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2. Lecture outline

Topics:
fitting lines to data

model setup
method of least squares
data transformations

model assumptions
model parameters and estimates
statistical properties of estimates

distributions
T-tests

statistical properties of model
prediction of E[Y |x ]
prediction of Y |x

human calculator example
R example

See Chapters 1 and 2 of Draper and Smith (1998).
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2. Fitting lines to data

Consider the problem of constructing a model describing the sample
data (Xi , Yi), i ∈ {1, . . . , n}, displayed in the following scatter plot.

In this toy example, the sample data has been generated using the rule

Yi = 1 + 2Xi + ϵi

with n = 100, Xi = 4
n i and ϵi ∼ N(0, 1

2 ).
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2. Fitting lines to data – model setup

You immediately notice a strong, although imperfect, linear relationship
in the data and wonder whether the underlying population might be
described by

Y = β0 + β1x + ϵ, (1)
which is the equation of a straight line with intercept β0, slope β1 that is
disturbed by some RV ϵ. This of course makes Y a random variable also.

Assuming that E[ϵ] = 0, you decide to try and fit the model

E[Y |x ] = β0 + β1x + E[ϵ]
= β0 + β1x

by finding estimates β̂0 ≈ β0 and β̂1 ≈ β1.

The quality of the resulting model

Ŷ |x := β̂0 + β̂1x (2)
≈ E[Y |x ]

will be determined by the quality of the estimates β̂0 and β̂1.
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2. Fitting lines to data – method of least squares

There are many methods that are suitable to this situation, but the one
that is most widely used is the method of least squares.

This is because the estimates β̂0 and β̂1 are known in closed-form,
which means they can be calculated exactly.

Later in the course we will study another technique in regression
(“logistic” regression) where the model parameters can only be
approximated.
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2. Fitting lines to data – method of least squares

The method of least squares is based on the idea of finding the estimated
coefficients β̂0 and β̂1 such that error in the approximation

ϵ̂ := Y − Ŷ
= Y − β̂0 − β̂1x

is minimised in some way.

This error term ê is an estimate of the RV
ϵ = Y − β0 − β1x

assumed in the population model underlying the sample data.

The least squares model is the model that minimises the sum squared
errors over the sample data; i.e.

min
(β0,β1)

SSE (β0, β1) = min
(β0,β1)

n∑
i=1

(Yi − β0 − β1Xi)2

=
n∑

i=1
(Yi − β̂0 − β̂1Xi)2. (3)
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2. Fitting lines to data – method of least squares

The residual ϵ̂i associated with the i-th data point (Xi , Yi) is the distance
between the sample data value Yi and the value Ŷi determined by the
regression model line.

Regression line residual. Source: Wackerly et al. (2008) page 569
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2. Fitting lines to data – method of least squares

Assuming that the minimum of SSE exists, we can find β̂0 and β̂1 by
differentiating SSE with respect to both β0 and β1, setting the equations
to zero and solving.

That is, β̂0 will be found as the value such that

∂

∂β0
SSE (β0, β1)|β0=β̂0

= 0 (4)

and β̂1 such that
∂

∂β1
SSE (β0, β1)|β1=β̂1

= 0. (5)

The resulting regression line

Ŷ |x = β̂0 + β̂1x

is the straight line that minimises total SSE associated with the sample
data.
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2. Fitting lines to data – method of least squares

After performing the differentiation, the least squares equations (4)
and (5) become

n∑
i=1

Yi − nβ̂0 − β̂1

n∑
i=1

Xi = 0 (6)

and
n∑

i=1
XiYi − β̂0

n∑
i=1

Xi − β̂1

n∑
i=1

X 2
i = 0 (7)

respectively, which after solving provide the least squares coefficients

β̂1 =
∑n

i=1(Xi − X )(Yi − Y )∑n
i=1(Xi − X )2

and
β̂0 = Y − β̂1X .

