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10. Lecture outline

Topics:
binary response variable
modelling p using OLS
modelling a transform of p as a linear function
link functions
modelling p using logistic regression
simple logistic regression

continuous predictor
categorical predictor
confidence intervals
hypothesis tests

examples
continuous predictor
categorical predictor

Parts of this discussion have been motivated by Chapter 1 of Hosmer and
Lemeshow (2000).
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10. Binary response variable

Up until now we have been constructing regression models with
continuous, numerical response variables.

However, in many situations we are interested in modelling a binary
categorical variable – a variable taking states such as “yes/no”,
“success/failure”, “on/off”, “accept/reject” etc.

Examples include regression models of:
outcomes from medical treatment with explanatory variables such as
dosage, age, sex, etc.
results from applications for jobs with explanatory variables such as
degree, experience etc.
normal birth weight with explanatory variables gestational age etc.

We will see that the properties of binary response variables require a
different approach to OLS/GLS regression, the logistic regression.
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10. Binary response variable

Of course, regression is a numerical procedure and we cannot model
categorical variables directly.

The solution is to adopt the approach we took for categorical predictors.

Instead of using the binary categorical variable directly, we substitute a
numerical variable, defined as taking only two values (one for each of the
binary states).

For use in logistic regression, it is necessary to define such dummy
variables with the rule

Y =
{

1, “success” with probability p
0, “failure” with probability 1 − p

.

So Y is a Bernoulli RV with probability of success p.

Our aim is to model p, which we assume to be a function of the
explanatory variables x1, . . . , xm.
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10. Modelling p using OLS

An early, and crude, approach is to assume a population model

Y = β0 +
m∑

j=1
βjxj + ϵ (1)

from which the sample data (Xi,1, . . . , Xi,m, Yi), i ∈ {1, . . . , n}, are
observations described by

Yi = β0 +
m∑

j=1
βjXi,j + ϵi . (2)

Assuming E[ϵ] = 0, a model can be fitted to the conditional expectation

E[Y |x1, . . . , xm] = β0 +
m∑

j=1
βjxj + E[ϵ]

= β0 +
m∑

j=1
βjxj .
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10. Modelling p using OLS

If this model is consistent, the interpretation

p(x1, . . . , xm) := Prob(Y = 1|x1, . . . , xm) = E[Y |x1, . . . , xm]

applies, given the sample response data Yi ∈ {0, 1}.

So the population model (1) can also be stated as

Y = p(x1, . . . , xm) + ϵ. (3)

Making the usual assumption

ϵi ∼ N(0, σ2) (4)

and independent, the least squares estimates β̂0, β̂1, . . . , β̂m lead to the
fitted model

p̂(x1, . . . , xm) = β̂0 +
m∑

j=1
β̂jxj .
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10. Modelling a transform of p as a linear function

The statistical model for the sample data (2) means that assumption (4)
can be restated as

Yi ∼ N
(

β0 +
m∑

j=1
βjXi,j , σ2

)
. (5)

This assumption means the OLS model has two major problems:

the response variable Y ∈ R, not Y ∈ {0, 1} as a Bernoulli RV
should be.

the variance of the response var(Y ) = σ2, not var(Y ) = p(1 − p) as
it should be for a Bernoulli RV.

A different approach is needed.
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10. Modelling a transform of p as a linear function

Instead of modelling p with OLS as

p(x1, . . . , xm) = β0 +
m∑

j=1
βjxj

we model a function g of p as

g
(
p(x1, . . . , xm)

)
= β0 +

m∑
j=1

βjxj =: η(x1, . . . , xm) (6)

such that p can be recovered from the inverse of g as

p(x1, . . . , xm) = g−1(
(η(x1, . . . , xm)

)
. (7)

So the population model (3) can be re-stated as

Y = p(x1, . . . , xm) + ϵ

= g−1(
η(x1, . . . , xm)

)
+ ϵ. (8)
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10. Modelling a transform of p as a linear function

In terms of the sample data (Xi,1, . . . , Xi,m, Yi), i ∈ {1, . . . , n}, we have
the statistical model

Yi = pi + ϵi

= g−1(ηi) + ϵi (9)

where

g(pi) = β0 +
m∑

j=1
βjXi,j =: ηi . (10)

It remains to specify the errors. For this is it useful to revisit the
population model

Y = p(x1, . . . , xm) + ϵ,

which is (8) re-stated.

Given that Y ∈ {0, 1} the RV ϵ ∈ {−p, 1 − p} and so the errors ϵi must
be assumed to be from a distribution consistent with this property.

