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11. Lecture outline

Topics:
multiple logistic regression

log-likelihood function
model fit

introduction
Wald test

upper-tail rejection
two-tail rejection
lower-tail rejection

omnibus test
null hypothesis rejection

partial omnibus test
Hosmer-Lemeshow test
pseudo-R2 statistics
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11. Lecture outline

Topics (continued):
model fit

summary
model selection

summary
model fit example

testing association
initial model
predictions
pseudo R2

omnibus test
Hosmer-Lemeshow test
outliers (Pearson’s residuals)
final model
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11. Lecture outline

Topics (continued):
model selection example

predictors
fit
interaction
final model
parameter interpretation

A very good text, which has been used as a reference in compiling these
notes, is Hosmer and Lemeshow (2000).
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11. Multiple logistic regression

Recall the population model
Y |x = p(x) + ϵ

where x ∈ Rm, Y is a Bernoulli RV defined on {1, 0} and
p(x) := Prob(Y = 1|x) = E[Y |x].

Last lecture we began modelling p using multiple logistic regression and
saw that our fitted models could variously be described in the log-odds
scale

log
( p̂(x)

1 − p̂(x)

)
= β̂0 +

m∑
j=1

β̂jxj ,

the odds scale
p̂(x)

1 − p̂(x) = eβ̂0+
∑m

j=1
β̂j xj

and the probability scale

p̂(x) = 1

1 + e−β̂0−
∑m

j=1
β̂j xj

.
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11. Multiple logistic regression – log-likelihood function

The most common method for estimating the parameters β0, . . . , βm is
by maximum likelihood.

This involves the likelihood function

L(β0, . . . , βm|(Xi , Yi)) =
n∏

i=1
p(Xi)Yi

(
1 − p(Xi)

)1−Yi (1)

calculated on the sample data (Xi , Yi).

The parameter estimates are those that maximise log-likelihood and are
the solution of the optimisation problem

(β̂0, . . . , β̂m) = argmax
(β0,...,βm)

log L(β0, . . . , βm|(Xi , Yi)). (2)

(It is often easier to maximise log-likelihood than likelihood.)

Details can be found in the Chapter 1 of Hosmer and Lemeshow (2000).
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11. Model fit – introduction

In this lecture we turn our attention to assessing model fit.

We started this process last lecture, describing a test on the coefficients
not dissimilar to the T-tests used in linear regression.

We continue this process today and introduce two more tests:
1 omnibus test - a test of overall significance of the regression,

fulfilling the role of the F-test in linear regression
2 Hosmer-Lemeshow test - a test of the adequacy of the regression,

a type of test we did not consider in linear regression.

We also describe two R2-type statistics that provide a quantitative
measure of model fit.

We begin by revisiting the Wald test in a more general form than
previously described.
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11. Wald test

Wald test hypotheses

H0: βj = β∗
j ,

where β∗
j is some hypothesised value of βj we hope to exclude.

The alternative hypothesis can be any of
HA: βj > β∗

j

HA: βj ̸= β∗
j

HA: βj < β∗
j .

Test statistic
The test statistic z∗

β̂j
is the value that the RV

Zβ̂j
= β̂j − βj

Sβ̂j

approx.∼ N(0, 1)

takes for the test.
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11. Wald test – upper-tail rejection

Rejection of null hypothesis (upper-tail test)
H0 is rejected in favour of HA at significance level α if

z∗
β̂j

> z1−α

where z1−α is the quantile satisfying

Prob
(
Zβ̂j

> z1−α

)
= α.

Equivalently, H0 is rejected if β∗
j falls outside the one-sided 100(1 − α)%

CI for βj given by
β̂j − Sβ̂j

z1−α ≤ βj < ∞

or if the p-value
p = Prob(Zβ̂j

> z∗
β̂j

) < α.

The null hypothesis H0 is retained in any other case.
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11. Wald test – two-tail rejection

Rejection of null hypothesis (two-tail test)
H0 is rejected in favour of HA at significance level 0 < α < 1

2 if

|z∗
β̂j

| > z1−α/2

where z1−α/2 is the quantile satisfying

Prob
(
Zβ̂j

> z1−α/2
)

= α/2.

