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3. Lecture outline

Topics:
revisiting the R example from Lecture 2

T-tests
taking stock
model fit

ANOVA and F-test
ANOVA and R2

leverage and influence
checking model assumptions

residual analysis
continuing the R example
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3. R example Lecture 2

Consider again the example from last week’s lecture.

Recall we looked to model the relationship between the logarithm of
per-capita GNI and life expectancy, using the country-by-country data
contained in the R data set newdata.csv.

We began by proposing an underlying, theoretical reality

LifeExp|LogGNI = β0 + β1 × LogGNI + ϵ

and looked to build the model

L̂ifeExp|LogGNI = β̂0 + β̂1 × LogGNI

as an approximation of

E[LifeExp|LogGNI] = β0 + β1 × LogGNI.
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3. R example Lecture 2

The Coefficients table returned by R

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.2798 2.9577 5.842 2.28e-08 ***
newdata$LogGNI 13.4659 0.7408 18.177 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

allowed us to extract the parameter estimates β̂0 and β̂1 and define the
simple linear regression equation for our model as

L̂ifeExp|LogGNI = 17.280 + 13.466 × LogGNI.
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3. R example Lecture 2 – T-tests

The T-statistics returned by R

t∗
β̂0

= β̂0 − β∗
0

Sβ̂0

= β̂0 − 0
Sβ̂0

= 17.280
2.958 = 5.842

and
t∗
β̂1

= β̂1 − β∗
1

Sβ̂1

= β̂1 − 0
Sβ̂1

= 13.466
0.741 = 18.177

are associated with the single-sample, two-tail T-tests on the hypotheses
H0: β0 = 0
HA: β0 ̸= 0

and
H0: β1 = 0
HA: β1 ̸= 0

respectively.
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3. R example Lecture 2 – T-tests

The critical value associated with a two-tail T-test with n − 2 = 185
degrees of freedom is

t0.975 = 1.97287,

allowing each null hypothesis H0 of the preceding tests to be rejected in
favour of the alternatives HA as

t∗
β̂0

, t∗
β̂1

> t0.975.

Of course, we can see this directly from the p-values or the 95% CIs
(using R command confint(mod1))

11.445 ≤ β0 ≤ 23.115

12.004 ≤ β1 ≤ 14.927
of which zero is not a member.

Note. The constants t∗
β̂0

and t∗
β̂1

are, respectively, the values that the
RVs Tβ̂0

and Tβ̂1
have taken for this particular set of data (see Week 2

Lecture Notes).
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3. R example Lecture 2 – T-tests

We can use the information in the R Coefficients table to test other
hypotheses on the true values of the parameters.

For instance, to test the hypothesis that β0 > 15 define the hypotheses
H0: β0 = 15
HA: β0 > 15.

The statistic for this upper-tail single-sample T-test is calculated as

t∗
β̂0

= β̂0 − β∗
0

Sβ̂0

= 17.280 − 15
2.958 ≈ 0.771

which has an associated p-value of p ≈ 0.221 (R command 1-pt(0.771,
185)).

As p > α = 0.05 (the significance level we have selected for this
example) we cannot reject H0.
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3. Taking stock

So far we have looked at fitting a simple linear model and assessing it in
terms of CIs on the estimated parameters β̂0 and β̂1 and CIs of its
predictions of E[Y |x ] and Y |x .

We saw that the parameter CIs were returned by R and that the
prediction CIs could be calculated after running the model.

But from last week’s lab you will have noticed that R outputs much more
than just the Coefficients table.

In this week’s lecture we will look deeper into the problem of linear
regression and begin to answer some of the questions posed at the end of
Week 2 Lecture Notes.
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3. Model fit – ANOVA and F-test

We now look at another method of testing hypotheses on β1.

Consider the total sum of squares or total variation about the mean

SST =
n∑

i=1
(Yi − Y )2. (1)

With a little algebra this can be decomposed as

SST = SSR + SSE , (2)

where the total sum of squares due to the regression is given by

SSR =
n∑

i=1
(Ŷi − Y )2 (3)

and the sum of squared errors

SSE =
n∑

i=1
(Yi − Ŷi)2 =

n∑
i=1

ϵ̂2
i = (n − 2)S2.
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3. Model fit – ANOVA and F-test

Under the assumption that the residuals êi ∼ N(0, σ2) and independent, if

β1 = 0

then the RV
F = SSR

S2 = SSR
SSE
n−2

=
∑n

i=1(Ŷi − Y i)2∑n
i=1

ϵ̂2
i

n−2

(4)

follows an F(1,n − 2) distribution.