10 / 49



2. Fitting lines to data – method of least squares

These are often re-expressed as

β̂1 = SXY
SXX

(8)

and
β̂0 = Y − β̂1X (9)

where

SXY =
n∑

i=1
(Xi − X )(Yi − Y ) (10)

and

SXX =
n∑

i=1
(Xi − X )2. (11)

The least squares problem is solved.
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2. Fitting lines to data – method of least squares

The following graph shows the least squares line fitted to the sample
data.

The least squares coefficients are β̂0 = 1.07678 and β̂1 = 1.96832.
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2. Fitting lines to data – method of least squares

Of primary importance are the residuals, displayed in the plot below.

In building regression models, much of our effort will be spent analyzing
the residuals for compliance with assumptions (more soon).
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2. Fitting lines to data – data transformations

What if the data does not seem linear?

Scatter plot showing square relationship

In this case we can attempt to fit the (linear) model

Ŷ = β̂0 + β̂1x2 or
√

Ŷ = β̂0 + β̂1x

using the first alternative if the Yi sample data take negative values.
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2. Fitting lines to data – data transformations

Here is another example showing a square root relationship.

Scatter plot showing square root relationship

In this case we can attempt to fit the model

Ŷ = β̂0 + β̂1
√

x or Ŷ 2 = β̂0 + β̂1x

using the second alternative if the Xi sample data take negative values.
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2. Fitting lines to data – data transformations

Another example showing an exponential relationship.

Scatter plot showing exponential relationship

In this case we can attempt to fit the model

Ŷ = β̂0 + β̂1ex or log(Ŷ ) = β̂0 + β̂1x

using the first alternative if the Yi sample data take negative values.
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2. Fitting lines to data – data transformations

Another example showing a log relationship.

Scatter plot showing log relationship

In this case we can attempt to fit the model

Ŷ = β̂0 + β̂1 log x or eŶ = β̂0 + β̂1x

using the second alternative if the Xi sample data take negative values.
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2. Fitting lines to data – data transformations

Sometimes we need to transform both Xi and Yi .

Scatter plot showing exp. v. exp. relationship

In this case we can attempt to fit the model
log(Ŷ ) = β̂0 + β̂1 log(x)

watching for the possibility that Xi or the Yi sample data take negative
values.
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2. Fitting lines to data – data transformations

A final example.

Scatter plot showing log v. log relationship

In this case we can attempt to fit the model

eŶ = β̂0 + β̂1ex .
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2. Model assumptions

Although we have solved the least squares problem and found the
regression line, we still have many questions to answer.

To answer these questions requires developing certain statistical tools,
the validity of which depend on the following assumptions:

1 the underlying population model is given

Y |x = β0 + β1x + ϵ

2 the RV ϵ has E[ϵ] = 0 and var(ϵ) = σ2 for all x
3 the sample data errors ϵi ∼ N(0, σ2) and independent so that

Yi |Xi ∼ N(β0 + β1Xi , σ2) and independent.
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2. Model parameters and estimates

The estimates β̂0 and β̂1 of the population parameters β0 and β1 are
themselves RVs – construct a least squares model on a different set of
sample data and the estimates will change.

Under the assumptions just stated, these estimates possess some nice
statistical properties:

1 by the Gauss-Markov theorem, these are the minimum variance
linear unbiased estimators of the population parameters β0 and β1.

2 they are the maximum likelihood estimators (MLE).

The first property means that E[β̂0] = β0 and E[β̂1] = β1 (unbiased) and
that var(β̂0) and var(β̂1) will be smaller than for any other possible
estimates β̂∗

0 and β̂∗
1 .

The second property means, in a “hand waving” sort of way, that they
are the estimates that make it most “likely” to observe the sample data
(Xi , Yi).

21 / 49



2. Model parameters and estimates

There remains one other population parameter to estimate, the variance
σ2 of the RV ϵ.

One candidate is SSE(β̂0,β̂1)
n , with SSE given by (3). We used SSE to

derive our least squares line, and it turns out that this is the MLE of σ2.

However it is a biased estimate in that E[ SSE(β̂0,β̂1)
n ] ̸= σ2.

