-x)^2))
+ }
> const <- integrate(g,-Inf,Inf)$value

We notice that integrate() returns additional information, such
as error bounds, so we extract the value using $value. Also, in
addition to a function name, integrate() takes limits of
integration, which—as in this case—may be infinite.

A function can be treated as any other object in R. It is created
with the assignment operator and function(), which is passed
an argument list (use the equal sign to denote default
arguments; all other arguments will be required at runtime).
The code that will operate on the arguments follows,
surrounded by curly brackets if it comprises more than one line.

This means the following functions are equivalent

> g <- function(x,Alpha=1,B=0) sin(x[1])-sin(x[2]-Alpha)+x[3]^2+B
> f <- function(x,Alpha=1,B=0){
out <- sin(x[1])-sin(x[2]-Alpha)+x[3]^2+B
return(out)
}

Because R does not distinguish what kind of data object a
variable in the parameter list is, we should be careful how we
write our functions.

Function parameters are passed by value, so changing them
inside the function does not change them outside of the
function. Also variables defined within functions are unavailable
outside of the function. If a variable is referenced inside of a
function, first the function scope is checked for that variable,
then the scope above it, etc.

In other words, variables outside of the function are available to
code inside for reading, but changes made to a variable defined
outside a function are lost when the function terminates. For
example, define

a<-c(1,2)
k<-function(){
cat("Before: ",a,"\n")
a<-c(a,3)
cat("During: ",a,"\n")
}

then run

k()
Before: 1 2
During: 1 2 3
> cat("After: ",a,"\n")
After: 1 2

If a function wishes to write to a variable defined in the scope
above it, it can use the “super-assignment” operator << −.

Looping is performed using the for command. It’s syntax is as
in the example

> for (i in 1:20){
+ cat(i)
> }

Where cat() may be replaced with the block of code we wish to
repeat. Instead of 1:20, a vector or matrix of values can be
used. The index variable will take on each value in the vector or
matrix and run the code contained in curly brackets.

If we simply want a loop to run until something happens to stop
it, we could use the repeat loop combined with the command
break

> repeat {
+ g <- rnorm(1)
+ if (g > 2.0) break
+ cat(g);cat("\n") # new line
> }

The semicolon acts to let R know where the end of our
command is, when we put several commands on a line.

For example, the above is equivalent to

> repeat {g <- rnorm(1);if (g>2.0) break;cat(g);cat("\n");}

To help the programmer avoid the sluggishness associated with
writing and executing loops, R has a command to call a function
with each of the rows or columns of an array. We specify one of
the dimensions in the array, and for each element in that
dimension, the resulting cross section is passed to the function.

For example, if X is a 50x10 array representing 10 quantities
associated with 50 individuals and we want to find the mean of
each row (or column), we could write

> apply(X,1,mean) # for a 50-vector of
individual (row) means

> apply(X,2,mean) # for a 10-vector of observation
(column) means

Further, multi-dimensional arrays can be treated in similar way,
where several dimensions (beyond rows/columns are fixed).
This technique is very useful, since R is slow when it comes to
loops.

For reading and writing in files, R uses the working directory. To
find this directory, the command getwd() (get working directory)
can be used, and the working directory can be changed with
setwd("C:/data"). It is necessary to give the path to a file if it is
not in the working directory.

R can read data stored in text (ASCII) files with read.table
(which has several variants). The function read.table has for
effect to create a data frame, and so is the main way to read
data in tabular form. For instance, if one has a file named
data.dat, the command:

> mydata <- read.table("data.dat")

will create a data frame named mydata, and each variable
(column) will be named, by default, by

V1, V2, . . .

and can be accessed individually by mydata$V1, mydata$V2,
. . . or by mydata[”V1”], mydata[”V2”], . . . or, by mydata[,1],
mydata[,2],

There are several options for read.table

read.table(file, header = FALSE, sep = "",
quote = "\"’", dec = "."
row.names, col.names, as.is = FALSE,
na.strings = "NA",
colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE,
fill = !blank.lines.skip,
strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = "#")

file the name of the file (within "" or a variable of mode character),
possibly with its path (the symbol \ is not allowed and must be
replaced by /, even under Windows), or a remote access to a file of
type URL (http://...)

header a logical (FALSE or TRUE) indicating if the file contains the names of
the variables on its first line

sep the field separator used in the file, for instance sep="\t" if it is a
tabulation

quote the characters used to cite the variables of mode character

dec the character used for the decimal point

row.names a vector with the names of the lines which can be either a vector of
mode character, or the number (or the name) of a variable of the
file (by default: 1, 2, 3, . . .)

col.names a vector with the names of the variables (by default: V1, V2, V3,
. . .)

as.is controls the conversion of character variables as factors (if FALSE)
or keeps them as characters (TRUE); as.is can be a logical, numeric
or character vector specifying the variables to be kept as character

na.strings the value given to missing data (converted as NA)

colClasses a vector of mode character giving the classes to attribute to the
columns

nrows the maximum number of lines to read (negative values are ignored)

skip the number of lines to be skipped before reading the data

check.names if TRUE, checks that the variable names are valid for R

fill if TRUE and all lines do not have the same number of variables,
“blanks” are added

strip.white (conditional to sep) if TRUE, deletes extra spaces before and after
the character variables

blank.lines.skip if TRUE, ignores “blank” lines

comment.char a character defining comments in the data file, the rest of the
line after this character is ignored (to disable this argument, use
comment.char = "")

The function write.table writes in a file an object, typically a data
frame but this could well be another kind of object (vector,
matrix, . . .). The arguments and options are:

write.table(x, file = "", append = FALSE, quote = TRUE, sep = " ",
eol = "\n", na = "NA", dec = ".", row.names = TRUE,
col.names = TRUE, qmethod = c("escape", "double"))

x the name of the object to be written

file the name of the file (by default the object is displayed on the screen)

append if TRUE adds the data without erasing those possibly existing in the file

quote a logical or a numeric vector: if TRUE the variables of mode character and
the factors are written within "", otherwise the numeric vector indicates
the numbers of the variables to write within "" (in both cases the names
of the variables are written within "" but not if quote = FALSE)

sep the field separator used in the file

eol the character to be used at the end of each line ("\n" is a carriage-return)

na the character to be used for missing data

dec the character used for the decimal point

row.names a logical indicating whether the names of the lines are written in the file

col.names id. for the names of the columns

qmethod specifies, if quote=TRUE, how double quotes " included in variables of mode
character are treated: if "escape" (or "e", the default) each " is replaced
by \", if "d" each " is replaced by ""

To record a group of objects of any type, we can use the
command

save(x,y, z, file= "xyz.RData")

To ease the transfer of data between different machines, the
option ascii = TRUE can be used.

The data (which are now called a workspace in R’s jargon) can
be loaded later in memory with load("xyz.RData"). The function
save.image() is a short-cut for

save(list=ls(all=TRUE), file=".RData")}