Note: there is a more general description of this RV F in terms of a
quotient of chi-squared RVs, but we’ll leave this until required.

This provides us with an alternative method for testing the hypothesis
that β1 = 0.

11 / 42



3. Model fit – ANOVA and F-test

To be more precise, this provides us with an equivalent method for
testing the hypothesis β1 = 0 because the square of a T(n − 2) RV has
the same distribution as an F(1, n − 2) RV.

Recall the T(n − 2) RV used for the T-test on β1, which with
hypothesised value β1 = 0 has the form

Tβ̂1
= β̂1

Sβ̂1

.

The square of this RV follows the same distribution as F , or more
formally

T 2
β̂1

d= F

where d= denotes equality in distribution, a weaker form of equality
used frequently in probability and statistics.
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3. Model fit – ANOVA and F-test

The F-distribution has two parameters, details of which we will go into
next week. The associated PDFs for a selection of parameter values are
displayed below.

Example: PDF of X ∼ F(a, b) RV

The most extreme events occur in the upper tail, so we use upper tail
hypothesis tests.
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3. Model fit – ANOVA and F-test

F-test hypotheses
In the context of simple regression, the hypotheses are

H0: β1 = 0
HA: β1 ̸= 0.

Test statistic
The test statistic f ∗ is the value that the RV F , given in (4), takes for
the particular model built on the data sample (Xi , Yi), i ∈ {1, . . . , n}.

Rejection of null hypothesis
H0 is rejected in favour of HA at significance level α if

f ∗ > f1−α

where f1−α is the quantile satisfying

Prob
(
F > f1−α

)
= α.
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3. Model fit – ANOVA and F-test

Rejection of null hypothesis continued
Equivalently, H0 is rejected if the p-value

p = Prob(F > f ∗) < α.

The null hypothesis H0 is retained in any other case.

The argument used here is that if it is so unlikely for an
F (1, n − 2)-distributed RV F to take values at least as large as f ∗, then
perhaps F cannot be so distributed.

But we know it must be if β1 = 0 and so reject this hypothesis in favour
of the alternative β1 ̸= 0.
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3. Model fit – ANOVA and R2

The decomposition of total variation given by (2) can also be used to
provide a quantitative measure of model fit.

Recall this decomposition

SST = SSR + SSE .

The larger the proportion of total variation explained by the model, the
better the fit of the model.

We define this proportion as the coefficient of determination

R2 = SSR
SST = 1 − SSE

SST (5)

which satisfies 0 ≤ R2 ≤ 1.

For simple linear regression, R2 provides a tool for comparing alternative
models, looking for the model that, all else being equal, has the higher
R2. For multiple regression a modification is necessary.
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3. Model Fit – leverage and influence

The method of least squares, and measures such as R2, use, as a
definition of variation, squared errors.

Consider two data points, Yi and Yj with residuals satisfying

ϵ̂i = 2ϵ̂j .

The ratio of the contribution that these two data points make to SSE is

ϵ̂2
i

ϵ̂2
j

= 4.

One could reasonably expect Yi to have greater influence on model
parameters than Yj through the minimisation of SSE .

This is just a consequence of the model selection process, but sometimes
it can lead to unexpected and undesirable effects.
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3. Model Fit – leverage and influence

The following example shows least squares models fitted to data sets
differing in one component only – in the second model a single outlier
has been removed.

Example: Leverage, influence and model selection

The radical change in the slope of the line and reduction in R2 says it all.
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3. Model Fit – leverage and influence

Another way to look at this example is by comparing before and after
scatter plots of standardised predictions against standardised
residuals (we will come back to residual analysis later).

Example: Leverage, influence and model selection

The second plot appears closer to that expected of two standard normal
independent RVs (no extreme outlier).
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3. Model Fit – leverage and influence

The relative importance of a point to a model can be quantified in terms
of its leverage, defined as

hi,i = 1
n + (Xi − X )2

SXX
= 1

n + (Xi − X )2∑n
i=1(Xi − X )2

, (6)

which we see is a function of the distance between the independent
variable and its sample mean.

We can use leverage to quantify the influence a point has on the overall
regression model.