Equivalently, H0 is rejected if β∗
j falls outside the two-sided 100(1 − α)%

CI for βj given by

β̂j − Sβ̂j
z1−α/2 ≤ βj ≤ β̂j + Sβ̂j

z1−α/2

or if the p-value

p = 2 × Prob(Zβ̂j
> |z∗

β̂j
|) < α.

The null hypothesis H0 is retained in any other case.
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11. Wald test – lower-tail rejection

Rejection of null hypothesis (lower-tail test)
H0 is rejected in favour of HA at significance level α if

z∗
β̂j

< zα

where zα is the quantile satisfying

Prob
(
Zβ̂j

< zα

)
= α.

Equivalently, H0 is rejected if β∗
j falls outside the one-sided 100(1 − α)%

CI for βj given by
−∞ < βj ≤ β̂j + Sβ̂j

zα

or if the p-value
p = Prob(Zβ̂j

< z∗
β̂j

) < α.

The null hypothesis H0 is retained in any other case.
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11. Omnibus test

The omnibus test allows the overall statistical significance of the logistic
regression model to be assessed, and should be seen as an analogue of
the F-test in linear regression.

Omnibus-test hypotheses

H0: β1 = · · · = βm = 0
HA: βj ̸= 0 for at least one j ∈ {1, . . . , m}.

Test statistic
The test statistic l∗

m is the value that the RV

Lm = −2 log L(β0)
L(β0, . . . , βm) ∼ χ2(m)

takes for this test, where L is the likelihood function in (1).
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11. Omnibus test – null hypothesis rejection

Rejection of null hypothesis
H0 is rejected in favour of HA at significance level α if

l∗
m > l1−α

where l1−α is the quantile satisfying

Prob
(
Lm > l1−α

)
= α.

Equivalently, H0 is rejected if the p-value

p = Prob(Lm > l∗
m) < α.

The null hypothesis H0 is retained in any other case.
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11. Partial omnibus test

As with the partial F-test in linear regression, there is a partial omnibus
test in logistic regression.

Simple partition of the set parameters
Consider the partition of parameters {β0, . . . , βq} and {βq+1, . . . , βm}.

By partition we mean

{β0, . . . , βq}
⋂

{βq+1, . . . , βm} = ∅

and
{β0, . . . , βq}

⋃
{βq+1, . . . , βm} = {β0, . . . , βm}.

The partial omnibus test applied to such subsets of the slope parameters
can be used to assess the statistical significance of the corresponding
independent variables as a group.
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11. Partial omnibus test

We describe the test for the second set of the partition.

Omnibus-test hypotheses

H0: βq+1 = · · · = βm = 0
HA: βj ̸= 0 for at least one j ∈ {q + 1, . . . , m}.

Test statistic
The test statistic l∗

m−q is the value that the RV

Lm−q = −2 log L(β0, . . . , βq)
L(β0, . . . , βm) ∼ χ2(m − q) (3)

takes for this test, where L is the likelihood function in (1).

The rejection of the null hypothesis occurs under the same conditions
as in the full omnibus test.
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11. Hosmer-Lemeshow test

The Hosmer-Lemeshow test is a statistical test for goodness of fit for
logistic regression models.

Similar to a Chi-square goodness-of-fit test, it compares the observed
values of the probabilities with the expected values and thereby
determine if the model fits the data well.

The essential difference is the way observations are partitioned into the
cells.

Whereas the Chi-square test allocates cell membership based on ranges
of the independent variables, the Hosmer-Lemeshow test allocates cell
membership based on ranges of the predicted probabilities.
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11. Hosmer-Lemeshow test

Logstic regression models provide estimates of the probability of an
outcome.

Based on these predicted probabilities, the sample is split into g groups
(commonly g = 10).

For each group, the observed and expected number of successes and
failure are obtained. They are then substituted into the
Hosmer-Lemeshow test statistic.

