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1. Lecture outline

Topics:
subject outline
types of RVs
analytical tools for numerical RVs

PMF
PDF

descriptions of RVs
graphical descriptions of RVs

bar chart
pie chart
boxplot
histogram
scatter plot
grouped boxplots
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1. Lecture outline

Topics (continued):
population statistics

mean
variance
quantile
mode
covariance
correlation

sample statistics
mean and variance
confidence interval
descriptive statistics
correlation

descriptions of RVs – summary
hypothesis testing

one-sample T-test
two-independent-sample T-test
F-test (introduction)
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1. Subject Outline

Subject outline is available on Canvas and contains important
information regarding the schedule and assessments for this subject.

Weekly schedule:
one 2-hour lecture
one 2-hour lab

Assessment tasks:
weekly lab worksheet (20%)
group assignment (30%)
2-hour final exam (50%)
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1. Types of RVs

A random variable (RV) is a variable whose value is determined by
some chance experiment.

We can think of a random variable as a special type of function.

RVs can be classified according to the type of values they take.

Source: www.abs.gov.au
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1. Analytical tools for numerical RVs – PMF

Let X be a discrete RV taking values in Z, the set of integers. (Discrete
RVs can be defined on countable sets of real numbers)

Associated with such a RV X is its probability mass function (PMF)
pX given by

Prob(X = x) = pX (x),
with the property

∑∞
x=−∞ pX (x) = 1 (probabilities must sum to one).

Example: PMF of X ∼ B(40, 1/4) RV
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1. Analytical tools for numerical RVs – PDF

Let Y be a continuous RV taking values in R, the set of real numbers.
(Continuous RVs can be defined on any interval.)

If one can write

Prob(a ≤ Y ≤ b) =
∫ b

a
fY (y) dy ,

then fY is called the probability density function (PDF) of the RV Y ,
which possess the property

∫ ∞
−∞ fY (y) dy = 1 (probabilities sum to one).

Example: PDF of Y ∼ N(10, 3) RV
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1. Descriptions of RVs

We often have to deal with large amounts of data, sometimes many
thousands or even millions of data points.

This means it is virtually impossible to inspect the actual data and have
any hope of extracting meaningful information.

In statistics we instead make use of various tools to describe
characteristics of the data.

These tools tend to be either graphical or numerical in nature.

Graphical tools can be used to describe all RVs, but numerical tools are
used only on numerical RVs.
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1. Graphical descriptions of RVs – bar chart

Consider the data set health.csv (see Week 2 folder on Canvas).

One of the RVs in this set is the categorical variable gender .

We can construct a bar chart of this RV using the R command
counts <- table(health$gender)
barplot(counts, main="Bar chart of gender RV", xlab="Whether male or female",
ylab="Count", names.arg=c("Missing","Male","Female"))

Q. What is the modal category? A. Female (more on the mode shortly).
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1. Graphical descriptions of RVs – pie chart

An alternative is to use a pie chart, again in R using
pie(counts,labels=c("Missing","Male","Female"),main="Pie
chart of gender RV")

Both the bar and pie charts are easy to interpret as the RV gender can
take only two values: female or male (categorical variable).
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1. Graphical descriptions of RVs – boxplot

Below is a boxplot of the variable bmi , also from the same data set.

boxplot(health$bmi, main="Boxplot of BMI RV")

The box height is the the interquartile range (IQR), the line in the box
identifies the median, each fence and whisker is one-and-a-half times the
IQR and the outliers are marked with either a circle or asterisk.
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1. Graphical descriptions of RVs – histogram

Another way to get a feel for the distribution of a numerical RV is with
a histogram.

hist(health$newsyst,xlab="newsyst",main="Histogram of newsyst
RV")

We will see that a histogram is related to a very important property of a
RV, its density function or mass function.
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1. Graphical descriptions of RVs – scatter plot

When we have a bivariate RV, both numerical, we need to consider
possible dependence between them. A scatter plot can convey this
visually.

plot(health$age, health$newsyst,xlab="Age in years",
ylab="Systolic BP")

Here we see some suggestion of a quadratic relationship between the RVs.
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1. Graphical descriptions of RVs – grouped boxplots

When we have a bivariate RV, one numerical and the other categorical, a
grouped boxplot can be generated using the commands
boxplot(health$newsyst˜health$gender,ylab="Systolic BP",
names=c("Missing","Male","Female"),xlab="",
main="Boxplot of newsyst grouped by gender")

15 / 46



1. Population statistics – mean

We can use the PMF or PDF of a RV to calculate population statistics.