One such statistic is Cook’s D, which for the case of m independent
variables is defined as

Di = 1
m

hii
1 − hii

t̂2
i

with t̂i the internally-Studentised residual (10) used in residual analysis.

This can be used to assess the sensitivity of the estimated model
parameters to the removal of the i-th observation from the sample data.
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3. Model Fit – leverage and influence

As a rule of thumb, data points with Di > 4
n−m−1 (or Di > 4

n ) are
considered potentially influential with Di > 1 a strong indicator.

Another similar statistic is DFITS, which for the i-th data point is
defined as

DFITSi = d̂i

√
hii

1 − hii

with d̂i the externally-Studentised residual (11).

DFITSi is another measure of the sensitivity of the model to the removal
of the i-th observation from the sample data.

As a rule of thumb, data points with |DFITSi | > 2
√

m+1
n−m−1 , m the

number of independent variables, should be considered possibly
influential.
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3. Model Fit – leverage and influence

We finish this section with a famous example of Anscombe (1973).

Each regression line is identical, each data set is very different.

Example: Anscombe’s Quartet.
Source https://commons.wikimedia.org/wiki/File:Anscombe.svg

22 / 42



3. Checking model assumptions

When using the method of least squares to fit a model to data we needed
no assumptions.

We used the method of least squares and found the model that
minimised SSE .

But we have gone much further than this and developed tools to place
CIs on parameter estimates and model predictions and tools to assess
model fit.

Along the way we have relied on an assumption about the properties of
the residuals, an assumption that is now embedded in the methods that
have been developed.

The most important part of building a model is justifying the
assumptions on which it was built.
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3. Checking model assumptions

Recall the model assumed to describe the population

Y = β0 + β1x + ϵ

and our model of E[Y |x ], the regression line described by

Ŷ |x = β̂0 + β̂1x .

We initially assumed that ϵ was a RV with constant variance σ2.

However, even this assumption was unnecessary and could have been
replaced with a more general description of ϵ as representing the
component(s) not captured by β0 + β1x .

The critical assumption we made later was that the error terms

ϵi ∼ N(0, σ2) (7)

and independent.
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3. Checking model assumptions

By the properties of the normal distribution this can be re-stated as

ϵi ∼ N(0, σ2) (8)

with

ρϵi ,ϵj ≡ corr(ϵi , ϵj) =
{

0, i ̸= j
1, i = j

(9)

for each i , j ∈ {1, . . . , n}, where Pearson’s correlation coefficient is
described in Lecture 1.

N.B. The property used is zero correlation implies independence for
normally-distributed RVs.

As estimates of the errors ϵi , the residuals ϵ̂i should mimic their
behaviour – we check the assumptions on ϵi via ϵ̂i .
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3. Checking model assumptions – residual analysis

Verification of model assumptions boils down to analysis of residuals.

This analysis can be performed in two complementary ways:
1 visual inspection via plots and charts
2 numerical inspection via statistical tools.

When we look for visual clues, essentially we are looking for some
patterns that affirm the assumptions and other patterns that contradict.

We know the residuals should be normally distributed with zero mean, so
when we look at plots of residuals we want to see them distributed
symmetrically either side of zero, with more closer to zero than further
away etc.

We also know that they should be uncorrelated, so there should be no
discernable pattern when plotted against the independent variable or the
regression prediction of the dependent variable.

We can also use various statistical tools to identify the same sort of
behaviour.
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3. Checking model assumptions – residual analysis

Below are two scatter plots showing theoretical cumulative probability
against observed cumulative probability for different sized samples of
normally distributed (psuedo) RVs generated by algorithm.

Deviation from theoretical behaviour is indicated by departure from the
green straight line.
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3. Checking model assumptions – residual analysis

Here is the continuation of this experiment for larger sample sizes.

We see observed behaviour approaching theoretical behaviour as the
sample size increases.

We can perform similar analyses using R in the context of regression.
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3. Checking model assumptions – residual analysis

Another version of this sort of analysis we have seen in previously.

We are looking for the empirical distribution, here displayed as a
histogram, to closely match the theoretical PDF.

We apply these sort of tools to regression using R.
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3. Checking model assumptions – residual analysis

Below are some typical plots of residuals against dependent variable.