Details of the test statistic can be found in Chapter 5 of Hosmer and
Lemeshow (2000).
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11. Hosmer-Lemeshow test

Hosmer-Lemeshow test hypotheses

H0: the predicted probabilities match the observed probabilities
HA: the predicted probabilities do not match the observed

probabilities

We reject the null hypothesis using the p < α rule.

Interpretation
If the null is rejected then there is a statistically-significant difference in
the predicted and observed probabilities as averaged over the
observations in each subset.

From this we conclude the model has a poor fit with the data.
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11. Pseudo R2 statistics

In linear regression we use the statistic R2 to quantify the proportion of
total squared-variation in the data that is explained by the model.

The form of R2 is a product of the decomposition of total sum of squares

SST = SSR + SSE

provided by ANOVA.

In logistic regression there is no such decomposition and hence no such
equivalent statistic.

However, there are a variety of pseudo R2 statistics, including those
developed by Cox and Snell and by Nagelkerke.

Calculation of these pseudo statistics uses the likelihood function of (1)
in a way similar to its use in calculation of the test statistic (3) for the
partial omnibus test.

We omit the details.
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11. Model fit – summary

When assessing a model for fit there are two main questions.

1 Which factors are statistically significant?
use the omnibus test for overall significance of model
use Wald test for significance of individual predictors.

2 Given the factors, how “good” is the model?
use pseudo R2 and classification table to assess fit with data
use Hosmer-Lemeshow test to judge whether further refinements
may be necessary.
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11. Model selection – summary

When selecting a model there are three main questions.

1 Is there a statistically significant association between response and
predictor(s)?

visual inspection of plots
chi-square tests for categorical predictors, T-tests of correlation
analysis for continuous predictors.

2 Are all “important” factors included in the model?
analysis of the modelling scenario – predictors should not be included
solely for their statistical properties.

3 Does the model fit?

Although the statistical tools vary, the procedure of model selection in
logistic regression is the same as the procedure in linear regression.
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11. Model fit example

Last week we built a model for the probability of frequent GP visits with

GP =
{

1, frequent (“success”)
0, infrequent (“failure”)

as dummy response variable and

Gender =
{

1, female
0, male

as dummy predictor (data in GPvisitExample.csv, available on Canvas).

We defined GP = 1 (frequent GP visits) as “success” and
p = Prob(GP = 1).
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11. Model fit example – testing association
Cross-tab data is reproduced below.

| datGP$GP
datGP$Gender | 0 | 1 | Row Total |
-------------|-----------|-----------|-----------|

0 | 2146 | 764 | 2910 |
| 1854.581 | 1055.419 | |
| 45.792 | 80.466 | |
| 0.737 | 0.263 | 0.468 |
| 0.541 | 0.339 | |
| 0.345 | 0.123 | |

-------------|-----------|-----------|-----------|
1 | 1820 | 1493 | 3313 |

| 2111.419 | 1201.581 | |
| 40.222 | 70.678 | |
| 0.549 | 0.451 | 0.532 |
| 0.459 | 0.661 | |
| 0.292 | 0.240 | |

-------------|-----------|-----------|-----------|
Column Total | 3966 | 2257 | 6223 |

| 0.637 | 0.363 | |
-------------|-----------|-----------|-----------|
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11. Model fit example – testing association

With test statistic χ2
1 = 237.157, the null hypothesis of independence

could be rejected.

Pearson’s Chi-squared test
------------------------------------------------------------
Chiˆ2 = 237.1566 d.f. = 1 p = 1.639466e-53

Pearson’s Chi-squared test with Yates’ continuity correction
------------------------------------------------------------
Chiˆ2 = 236.3435 d.f. = 1 p = 2.466067e-53

So a statistically-significant association between Gender and GP exists.
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11. Model fit example – initial model

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.03279 0.04213 -24.52 <2e-16 ***
Gender 0.83474 0.05472 15.26 <2e-16 ***

which reports parameter estimates giving the fitted model

p̂(Gender) = 1
1 + e1.033−0.835×Gender .