Clearly, the assumption ϵi ∼ N(0, σ2) does not meet this condition.
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10. Modelling a transform of p as a linear function

The details of the error assumption and the estimation procedure applied
to (9)-(10) we omit, but it involves a technique called maximum
likelihood estimation (MLE).

The term ‘’logistic regression” comes from the representation (10), but
the method of least squares is not the estimation techniques.

In any event, the estimated parameters β̂0, β̂1, . . . , β̂m result in the fitted
model for g

g
(
p̂(x1, . . . , xm)

)
= β̂0 +

m∑
j=1

β̂jxj =: η̂(x1, . . . , xm) (11)

from which the fitted probabilities can be recovered from the inverse as

p̂(x1, . . . , xm) = g−1(
η̂(x1, . . . , xm)

)
. (12)
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10. Link functions

The relationships (7) and (12) require the function g to satisfy certain
asymptotic properties.

These properties are those of cumulative distribution functions
(CDFs), namely

lim
η→−∞

g−1(η) = 0,

lim
η→∞

g−1(η) = 1

and
g−1(η) ∈ (0, 1)

for η ∈ R.

Such functions are called link functions.

12 / 37



Link functions

Various link functions g are used including probit

g(p) = probit(p) := Φ−1(p) (Φ standard normal CDF),

complementary log-log

g(p) = cloglog(p) := ln
(

− ln(1 − p)
)
,

log-log
g(p) = loglog(p) := − ln

(
− ln(p)

)
and logit

g(p) = logit(p) := ln
( p

1 − p

)
.
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10. Link functions

The plot below shows that the inverse of these example link functions do
behave as CDFs.

Plot of example inverse link functions g−1
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10. Modelling p using logistic regression

The link function that we will use is the logit function

g(p) = logit(p) ≡ ln
( p

1 − p

)
(13)

which we model with the logistic regression equation

logit
(
p(x1, ..., xm)

)
= β0 +

m∑
j=1

βjxj := η(x1, ..., xm) (14)

So this is a model of the log-odds

ln
( p

1 − p

)
(15)

from which the odds p
1 − p (16)

or the variable of interest, p, can be obtained as

p(x1, ..., xm) = logit−1(
η(x1, ..., xm)

)
= 1

1 + e−β0−
∑m

j=1
βj xj

. (17)
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10. Modelling p using logistic regression

The choice as to which outcome we define as “success” may seem
arbitrary, but the log-odds for “failure” is the inverse of the log-odds for
success.

Observe that is we take the negative of (14) we have

−β0 −
m∑

j=1
βjxj = −logit(p) = − ln

( p
1 − p

)
= ln

(1 − p
p

)
where we recognise 1 − p as the probability of “failure”, and so the last
equation is the logistic regression model of the log-odds of “failure”.

The choice of outcome labelled “success” will be the one most convenient
for addressing the modelling question(s) we are trying to answer.
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10. Simple logistic regression

Let’s look more closely at the case of simple logistic regression, i.e.
when m = 1. The model has the form

logit(p) = ln
( p

1 − p

)
= β0 + β1x (18)

which, solving for p, results in the logistic equation

p(x) = eβ0+β1x

1 + eβ0+β1x = 1
1 + e−β0−β1x . (19)

Taking x = 0 gives the baseline or reference probability

p(0) = 1
1 + e−β0

(20)

which can also be interpreted as the solution of the null model (m = 0).

Baseline probabilities do not always make sense, as we will see in our
example.
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10. Simple logistic regression – continuous predictor

Let the independent variable x be continuous.

The value x when p = 1/2 is called the median effective level.

The median effective level is the value of x where there is a 50% chance
of “success”.

From (18) this is readily seen to be

x = −β0
β1

(21)

as

p
(

− β0
β1

)
= 1

1 + e−β0+β1
β0
β1

= 1
1 + e−β0+β0

= 1
2 .

It should also be clear from (19) that

lim
η→−∞

p(η) = 0 and lim
η→∞

p(η) = 1.
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10. Simple logistic regression – continuous predictor

On the logit scale we interpret β1 as the increase in log-odds for a unit
increase in x . To see this note that

β0 + β1(x + 1) = β0 + β1x + β1 = ln
( p(x)

1 − p(x)

)
+ β1.

On the odds scale, we interpret eβ1 as the multiple of the odds, i.e. the
odds ratio, for a unit increase in x . To see this consider

eβ0+β1(x+1) = eβ0+β1x eβ1 = p(x)
1 − p(x)eβ1 .

Of course, eβ1 − 1 is the proportional change in the odds for a unit
increase in x , positive when β1 > 0 and negative when β1 < 0.