The mean, average or expected value of the discrete RV X is defined as

µX := E[X ] =
∞∑

x=−∞
xpX (x)

while for the continuous RV Y as

µY := E[Y ] =
∫ ∞

−∞
yfY (y) dy .

This is an example of a location parameter.

N.B. If you haven’t studied calculus fear not - we won’t be evaluating
integrals in this course.
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1. Population statistics – variance

The PMF or PDF can also be used to calculate variance, a measure of
the variability of a RV.

The variance for the discrete RV X is

var(X ) ≡ σ2
X := E[(X − µX )2] =

∞∑
x=−∞

(x − µX )2pX (x)

and the continuous RV Y is

var(Y ) ≡ σ2
Y := E[(Y − µY )2] =

∫ ∞

−∞
(y − µY )2fY (y) dy .

This is an example of a scale parameter.

(Recall variance as the square of the standard deviation.)
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1. Population statistics – quantile

Another useful statistic is the α-quantile, 0 ≤ α ≤ 1.

For the continuous RV Y , the α-quantile yα satisfies

Prob(Y < yα) = α.

For the discrete RV X , the α-quantile xα satisfies

Prob(X < xα) ≤ α.

We can use α-quantiles to define other statistics.

The median of the discrete RV X is given by the 1/2-quantile

median(X ) := x1/2

and the inter-quartile range (IQR) by the interval

IQR(X ) := x3/4 − x1/4.
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1. Population statistics – mode

Another location parameter is the mode which for the discrete random
variable X , can be defined in terms of its PMF pX as the solution of

argmax
x∈Z

pX (x),

i.e. the value of x ∈ Z which maximises pX (x).

Similarly, the mode of the continuous RV Y with PDF fY is the solution
of

argmax
y∈R

fY (y).
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1. Population statistics – covariance

Consider the discrete random variables X1, X2 taking values in Z. When
dealing with multivariate RVs one is often interested in any dependence
between them.

One such measure is the covariance, defined in the discrete case as

covar(X1, X2) ≡ σ2
X1,X2

:= E[(X1 − µX1)(X2 − µX2)]

=
∞∑

x2=−∞

∞∑
x1=−∞

(x1 − µX1)(x2 − µX2)pX1,X2(x1, x2)

where µX1 := E[X1], µX2 := E[X2] and the bivariate PMF is defined via
the relationship

Prob(X1 = x1, X2 = x2) = pX1,X2(x1, x2).

Of course, the PMF must satisfy
∑∞

x2=−∞
∑∞

x1=−∞ pX1,X2(x1, x2) = 1.
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1. Population statistics – covariance

Now consider the continuous random variables Y1, Y2 taking values in R.

The covariance in this case is given by

covar(Y1, Y2) ≡ σ2
Y1,Y2

:= E[(Y1 − µY1)(Y2 − µY2)]

=
∫ ∞

−∞

∫ ∞

−∞
(y1 − µY1)(y2 − µY2)fY1,Y2(y1, y2) dy1 dy2,

where µY1 := E[Y1], µY2 := E[Y2] and the bivariate PDF is defined via
the relationship

Prob(a1 ≤ Y1 ≤ b1, a2 ≤ Y2 ≤ b2) =
∫ b2

a2

∫ b1

a1

fY1,Y2(y1, y2) dy1 dy2.

Once more we have the condition
∫ ∞

−∞
∫ ∞

−∞ fY1,Y2(y1, y2) dy1 dy2 = 1.
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1. Population statistics – correlation

An alternative measure of dependence between two RVs is Pearson’s
correlation coefficient

corr(X1, X2) ≡ ρX1,X2 := covar(X1, X2)
σX1σX2

,

where σX1 and σX2 are the standard deviations of the discrete RVs X1
and X2 respectively.