This week we examine the fit of this model and potential extensions with
reference to R output.
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11. Model fit example – predictions

The Classification table is a cross-tab of observed and predicted GP.

> class_table <- data.frame(observed = datGP$GP,
predicted = round(fitted(mod2),0))
> xtabs(˜ observed + predicted, data = class_table)

predicted
observed 0

0 3966
1 2257

The model predicts no frequent GP visits, obviously a major problem.

We can also see this from the fitted equation, with p̂(0) ≈ 0.23 and
p̂(1) ≈ 0.45.

Note that
p̂ > 0.5 ⇒ ĜP = 1

and
p̂ < 0.5 ⇒ ĜP = 0.
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11. Model fit example – pseudo R2

We need a package to calculate both pseudo R2 statistics mentioned
earlier.

> -2*logLik(mod2)
’log Lik.’ 7911.039 (df=2)
> library("DescTools")
> round(PseudoR2(mod2, c("CoxSnell", "Nagelkerke")),3)

CoxSnell Nagelkerke
0.038 0.052

Both R2 figures show there is little explanatory power in the model.

The statistic -2 Log likelihood is calculation of −2 log L(β0, β1), where
log L is the the quantity maximised when estimating model parameters
(see 1-(2)).

Note that as model fit improves, −2 log L decreases towards zero and
increases otherwise.
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11. Model fit example – omnibus test

Now the omnibus test of the hypotheses
H0: β1 = 0
HA: β1 ̸= 0.

> mod_null <-glm(GP ˜ 1, family = "binomial", data = datGP)
> anova(mod_null, mod2, test = "LRT")
Analysis of Deviance Table

Model 1: GP ˜ 1
Model 2: GP ˜ Gender

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 6222 8151.5
2 6221 7911.0 1 240.45 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

With p-value close to zero we reject the null hypothesis that β1 = 0, a
result also obtainable using the Wald test on β1.
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11. Model fit example – omnibus test

The current model has a significant predictor in Gender , but the model is
a poor fit given the pseudo R2 statistics and its failure to predict
p̂(Gender) > 0.5, associated with fitted value ĜP = 1.

We now add the independent variable LogIncBin (treated as continuous)
representing the decile of log income.
> mod3 <- glm(GP ˜ Gender + LogIncBin, family = "binomial", data = datGP)
> summary(mod3)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.549463 0.066616 -8.248 <2e-16 ***
Gender 0.806607 0.055113 14.635 <2e-16 ***
LogIncBin -0.086710 0.009502 -9.126 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 8151.5 on 6222 degrees of freedom
Residual deviance: 7826.7 on 6220 degrees of freedom
AIC: 7832.7
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11. Model fit example – omnibus test

> -2*logLik(mod3)
’log Lik.’ 7826.672 (df=3)
> round(PseudoR2(mod3, c("CoxSnell", "Nagelkerke")),3)

CoxSnell Nagelkerke
0.051 0.070

> anova(mod_null, mod3, test = "LRT")
Analysis of Deviance Table

Model 1: GP ˜ 1
Model 2: GP ˜ Gender + LogIncBin

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 6222 8151.5
2 6220 7826.7 2 324.82 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’
1

Pseudo R2 has gone up slightly and both predictors are significant.
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11. Model fit example – Hosmer-Lemeshow test

The biggest problem of the first model was its failure to predict p̂ > 0.5,
a situation of poor model fit the Hosmer-Lemeshow test is deigned to
detect.

> class_table3 <- data.frame(observed = datGP$GP, predicted
= round(fitted(mod3),0))
> xtabs(˜ observed + predicted, data = class_table3)

predicted
observed 0 1

0 3598 368
1 1884 373

The revised model now provides predictions where p̂ > 0.5, as can be
inferred from the classification table above.

Is it possible to test if the model needs further improvement?
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11. Model fit example – Hosmer-Lemeshow test

> library("ResourceSelection")
> h1 <- hoslem.test(datGP$GP, fitted(mod3), g=10)
> h1

Hosmer and Lemeshow goodness of fit (GOF) test

data: datGP$GP, fitted(mod3)
X-squared = 24.053, df = 8, p-value = 0.002245

We reject the null hypothesis that the fitted probabilities adequately fit
the data.
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11. Model fit example – Hosmer-Lemeshow test

The contingency data used as the basis of the chi-square statistic is also
reported.