It turns out that an unbiased version of this estimate can be constructed
by taking into account the degrees of freedom lost in finding the
estimates β̂0 and β̂1. This estimate

S2 = SSE (β̂0, β̂1)
n − 2 =

∑n
i=1(Yi − Ŷi)2

n − 2 =
∑n

i=1 ϵ̂2
i

n − 2 (12)

does satisfy E[S2] = σ2.

22 / 49



2. Statistical properties of estimates – distributions

It can be shown that β̂0 ∼ N(β0, σ2
β̂0

) with

σ2
β̂0

= σ2
(1

n + X 2

SXX

)
.

It inherits its normality from the sample errors ϵi , which are assumed to
be N(0, σ2). It is unbiased and so has mean β0, which we stated before.

Similarly, β̂1 ∼ N(β1, σ2
β̂1

) with

σ2
β̂1

= σ2

SXX
.

We see that both σβ̂0
and σβ̂1

depend on σ – if we don’t know the latter
we don’t know the former.
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2. Statistical properties of estimates – distributions

The standardised versions of the estimates

Zβ̂0
= β̂0 − β0

σβ̂0

(13)

and
Zβ̂1

= β̂1 − β1
σβ̂1

(14)

are both N(0, 1), i.e. normally-distributed with zero mean and variance of
one.

We can use these RVs as the basis of test statistics in Z-tests and to
establish confidence intervals.
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2. Statistical properties of estimates – distributions

However, in practice we will never know the value of σ.

Instead the sample standard deviation S is used as an approximation of σ.

This gives the unbiased estimates of σβ̂0

Sβ̂0
= S

√
1
n + X 2

SXX
. (15)

and of σβ̂1

Sβ̂1
= S√

SXX
(16)

with σ described in (12).
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2. Statistical properties of estimates – distributions

These estimates of σβ̂0
and σβ̂1

provide the alternative test statistics

Tβ̂0
= β̂0 − β0

Sβ̂0

(17)

and
Tβ̂1

= β̂1 − β1
Sβ̂1

, (18)

which are both Student’s T-distributed with n − 2 degrees of freedom.

These RVs can be used as test statistics in T-tests.
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2. Statistical properties of estimates – T-tests

T-test hypotheses
The null hypothesis is

H0: βj = β∗
j , j ∈ {0, 1},

with β∗
j some hypothesised level of βj we hope to exclude.

The alternative hypothesis can be any of
HA: βj > β∗

j (upper-tail test)
HA: βj ̸= β∗

j (two-tail test)
HA: βj < β∗

j (lower-tail test).

R output: R reports the results of T-tests with β∗
j = 0.
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2. Statistical properties of estimates – T-tests

Test statistic
The test statistic

t∗
β̂j

=
β̂j − β∗

j
Sβ̂j

(19)

depends on the sample data, and is a realisation of the appropriate RV
described in (17)-(18).

Rejection of null hypothesis using reject/retain region
H0 is rejected in favour of HA at significance level α, 0 < α < 1/2, if

t∗
β̂j

> t1−α (upper-tail test)

|t∗
β̂j

| > t1−α/2 (two-tail test)

t∗
β̂j

< tα (lower-tail test)
where tθ is the quantile satisfying

Prob(Tβ̂j
> tθ) = θ.
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2. Statistical properties of estimates – T-tests

Rejection of null hypothesis using p-value
Equivalently, H0 is rejected if

p < α

where the p-value
p = Prob(Tβ̂j

> t∗
β̂j

) (upper-tail test)

p = 2 × Prob(Tβ̂j
> |t∗

β̂j
|) (two-tail test)

p = Prob(Tβ̂j
< t∗

β̂j
) (lower-tail test).

The null hypothesis H0 is retained in any other case.
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2. Statistical properties of estimates – T-tests

Rejection of null hypothesis using CI
Equivalently, H0 is rejected if β∗

j falls outside the 100(1 − α)% CI for βj
given by

β̂j − Sβ̂j
t1−α ≤ βj < ∞ (upper-tail test)

β̂j − Sβ̂j
t1−α/2 ≤ βj ≤ β̂j + Sβ̂j

t1−α/2 (two-tail test)

−∞ < βj ≤ β̂j + Sβ̂j
t1−α (lower-tail test).