This measure transforms covariance onto the scale

−1 ≤ ρX1,X2 ≤ 1,

with −1 indicating perfect negative (linear) dependence and +1 perfect
positive (linear) dependence.

The correlation parameter ρY1,Y2 for the continuous RVs Y1 and Y2 is
defined in the same way.
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1. Sample statistics

The population statistics for discrete and continuous RVs just described
are properties of the distribution of these RVs and are theoretical in
nature.

However, when working with real data we will never be sure which PMF
or PDF to use and therefore can’t be certain what the population
statistics are.

Instead we use sample statistics and from these infer information about
their population counterparts.
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1. Sample statistics – mean and variance

Suppose we have drawn a sample X1, . . . , Xn of n independent
observations of some numerical random variable X .

The sample mean of this RV is defined as

X := 1
n

n∑
i=1

Xi

and the sample variance as

S2 := 1
n − 1

n∑
i=1

(Xi − X )2,

which is the square of the sample standard deviation S.

These are unbiased estimators as it is easy to show that E[X ] = E[X ]
and E[S2] = var(X ).

Sample versions of other population statistics can be constructed
similarly.
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1. Sample statistics – confidence interval

A confidence interval for the population mean µ = E[X ] can be
constructed from these sample statistics.

If X follows a normal distribution with mean µ and standard deviation
σ, then the RV

Z = X − µ

σ/
√

n
follows a normal distribution with mean zero and standard deviation of
one.

If σ is unknown, consider instead the RV

T = X − µ

S/
√

n
(1)

which follows a Student’s T distribution with n − 1 degrees of freedom.

For large n these statements hold approximately true irrespective of the
distribution of X (by CLT).
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1. Sample statistics – confidence interval

The PDF for a Student’s T-distributed RV for a range of degrees of
freedom.

Example: PDF of X ∼ T(n) RV with N(0,1) for comparison

The Student’s T-distribution converges to the standard normal
distribution as n → ∞.
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1. Sample statistics – confidence interval

By calculating the value t1−α/2, 0 < α < 1/2, such that

Prob(t α
2

≤ T ≤ t1− α
2
) = Prob(−t1− α

2
≤ T ≤ t1− α

2
)

= 1 − α (2)

we have by (1)

Prob
(

− t1− α
2

≤ X − µ

S/
√

n
≤ t1−α/2

)
= 1 − α (3)

or with 100(1 − α)% confidence

X − t1− α
2

S√
n

≤ µ ≤ X + t1− α
2

S√
n

. (4)

This confidence interval is itself random. If we constructed 100
different samples of X we would expect 100(1 − α) of the confidence
intervals to contain the true mean µ.
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1. Sample statistics – R descriptive statistics

> summary(health$bmi,na.rm = T)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

15.68 22.71 25.30 25.83 28.20 51.47 177
> var(health$bmi,na.rm = T)
[1] 19.68836
> sd(health$bmi,na.rm = T)
[1] 4.437157
> IQR(health$bmi, na.rm = T)
[1] 5.491445
> library(’moments’)
> skewness(health$bmi,na.rm = T)
[1] 0.9979072
> kurtosis(health$bmi, na.rm = T)
[1] 4.989826
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1. Sample statistics – R correlation results

An numerical analysis of dependence between RVs can be generated with
the R command

> cor.test(health$age, health$newsyst, method = "pearson")

Pearson’s product-moment correlation

data: health$age and health$newsyst
t = 44.7, df = 4998, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.5143147 0.5539288

sample estimates:
cor

0.5344152

The Pearson correlation coefficient of +1 indicates perfect positive
(linear) dependence. It will not identify any quadratic dependence.
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1. Descriptions of RVs – summary

Graphical tools can be used to describe both categorical and numerical
RVs.

Bar charts and pie charts and best reserved for categorical RVs, or
discrete RVs that only take a limited number of values. Boxplots and
histograms only work for numerical RVs.

Numerical tools provide descriptions via statistics and only make sense
when applied to numerical RVs.

Most of these statistics work equally well for both discrete and continuous
RVs, although mode is used more frequently to describe discrete RVs.
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1. Hypothesis testing – one-sample T-test

Consider a sample X1, . . . , Xn of independent observations of some
normally-distributed random variable with (unknown) mean µ.