> cbind(h1$observed,h1$expected)
y0 y1 yhat0 yhat1

[0.195,0.209] 521 121 512.2068 129.7932
(0.209,0.239] 489 137 481.1095 144.8905
(0.239,0.29] 652 210 627.3068 234.6932
(0.29,0.327] 331 194 358.6355 166.3645
(0.327,0.352] 340 214 360.4729 193.5271
(0.352,0.393] 356 250 374.3084 231.6916
(0.393,0.435] 356 281 366.8522 270.1478
(0.435,0.478] 392 292 364.8157 319.1843
(0.478,0.521] 348 370 351.4767 366.5233
(0.521,0.543] 181 188 168.8154 200.1846
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11. Model fit example – Hosmer-Lemeshow test

The Hosmer-Lemeshow test tells us the model needs improving if it is to
have any utility. We add the interaction term

Gender LogIncBin = Gender × LogIncBin

and the dummy variable

LogIncBin5 =
{

1 LogIncBin = 5
0 LogIncBin ̸= 5

.

Hosmer and Lemeshow goodness of fit (GOF) test

data: datGP$GP, fitted(mod4)
X-squared = 5.8731, df = 8, p-value = 0.6614

Now we can retain the null hypothesis that the predicted probabilities
adequately fit the data.
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11. Model fit example – outliers (Pearson’s residuals)

We can use the dependent variable data and the fitted probabilities to
calculate Pearson’s Residuals, which in terms of our current example is

ri = GPi − p̂i√
p̂i(1 − p̂i)

.

(To introduce this in a general sense would have required us to consider
multiplicities of the covariate patterns, the same reason we did not
described the Hosmer-Lemeshow test statistic.)

We can use these statistics to assess model fit, determining any
observations where |ri | > 2 as potential outliers.

As we know from OLS/GLS, outliers have the potential to have undue
influence over the parameter estimates.

Many outliers is a sign of a poorly fitting model which, hopefully, we will
also have been alerted to by other statistical tests (time does not permit
detailed outlier analysis for logistic regression.)
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11. Model fit example – final model

The parameter estimates for the final model are shown below.

> mod4 <- glm(GP ˜ Gender + LogIncBin + Gender_LogIncBin + LogIncBin5, family
= "binomial", data = datGP)
> summary(mod4)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.29915 0.09044 -3.308 0.000940 ***
Gender 0.44233 0.11589 3.817 0.000135 ***
LogIncBin -0.12900 0.01503 -8.582 < 2e-16 ***
Gender_LogIncBin 0.06936 0.01938 3.580 0.000344 ***
LogIncBin5 -0.26346 0.09172 -2.872 0.004073 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 8151.5 on 6222 degrees of freedom
Residual deviance: 7805.5 on 6218 degrees of freedom
AIC: 7815.5

All independent variables and the interaction term are significant.
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11. Model fit example – final model

...and quantitative assessment of the model’s fit

> -2*logLik(mod4)
’log Lik.’ 7805.462 (df=5)
> round(PseudoR2(mod4, c("CoxSnell", "Nagelkerke")),3)

CoxSnell Nagelkerke
0.054 0.074
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11. Model selection example

Now we look at model selection using the forward selection method.

Recall we have already used this technique with OLS/GLS, and the rules
remain the same. However, there are flavours of the technique when it
comes to binary logistic regression, and these relate to the statistic used
to judge inclusion/exclusion.

We use “Forward: AIC”, which is forward selection method involving the
Akaike Information Criterion (AIC). Other varieties using backward or
stepwise selection can also be used.
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11. Model selection example – predictors

Using the same data set, we start with Gender , LogIncBin and Health as
potential predictors, where Health ∈ {1, . . . , 5}, Health = 1 representing
the highest state of self-reported health and Health = 5 taken as
reference category.