So the effects of the independent variable are linear on the logit scale
and multiplicative on the odds scale.
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10. Simple logistic regression – continuous predictor

We can also consider the instantaneous or marginal change in p. Note
that

p′(x) = eβ0+β1x

1 + eβ0+β1x
1

1 + eβ0+β1x = p(x)
(
1 − p(x)

)
which is maximised when p = 1/2, that is the median effective level

η(x) = β0 + β1x = 0 or x = −β0
β1

(see plot below).
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10. Simple logistic regression – categorical predictor

Now let the independent variable x be a dummy variable for a categorical
variable taking two states; i.e. we define x as

x =
{

0, state A
1, state B

.

On the logit scale, when x = 0 we have the log-odds of state A

ln
( p(0)

1 − p(0)

)
= β0

and when x = 1 we have the log-odds for state B

ln
( p(1)

1 − p(1)

)
= β0 + β1.
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10. Simple logistic regression – categorical predictor

On the odds scale, when x = 0 we have the odds of success for state A

p(0)
1 − p(0) = eβ0

and when x = 1 we have the odds of success for state B

p(1)
1 − p(1) = eβ0+β1 .

The odds-ratio for state B over state A are
p(1)

1−p(1)
p(0)

1−p(0)

= eβ0+β1

eβ0
= eβ1 .

So the odds of success for state B are eβ1 times the odds of success for
state A.
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10. Simple logistic regression – confidence intervals

Let Sβ̂1
be the standard error (sample standard deviation) of the

parameter estimate β̂1.

Although not normal, we can use the approximation β̂1 ∼ N(β1, S2
β̂1

).

This approximation allows the calculation of approximate confidence
intervals on the true value of β1. For instance, a 100(1 − α)% two-sided
confidence interval is given by

β̂1 − z1−α/2Sβ̂1
≤ β1 ≤ β̂1 + z1−α/2Sβ̂1

(22)

where for Z ∼ N(0, 1) we have

Prob(|Z | > z1−α/2) = α.

23 / 37



10. Simple logistic regression – hypothesis tests

The approximation β̂1 ∼ N(β1, S2
β̂1

) can also be used for hypothesis tests
on the true value of β1.

The following hypotheses are those tested and reported by R.
H0: β1 = 0
HA: β1 ̸= 0.

We could use the test statistic

z∗ = β̂1
Sβ̂1

comparing it against a standard normal RV.
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10. Examples - continuous predictor

Although the response variable is log-odds, we don’t actually calculate
this when building logistic regression models in R (or in other software
packages).

Instead we pass the sample data (Xi,1, . . . , Xi,m, Yi), i ∈ {1, . . . , n}, into
R and request a binary logistic regression.

Consider the data set BirthWeightExample.csv, available on Canvas,
consisting of the dummy response variable

bwght =
{

1 normal birth weight (“success”)
0 low birth weight (“failure”)

and predictor gage (gestational age).

Define p(gage) = Prob(bwght = 1|gage).
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10. Examples - continuous predictor

The model we construct is

logit(p̂) = ln
( p̂

1 − p̂

)
= β̂0 + β̂1 × gage

or
p̂(gage) = 1

1 + e−β̂0−β̂1×gage
.
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10. Examples - continuous predictor

> dat <- read.csv("˜/2022_37252/Lecture_notes/Week11/Lecture/BirthWeightExample.csv")
> mod1 <- glm(bwght ˜ gage, family = "binomial", data = dat)
> summary(mod1)
Deviance Residuals:

Min 1Q Median 3Q Max
-1.6084 -0.3858 0.2324 0.4402 1.9120

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -48.9085 20.3382 -2.405 0.0162 *
gage 1.3127 0.5409 2.427 0.0152 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 28.975 on 23 degrees of freedom
Residual deviance: 16.298 on 22 degrees of freedom
AIC: 20.298
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10. Examples - continuous predictor

The estimates β̂0, β̂1 give the fitted probability model

p̂(gage) = 1
1 + e48.909−1.3131×gage .

We also see from the R output that the p-values for both β̂0, β̂1 are less
than our preferred significance level 0.05, so we can reject the null
hypotheses that β0 = 0 and β1 = 0 and conclude that β0 ̸= 0 and β1 ̸= 0.

Two-sided 95% confidence intervals for β1 are also reported.

> confint.default(mod1)
2.5 % 97.5 %

(Intercept) -88.7707100 -9.046307
gage 0.2525393 2.372790

We can use the fitted model to predict the probability of normal birth weight;
e.g., when gage = 39

p̂(39) = 1
1 + e48.909−1.3131×39 ≈ 0.91.
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10. Examples - continuous predictor

The baseline probability (20) is

p̂(0) = 1
1 + e−β̂0

= 1
1 + e48.909 ≈ 0.0

which is the probability of being born with normal birth weight after a
zero week gestation!