The one-sample T-test is used to test a hypothesised value µ∗ of µ.

The null hypothesis for this test is
H0: µ = µ∗

while the alternative hypothesis may be any of
HA: µ > µ∗ (upper-tail test)
HA: µ ̸= µ∗ (two-tail test)
HA: µ < µ∗ (lower-tail test).

The test statistic is calculated as

t∗ = X − µ∗

S/
√

n
, (5)

with X and S2 the mean and variance of the sample described above.

It can be considered an observation of the RV T given in (1).
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1. Hypothesis testing – one-sample T-test

Rejection of null hypothesis (upper-tail test)
H0 is rejected in favour of HA at significance level 0 < α < 1

2 if

t∗ = X − µ∗

S/
√

n
> t1−α

where t1−α is the quantile satisfying

Prob
(
T > t1−α

)
= α.

Equivalently, H0 is rejected if µ∗ falls outside the one-sided 100(1 − α)%
CI for µ given by

X − S√
n

t1−α ≤ µ < ∞

or if the p-value
p = Prob(T > t∗) < α.

The null hypothesis H0 is retained in any other case.

32 / 46



1. Hypothesis testing – one-sample T-test

Rejection region (two-tail test)
H0 is rejected in favour of HA at significance level 0 < α < 1

2 if

|t∗| =
∣∣∣X − µ∗

S/
√

n

∣∣∣ > t1−α/2

where t1−α/2 is the quantile satisfying

Prob
(
|T | > t1−α/2

)
= α.

Equivalently, H0 is rejected if µ∗ falls outside the two-sided 100(1 − α)%
CI for µ given by

X − S√
n

t1−α/2 ≤ µ ≤ X + S√
n

t1−α/2

or if the p-value
p = 2 × Prob(T > |t∗|) < α.

The null hypothesis H0 is retained in any other case.
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1. Hypothesis testing – one-sample T-test

Rejection of null hypothesis (lower-tail test)
H0 is rejected in favour of HA at significance level 0 < α < 1

2 if

t∗ = X − µ∗

S/
√

n
< tα

where tα is the quantile satisfying

Prob
(
T < tα

)
= α.

Equivalently, H0 is rejected if µ∗ falls outside the one-sided 100(1 − α)%
CI for µ given by

−∞ < µ ≤ X + S√
n

t1−α

or if the p-value
p = Prob(T < t∗) < α.

The null hypothesis H0 is retained in any other case.
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1. Hypothesis testing – one-sample T-test

The following diagram illustrates the rejection regions for the three
versions of this test.

Rejection regions for T-test

Source: Peck et al. (2012), page 604
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1. Hypothesis testing – one-sample T-test

As an example, we perform a two-sided one sample T-test on the
hypothesised value µ∗ = 25 of the (unknown) population mean µ of the
RV bmi in the data set health.xlsx.

(Assumption of independence sounds reasonable, what about assumption
of normality?)

We define the hypotheses
H0: µ = 25
HA: µ ̸= 25

and test at the five-percent significance level (α = 0.05).

This test can be conducted using the R command

> t.test(health$bmi, mu = 25)
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1. Hypothesis testing – one-sample T-test

One Sample t-test

data: health$bmi
t = 12.945, df = 4822, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 25
95 percent confidence interval:
25.70181 25.95232

sample estimates:
mean of x
25.82707

With p < α the null hypothesis H0 is rejected in favour of HA.
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1. Hypothesis testing – one-sample T-test

It is a simple matter to also perform this test manually, using the
following statistics.

> length(health$bmi)-sum(is.na(health$bmi))
[1] 4823
> mean(health$bmi, na.rm = T)
[1] 25.82707
> sd(health$bmi, na.rm = T)
[1] 4.437157
Using this output we calculate the test statistic (5) with µ = 25 as

bmi − µ∗

S/
√

n
= 25.82707 − 25

4.437157/
√

4823
= 12.945

which gives p = 0.000.
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1. Hypothesis testing - two-independent-sample T-test

Suppose we have two samples (sizes n1 and n2) of independently selected
normally-distributed RVs with means µ1 and µ2.

We want to test for differences between µ1 and µ2.