> datGP$Gender <- as.factor(datGP$Gender)
> datGP$Health <- as.factor(datGP$Health)
> datGP$Health <- relevel(datGP$Health, ref = "5")
> datGP$Gender_Health <- as.factor(datGP$Gender_Health)
> min.model = glm(GP ˜ 1, family = "binomial", data = datGP)
> max.model <- formula(glm(GP ˜ Health + Gender+ LogIncBin ,
family = "binomial", data = datGP))
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11. Model selection example – predictors

> library("stats")
> fwd.model <- step(min.model, direction=’forward’, scope=max.model)
Start: AIC=8153.49
GP ˜ 1

Df Deviance AIC
+ Health 4 6915.8 6925.8
+ Gender 1 7911.0 7915.0
+ LogIncBin 1 8047.2 8051.2
<none> 8151.5 8153.5

Step: AIC=6925.79
GP ˜ Health

Df Deviance AIC
+ Gender 1 6707.3 6719.3
+ LogIncBin 1 6895.2 6907.2
<none> 6915.8 6925.8
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11. Model selection example – predictors

Step: AIC=6719.3
GP ˜ Health + Gender

Df Deviance AIC
+ LogIncBin 1 6694.0 6708.0
<none> 6707.3 6719.3

Step: AIC=6708.05
GP ˜ Health + Gender + LogIncBin
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11. Model selection example – predictors

> summary(fwd.model)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.20174 0.43094 5.109 3.24e-07 ***
Health1 -4.40431 0.43482 -10.129 < 2e-16 ***
Health2 -3.26076 0.42954 -7.591 3.17e-14 ***
Health3 -2.05787 0.43142 -4.770 1.84e-06 ***
Health4 -0.77235 0.45418 -1.701 0.089034 .
Gender1 0.85205 0.06112 13.941 < 2e-16 ***
LogIncBin -0.03858 0.01060 -3.640 0.000272 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 8151.5 on 6222 degrees of freedom
Residual deviance: 6694.0 on 6216 degrees of freedom
AIC: 6708
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11. Model selection example – fit

Having added all significant variables, we move on to analysis of model
fit.
> -2*logLik(fwd.model)
’log Lik.’ 6694.046 (df=7)
> round(PseudoR2(fwd.model, c("CoxSnell", "Nagelkerke")),3)

CoxSnell Nagelkerke
0.209 0.286

> hoslem.test(datGP$GP, fitted(fwd.model), g=10)
Hosmer and Lemeshow goodness of fit (GOF) test

data: datGP$GP, fitted(fwd.model)
X-squared = 13.356, df = 8, p-value = 0.1002

P-value of the Hosmer-Lemeshow test does not reject the null hypothesis.

The reported statistics provide a guide for the modelling process
sequence:

1 build main effects model
2 check Hosmer-Lemeshow test results
3 add interaction terms if required by result in 2. 44 / 51



11. Model selection example – interaction
We consider adding some interaction terms may be useful we add these
to the model.
> mod5 <- glm(GP ˜ Health + Gender+ LogIncBin + Gender_LogIncBin + Gender_Health,
family = "binomial", data = datGP)
> summary(mod5)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.22403 0.54400 4.088 4.34e-05 ***
Health1 -4.20219 0.55529 -7.568 3.80e-14 ***
Health2 -2.97367 0.54289 -5.477 4.32e-08 ***
Health3 -1.93283 0.54562 -3.542 0.000396 ***
Health4 -0.70766 0.57864 -1.223 0.221341
Gender1 0.94513 0.90623 1.043 0.296983
LogIncBin -0.08247 0.01653 -4.989 6.05e-07 ***
Gender_LogIncBin 0.07482 0.02157 3.468 0.000524 ***
Gender_Health1 -0.47506 0.91627 -0.518 0.604130
Gender_Health2 -0.61138 0.90505 -0.676 0.499342
Gender_Health3 -0.31726 0.90887 -0.349 0.727037
Gender_Health4 -0.18988 0.95345 -0.199 0.842144
Gender_Health5 NA NA NA NA
---