The null hypothesis H0 is retained in any other case.

Interpretation of special case
When the null hypothesis βj = 0 is rejected, we can say the predictor xj
is statistically-significant (at significance level α).
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2. Statistical properties of model – prediction of E[Y |x ]

Recall we set out to model

E[Y |x ] = β0 + β1x
≈ β̂0 + β̂1x
= Ŷ |x ,

with the last being our least squares regression model.

We know this model is unbiased as

E[Ŷ |x ] = E[β̂0] + E[β̂1]x = β0 + β1x = E[Y |x ]

which follows from the unbiased nature of the estimates β̂0 and β̂1
established earlier.

But Ŷ |x is still a RV, so we desire confidence intervals for the values it
takes, or the predictions it makes of E[Y |x ].
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2. Statistical properties of model – prediction of E[Y |x ]

Without going into details, we can establish a 100(1 − α)% confidence
interval for the model’s prediction of E[Y |x ] as

Ŷ |x ± z1−α/2 × σ

√
1
n + (x − X )2

SXX
(20)

or if σ is unknown as

Ŷ |x ± t1−α/2 × S

√
1
n + (x − X )2

SXX
(21)

where the quantiles z1−α/2 and t1−α/2 are associated with the N(0, 1)
distribution and Students’ T distribution with n − 2 degrees of freedom
respectively.

Again, for the values of α we are interested in, the Student’s T-based CI
will be wider than the N(0, 1)-based version. This is due to the fatter
tails of the Student’s-T distribution.
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2. Statistical properties of model – prediction of Y |x

Finally, CIs for the model’s prediction of Y |x are

Ŷ |x ± z1−α/2 × σ

√
1 + 1

n + (x − X )2

SXX
(22)

or if σ is unknown

Ŷ |x ± t1−α/2 × S

√
1 + 1

n + (x − X )2

SXX
. (23)
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2. Human calculator example

OK, that’s a lot of equations. However, we won’t be doing the
calculations by hand - OK, maybe just one example.

Consider the following data recording the age (Xi) and blood pressure
(Yi) of four individuals.

i Xi Yi

1 39 144
2 47 220
3 45 138
4 47 145

Blood pressure data

We are going to build a model that lets us predict blood pressure from
age.

The independent variable in this case is age (Xi) and the dependent
variable is blood pressure (Yi). (Why?)
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2. Human calculator example

Our first step would normally be to plot the data in the hope of spotting
a recognisable relationship (linear in the case of simple regression), but
with only four data points there isn’t much to see.

We suppose that the true relationship between age and blood pressure is

Y |x = β0 + β1x + ϵ

and look to build the model

Ŷ |x = β̂0 + β̂1x

to approximate
E[Y |x ] = β0 + β1x .
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2. Human calculator example

First we calculate the sample average of the Xi data (average age)

X = 39 + 47 + 45 + 47
4 = 44.5

and of the Yi data (average blood pressure)

Y = 144 + 220 + 138 + 145
4 = 161.75.

Theses sample averages are then used to construct the following table.

i Xi Yi Xi − X Yi − Y (Xi − X )2 (Xi − X )(Yi − Y )
1 39 144 -5.5 -17.75 30.25 97.625
2 47 220 2.5 58.25 6.25 145.625
3 45 138 0.5 -23.75 0.25 -11.875
4 47 145 2.5 -16.75 6.25 -41.875

43.00 189.500
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2. Human calculator example

From this table we can read off the figures SXX = 43 and SXY = 189.5.

From (8) we have
β̂1 = SXY

SXX
= 189.5

43 ≈ 4.41

and from (9)

β̂0 = Y − β̂1X ≈ 161.75 − 4.41 × 44.5 ≈ −34.36. (24)

So our least squares model is

Ŷ |x = −34.36 + 4.41x

or in alternative notation

ŷ(x) = −34.36 + 4.41x .