We set up a two-tailed version of the test with the following null and
alternative hypotheses

H0: µ1 − µ2 = µ∗
1 − µ∗

2

HA: µ1 − µ2 ̸= µ∗
1 − µ∗

2

with µ∗
1 and µ∗

2 the hypothesised values of µ1 and µ2 respectively.

(Upper and lower-tail versions of the alternative hypothesis can also be
specified.)

See Chapter 11 of Peck et al. (2012) for details.
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1. Hypothesis testing – two-independent-sample T-test

Let X 1, X 2 be the means and S2
1 , S2

1 the variances of the two samples.

The test statistic is defined differently for the cases of equal and unequal
population variances, namely

t∗ =


X 1−X 2−(µ∗

1 −µ∗
2 )√

S2
1

n1
+

S2
2

n2

, σ1 ̸= σ2

X 1−X 2−(µ∗
1 −µ∗

2 )√
(n1−1)S2

1 +(n2−1)S2
2

(n1+n2)(n1+n2−2)

, σ1 = σ2
, (6)

and is an observation of a Students’s T -distributed RV with degrees of
freedom given by

df =


n1 + n2 − 2, σ1 = σ2
(S2

1 /n1+S2
2 /n2)2

(S2
1 /n1)2

n1−1 +
(S2

2 /n2)2

n2−1

, σ1 ̸= σ2
.

The reject/retain decision is analogous to that for the one-sample T-test.
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1. Hypothesis testing – two-independent-sample T-test

As an example we test the means for the RV newsyst grouped by the
categorical RV gender against a hypothesised difference of zero.

(What about the assumptions?)

The hypotheses take the form
H0: µm − µf = 0
HA: µm − µf ̸= 0.
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1. Hypothesis testing – two-independent-sample T-test

> library(car)
> leveneTest(health$newsyst, as.factor(health$gender))
Levene’s Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)
group 1 61.236 6.181e-15 ***

4803
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> t.test(health$newsyst˜health$gender, var.equal = F)
Welch Two Sample t-test
data: health$newsyst by health$gender
t = 6.8574, df = 4907.3, p-value = 7.88e-12
alternative hypothesis: true difference in means between group 1 and
group 2 is not equal to 0
95 percent confidence interval:
2.757764 4.965847

sample estimates:
mean in group 1 mean in group 2

138.0598 134.1980
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1. Hypothesis testing – two-independent-sample T-test

From the first table returned we see that Levene’s test of the null
hypothesis that the population variances are equal is rejected.

So we use the test statistic and p-value from the unequal variances
version of the test.

With p = 0.000 we reject the null hypothesis H0 and conclude that there
is significant evidence that the population means µm and µf are unequal.

We can also manually calculate out test statistic as

t∗ = newsystm − newsyst f − 0√
(nm−1)S2

m+(nf−1)S2
f

(nm+nf)(nm+nf−2)

= 6.857.
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1. Hypothesis testing – F-test

Now let there be m independent samples of some normally-distributed
RVs and consider the problem of testing the means µ1, . . . , µm.

Specifically, we test the hypothesis that at least one of the means µi is
different from the others.

Define the following null and alternative hypotheses:
H0: µ1 = µ2 = · · · = µm;
HA: at least one of µi differs from the others.

The test we use is an F-test and the procedure is called analysis of
variance (ANOVA).

We leave the details until required in our study of regression; here it
suffices to say that the test statistic follows an appropriately
parameterised F-distribution.
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1. Hypothesis testing – F-test

We can run ANOVA with the R command aov.

> health$marstat <- replace(health$marstat, health$marstat==9, NA)
> res.aov <- aov(health$newsyst ˜ as.factor(health$marstat))
> summary(res.aov)

Df Sum Sq Mean Sq F value Pr(>F)
as.factor(health$marstat) 5 225511 45102 124.3 <2e-16 ***
Residuals 4987 1809242 363
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
7 observations deleted due to missingness

> leveneTest(health$newsyst, as.factor(health$marstat))
Levene’s Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)
group 5 20.229 < 2.2e-16 ***

4987
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

With a p = 0.000 we reject H0 and conclude that there is significant
evidence that at least one of the means differs from the others.
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