Example of standardised residual plots. Source Peck et al. (2012) page 769

Plot (a) is fine, (b) and (c) show patterns and (d) a large residual.
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3. Checking model assumptions – residual analysis

The measure of leverage (6) can be used to define quantities useful for
residual analysis, such as the internally-Studentised residual

t̂i = ϵ̂i

S
√

1 − hii
(10)

and externally-Studentised residual

d̂i = ϵ̂i

S(i)
√

1 − hii
, (11)

where S(i) is the estimate S recalculated after exclusion of observation i .

These quantities weight the residuals according to their leverage – the
higher the leverage of a point i the higher t̂i and d̂i .
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3. Checking model assumptions – residual analysis

Finally we mention a test for serial correlation, the Durbin-Watson test.

This statistic is calculated as

dw =
∑n

i=2(ϵ̂i − ϵ̂i−1)2∑n
i=1 ϵ̂2

i
. (12)

The statistic satisfies
0 ≤ dw ≤ 4

with dw < 2 suggesting positive correlation and dw > 2 suggesting
negative correlation.

Recall that our assumption is that the residuals are uncorrelated, so we
are looking for values of close dw = 2.
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3. R example continued

Let’s return to our R example and apply what we have learned today.

Residual standard error: 5.306 on 185 degrees of freedom
Multiple R-squared: 0.6411, Adjusted R-squared: 0.6391
F-statistic: 330.4 on 1 and 185 DF, p-value: < 2.2e-16

With R2 = 0.641 we see that the model explains around 64% of the
variation in the data about the mean.

> durbinWatsonTest(mod1)
lag Autocorrelation D-W Statistic p-value

1 -0.1620183 2.323897 0.026
Alternative hypothesis: rho != 0

We also see a Durbin-Watson statistic of dw = 2.324 which, although
not excessive, does point to weak negative serial correlation in the
residuals ϵ̂i .
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3. R example continued

Below is the ANOVA table.

> summary(aov(mod1))
Df Sum Sq Mean Sq F value Pr(>F)

LogGNI 1 9301 9301 330.4 <2e-16 ***
Residuals 185 5208 28
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

We see the decomposition of total variation SST in terms of that due to
the model SSR and that due to the errors SSE .

With an F-statistic of 330.4 and associated p-value is extremely small, we
are happy to reject the null hypothesis that the true value of β1 is zero.
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3. R example continued

> summary(predict(mod1))
Min. 1st Qu. Median Mean 3rd Qu. Max.

52.93 65.49 71.37 70.58 75.78 85.63
> summary(mod1$resid)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-22.647 -2.267 1.020 0.000 3.354 8.938

> round(summary(rstandard(mod1)) ,3)
Min. 1st Qu. Median Mean 3rd Qu. Max.

-4.286 -0.430 0.194 0.000 0.635 1.690
> cooksD<-cooks.distance(mod1)
> round(summary(cooksD), 3)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 0.000 0.001 0.005 0.005 0.076

The maximum Cook’s distance is 0.076. The critical value for our case is
4

n−m−1 = 4
187−2 ≈ 0.0216 indicating at least one point which may have

some degree of excessive influence.
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3. R example continued

We can investigate this further with plots of Cook’s distance Di .
> library(’olsrr’)
> ols_plot_cooksd_bar(mod1) # this function uses 4/n as the
threshold!
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3. R example continued

We can also look at the boxplot.

The box plots identify plenty of outliers, not all of which are in excess of
the critical values 0.0216 for Di .

Still, we could exclude the main offenders, re-perform the regression and
see if the model improves.
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3. R example continued

Now we look at plots of the standardised residuals.
> hist(mod1.st.resid, xlab = "Standardised residuals", freq
= F, main = "")
> curve(dnorm, add = T)

The histogram is not symmetrical and shows clear negative skewness, a
property not possessed by the standard normal distribution N(0,1).
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3. R example continued

> probDist <- pnorm(mod1.st.resid)
> plot(ppoints(length(mod1.st.resid)), sort(probDist), main
= "Normal P-P Plot", xlab = "Observed Probability",
ylab = "Expected Probability")
> abline(0,1)

The PP Plot also indicates departure from normality.
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3. R example continued

> qqnorm(mod1.st.resid)
> qqline(mod1.st.resid)

The QQ Plot also indicates departure from normality.
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3. R example continued

Finally we look at the standardised residuals, plotted against the
dependent variable LogGNI.

There is a hint of a pattern indicating possible serial correlation. Large
negative observations below -3 is also cause for concern.

All in all, our analysis indicates departure from model assumptions.
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