Obviously, this is not a terribly sophisticated model – for one, it predicts
negative blood pressure up until 7.8 years of age.

Be careful extrapolating model outside range of sample data.
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2. Human calculator example

Now let’s see how well this fits the data.

i Xi Yi Ŷi ϵ̂i

1 39 144 137.63 6.37
2 47 220 172.91 47.09
3 45 138 164.09 -26.09
4 47 145 172.91 -27.91

Prediction and residual data

Not too well, which is hardly surprising given the amount of data we had.
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2. R example

Consider the data set newdata.csv, available in the Week 3 folder on
Canvas.

The variables of interest are LifeExp and GNI. We are going to build a
model that lets us predict LifeExp from GNI.

The independent variable in this case is GNI (our Xi values) and the
dependent variable is LifeExp (our Yi values).

We would like to build a linear model, so the first thing we do is see if a
linear relationship can be found.

We do so with a scatter plot.
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2. R example

We see that no linear relationship is apparent. We perform a log
transform of GNI, defining the new variable LogGNI in the process and
create a scatter plot using the new variable.
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2. R example

We now see a reasonable linear relationship and decide to build our
model of LifeExp against this new variable LogGNI.
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2. R example

So we assume an underlying reality of

LifeExp|LogGNI = β0 + β1 × LogGNI + ϵ

and look to build the model

L̂ifeExp|LogGNI = β̂0 + β̂1 × LogGNI

as an approximation of

E[LifeExp|LogGNI] = β0 + β1 × LogGNI.
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2. R example

To fit a simple linear regression model in R, we use the lm command.

> mod1<-lm(newdata$Life_exp ˜ newdata$LogGNI)
> summary(mod1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.2798 2.9577 5.842 2.28e-08 ***
newdata$LogGNI 13.4659 0.7408 18.177 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

The least squares parameter estimates are β̂0 = 17.280 and β̂1 = 13.466,
resulting in the fitted model

L̂ifeExp = 17.280 + 13.466 × LogGNI.
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2. R example

As part of its output R reports the p-values associated with T-tests on
the parameters β0 and β1.

The hypotheses for the tests on β0 are
H0: β0 = 0
HA: β0 ̸= 0

and for β1 are
H0: β1 = 0
HA: β1 ̸= 0.

The p-values associated with both of these tests are extremely small so
both null hypotheses can be rejected at some significance levels
α < 0.0005.
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2. R example

To aid a visual inspection, R will plot the fitted model against sample
data using
> abline(mod1)
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2. R example

... and can add 95% confidence bounds for the model’s prediction of
E[LifeExp|LogGNI] ...
> newx <- seq(min(newdata$LogGNI), max(newdata$LogGNI), by=0.05)
> conf_interval <- predict(mod1, newdata=data.frame(LogGNI=newx),
interval="confidence", level = 0.95)

> lines(newx, conf_interval[,2], col="blue", lty=2)
> lines(newx, conf_interval[,3], col="blue", lty=2)

Regression Line and 95% CI for E[LifeExp|LogGNI]
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2. R example

... and can add 95% confidence bounds for the model’s prediction of
LifeExp|LogGNI.
pred_interval <- predict(mod1, newdata=data.frame(LogGNI=newx),
interval="prediction", level = 0.95)
lines(newx, pred_interval[,2], col="orange", lty=2)
lines(newx, pred_interval[,3], col="orange", lty=2)

Regression Line and 95% CI for LifeExp|LogGNI
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2. R example

Of course, there are other questions to answer.

Are the assumptions, on which the statistical tests are built, valid?

How well does the model fit the data?

Is there some non-linear component that can be captured by adding some
function of LogGNI as a new variable to the model?

Are there variables other than LogGNI that we should consider adding to
the model?

We have interpolated within the range of the Xi sample data – can we
extrapolate outside of this range?

We will start to answer some of these questions next week.
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