Null deviance: 8151.5 on 6222 degrees of freedom
Residual deviance: 6677.8 on 6211 degrees of freedom
AIC: 6701.8
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11. Model selection example – interaction

> mod5_Gender_LogIncBin <- glm(GP ˜ Health + Gender + LogIncBin + Gender_Health, family
= "binomial", data = datGP)
> anova(mod5_Gender_LogIncBin, mod5, test = "LRT")
Analysis of Deviance Table

Model 1: GP ˜ Health + Gender + LogIncBin + Gender_Health
Model 2: GP ˜ Health + Gender + LogIncBin + Gender_LogIncBin + Gender_Health

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 6212 6689.9
2 6211 6677.8 1 12.061 0.0005148 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> mod5_Gender_Health <- glm(GP ˜ Health + Gender + LogIncBin + Gender_LogIncBin, family
= "binomial", data = datGP)
> anova(mod5_Gender_Health, mod5, test = "LRT")
Analysis of Deviance Table

Model 1: GP ˜ Health + Gender + LogIncBin + Gender_LogIncBin
Model 2: GP ˜ Health + Gender + LogIncBin + Gender_LogIncBin + Gender_Health

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 6215 6683.3
2 6211 6677.8 4 5.507 0.2391

While the interaction term for Gender × LogIncBin is significant, that for
Gender × Health is not and can be removed from the model.
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11. Model selection example – final model

Doing so and re-running the model generates the following output.

> mod6 <- glm(GP ˜ Health + Gender+ LogIncBin + Gender_LogIncBin, family =
"binomial", data = datGP)
> summary(mod6)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.41342 0.43609 5.534 3.13e-08 ***
Health1 -4.39041 0.43484 -10.097 < 2e-16 ***
Health2 -3.24659 0.42954 -7.558 4.09e-14 ***
Health3 -2.04247 0.43146 -4.734 2.20e-06 ***
Health4 -0.76238 0.45423 -1.678 0.093266 .
Gender1 0.47575 0.12978 3.666 0.000246 ***
LogIncBin -0.08029 0.01665 -4.821 1.43e-06 ***
Gender_LogIncBin 0.07019 0.02149 3.266 0.001090 **
---
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 8151.5 on 6222 degrees of freedom
Residual deviance: 6683.3 on 6215 degrees of freedom
AIC: 6699.3

We see that all terms are now significant.
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11. Model selection example – final model

> -2*logLik(mod6)
’log Lik.’ 6683.339 (df=8)
> round(PseudoR2(mod6, c("CoxSnell", "Nagelkerke")),3)

CoxSnell Nagelkerke
0.210 0.288

> hoslem.test(datGP$GP, fitted(mod6), g=10)

Hosmer and Lemeshow goodness of fit (GOF) test

data: datGP$GP, fitted(mod6)
X-squared = 9.2781, df = 8, p-value = 0.3194

We also see that the pseudo R2 statistics have improved as a result.
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11. Model selection example – final model

The model we have just fitted on the log-odds scale is

ln
( p̂

1 − p̂

)
= 2.413 + 0.476Gender − 0.08LogIncBin

−4.39h1 − 3.247h2 − 2.042h3 − 0.762h4

+0.07Gender × LogIncBin

where hi is dummy variable for Health = i , i ∈ {1, . . . , 4} (Health = 5 is
reference category).

By taking the exponential of the last we have the fitted model on the
odds scale.

Solving the log-odds (or odds) equation for p̂ gives the fitted model on
the probability scale.
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11. Model selection example – parameter interpretation

As detailed in Lecture 10, we can provide physical interpretations for the
parameters.

For example, -4.39 is the predicted difference in log-odds and
e−4.39 = 0.012 the predicted multiple of the odds (odds ratio) of frequent
GP visits for those with Health = 1 compared to those with Heath = 5.

For variables appearing in interaction terms, a more nuanced
interpretation is required.

On the log-odds scale, 0.07 is the predicted difference in the change in
log-odds for a unit increase in LogIncBin of females compared to males.
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