(One could argue that it is nonsensical to take gage = 0 in the model or
alternatively that the model is doing its job by assigning such a small
probability.)

The median effective level in (21) works out as

gage = − β̂0

β̂1
= 48.909

1.313 ≈ 37.2498

so p̂(37.2498) ≈ 0.5. This also the value of gage where the
instantaneous change of p̂ is maximised.
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10. Examples - categorical predictor

Now consider the data set GPvisitExample.csv, available on Canvas,
consisting of the dummy response variable

GP =
{

1 frequent (“success”)
0 infrequent (“failure”)

and dummy predictor Gender

Gender =
{

1 female
0 male

.

GP = 1 (frequent GP visits) is considered a “success” in the sense that it
defines the state for which odds are modelled.

So define p(Gender) = Prob(GP = 1|Gender).
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10. Examples - categorical predictor

We can test for association between the categorical variables with a
Chi-square independence test.

> library(’gmodels’)
> datGP <- read.csv("˜/2022_37252/Lecture_notes/Week11/Lecture/GPvisitExample.csv")
> CrossTable(datGP$Gender, datGP$GP, expected = T, chisq = T)
Cell Contents
|-------------------------|
| N |
| Expected N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |
|-------------------------|
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10. Examples - categorical predictor

Total Observations in Table: 6223

| datGP$GP
datGP$Gender | 0 | 1 | Row Total |
-------------|-----------|-----------|-----------|

0 | 2146 | 764 | 2910 |
| 1854.581 | 1055.419 | |
| 45.792 | 80.466 | |
| 0.737 | 0.263 | 0.468 |
| 0.541 | 0.339 | |
| 0.345 | 0.123 | |

-------------|-----------|-----------|-----------|
1 | 1820 | 1493 | 3313 |

| 2111.419 | 1201.581 | |
| 40.222 | 70.678 | |
| 0.549 | 0.451 | 0.532 |
| 0.459 | 0.661 | |
| 0.292 | 0.240 | |

-------------|-----------|-----------|-----------|
Column Total | 3966 | 2257 | 6223 |

| 0.637 | 0.363 | |
-------------|-----------|-----------|-----------|
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10. Examples - categorical predictor

We can test for association between the categorical variables with a
Chi-square independence test.

Pearson’s Chi-squared test
------------------------------------------------------------
Chiˆ2 = 237.1566 d.f. = 1 p = 1.639466e-53

Pearson’s Chi-squared test with Yates’ continuity correction
------------------------------------------------------------
Chiˆ2 = 236.3435 d.f. = 1 p = 2.466067e-53

With a test statistic of 237.157 the null hypothesis of independence is
rejected.

So there is a statistically significant association to model.
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10. Examples - categorical predictor

The R output for parameter estimates is below.
> mod2 <- glm(GP ˜ Gender, family = "binomial", data = datGP)
> summary(mod2)
Deviance Residuals:

Min 1Q Median 3Q Max
-1.0945 -1.0945 -0.7804 1.2626 1.6355

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.03279 0.04213 -24.52 <2e-16 ***
Gender 0.83474 0.05472 15.26 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 8151.5 on 6222 degrees of freedom
Residual deviance: 7911.0 on 6221 degrees of freedom
AIC: 7915
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10. Examples - categorical predictor

Extracting these estimates β̂0, β̂1 gives the fitted probability model

p̂(Gender) = 1
1 + e1.033−0.835×Gender .

The p values for both β̂0, β̂1 are less than our preferred significance level
0.05, so we can reject the null hypotheses that β0 = 0 and β1 = 0 and
conclude that β0 ̸= 0 and β1 ̸= 0.

Two-sided 95% confidence intervals for β1 are also reported.

> confint.default(mod2)
2.5 % 97.5 %

(Intercept) -1.1153651 -0.9502212
Gender 0.7274977 0.9419906
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10. Examples - categorical predictor

As a dummy variable for gender, the model only makes sense when
Gender equals zero or one.

Setting Gender = 0 in the fitted odds model
p̂(Gender)

1 − p̂(Gender) = e−1.033+0.835×Gender

gives the predicted odds of “success” (frequent GP visits) for males
p̂(0)

1 − p̂(0) = e−1.033 ≈ 0.3559

while setting Gender = 1 gives the predicted odds of “success” (frequent
GP visits) for females

p̂(1)
1 − p̂(1) = e−1.033+0.835 ≈ 0.8204.

Of course, the same results could be obtained from the cross-tab data.
However, this model can be extended to included continuous variables,
something a cross-tab approach can’t handle.
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