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4. Lecture outline

Topics:
multidimensional least squares

scalar form
matrix form (*)

model assumptions and statistical properties
model fit

T-test
ANOVA and F-test
ANOVA, R2 and R2

adj
leverage and influence (*)
collinearity
collinearity and variance inflation factors

R example
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4. Multidimensional least squares – scalar form

So far we have described simple linear regression, where the least
squares method is used to fit a line to data in R2, with the data the
ordered pairs of dependent and independent variables.

We now develop multiple regression, where the least squares method is
applied to fit a plane to data in Rm+1, with the data the (m + 1)-tuples
of dependent and m independent variables.

We will also see that we can use multiple regression to fit curves instead
of lines in R2, and indeed curved surfaces instead of planes in higher
dimensions.

This will allow us to consider problems that don’t appear linear in nature
and where transformations of the data do not assist (more on this next
week).

Sections marked (*) require knowledge of linear algebra. These sections
are not assessable but are included for those interested.
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4. Multidimensional least squares – scalar form

The multiple regression problem is to approximate

Y |x1, . . . , xm = β0 +
m∑

j=1
βjxj + ϵ. (1)

This is the equation of plane in Rm+1 disturbed by some RV ϵ, making Y
a RV also.

We could be more general and describe ϵ as representing the components
of Y not captured by the plane.

We fit our model to the expectation

E[Y |x1, . . . , xm] = β0 +
m∑

j=1
βjxj + E[ϵ]

= β0 +
m∑

j=1
βjxj (2)

assuming that E[ϵ] = 0 and var(ϵ) = σ2 for all x1, . . . , xm.
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4. Multidimensional least squares – scalar form

Our task is to find the estimates β̂0, β̂1, . . . , β̂m of β0, β1, . . . , βm defining
the model

Ŷ |x1, . . . , xm := β̂0 +
m∑

j=1
β̂jxj (3)

≈ E[Y |x1, . . . , xm].

A model that is optimum should be defined by parameter estimates such
that the error

ϵ̂ := Y − Ŷ = Y − β̂0 −
m∑

j=1
β̂jxj

is minimised in some way, where the error ϵ̂ is our model’s estimate of
the RV

ϵ = Y − β0 −
m∑

j=1
βjxj

that we have assumed is built into underlying population model.
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4. Multidimensional least squares – scalar form

As for simple linear regression, we choose as parameter estimates the
values minimising the sum squared error over the sample data
(Xi,1, . . . , Xi,m, Yi); i.e.

min
(β0,...,βm)

SSE (β0, . . . , βm) = min
(β0,...,βm)

n∑
i=1

(
Yi − β0 −

m∑
j=1

βjXi,j

)2

=
n∑

i=1

(
Yi − β̂0 −

m∑
j=1

β̂jXi,j

)2
. (4)

Assuming that the minimum of SSE exists, we can find β̂0, . . . , β̂m by
differentiating SSE with respect to each of these parameters, setting the
derivatives to zero and solving the resulting system of m + 1 equations.

That is, the parameters values β̂0, . . . , β̂m will satisfy
∂

∂β̂j
SSE (β0, . . . , βj , . . . , βm) = 0 (5)

for all j ∈ {0, 1, . . . , m}.
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4. Multidimensional least squares – scalar form

Differentiating and setting to zero gives the least squares equations
n∑

i=1

(
Yi − β̂0 −

m∑
k=1

β̂kXi,k

)
= 0 (6)

and
n∑

i=1
Xi,j

(
Yi − β̂0 −

m∑
k=1

β̂kXi,k

)
= 0, j ∈ {1, . . . , m}. (7)

The resulting regression plane

Ŷ |x1, . . . , xm = β̂0 +
m∑

j=1
β̂jxj

is that which minimises the SSE associated with the fitted points

Ŷi |Xi,1, . . . , Xi,m = β̂0 +
m∑

j=1
β̂jXi,j . (8)
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4. Multidimensional least squares – matrix form (*)

Working with scalar notation in a multidimensional setting quickly
becomes tedious, as anyone who has solved (6)-(7) in their current form
would attest.

There is an alternative using vectors and matrices that provides more
compact notation and simpler algebraic manipulation.

Arrange the sample data as

Y =


Y1
...

Yn

 and X =


1 X1,1 · · · X1,m
...

...
. . .

...
1 Xn,1 · · · Xn,m


where X has been augmented with a vector of ones. Also define the
fitted value, parameter, estimated parameter and residual vectors

Ŷ =


Ŷ1
...

Ŷn

 , β =


β0
...

βm

 and β̂ =


β̂0
...

β̂m

 and ϵ̂ = y − ŷ =


ϵ̂1
...

ϵ̂n

 .
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4. Multidimensional least squares – matrix form (*)

In matrix form the model we are trying to fit is

E[Y |X ] = Xβ. (9)

The estimate β̂ minimises SSE, which can be written in vector form as

SSE (β̂) = ϵ̂T ϵ̂,

and is the solution of the normal equation

(XT X)β̂ = XT Y

which, provided the inverse exists, is

β̂ = (XT X)−1XT Y . (10)

Inverse exists if the columns of (XT X) are linearly independent. If not,
remove superfluous independent variable(s) and re-express.
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4. Multidimensional least squares – matrix form (*)

Then the fitted data can be written as

Ŷ = Xβ̂ (11)

which is the matrix form of (8).

The fitted vector Ŷ is the orthogonal projection of the sample vector
Y onto the column space of X or

Ŷ = projcol XY . (12)

This provides a different perspective of the least squares procedure and
provides justification for selecting as parameter estimates the values that
minimise the sum of squared errors.
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4. Model assumptions and statistical properties

In fitting the least squares model we have not made any assumptions, but
to proceed and develop tools to analyse the model we need the following:

1 the underlying population model is given

Y |x1, . . . , xm = β0 +
m∑

j=1
βjxj + ϵ,

which we have already assumed in setting up our model;
2 the RV ϵ in the population model has E[ϵ] = 0 and var(ϵ) = σ2 for

all x1, . . . , xm;
3 the sample data errors ϵi ∼ N(0, σ2) and independent so that

Yi |Xi,1, . . . Xi,m ∼ N(β0 +
∑m

j=1 βjXi,j , σ2) and independent.

An unbiased estimate of σ2 is given by

S2 = SSE (β̂0, . . . , β̂m)
n − m − 1 =

∑n
i=1(Yi − Ŷi)2

n − m − 1 =
∑n

i=1 ϵ̂2
i

n − m − 1 . (13)
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4. Model fit – T-test

The assumptions just listed enable us to determine the distributions of
the parameter estimates β̂0, . . . , β̂m and the fitted regression model Ŷ
given by (3).

This allows us to develop hypothesis tests and CIs for the parameter
estimates and the model predictions.

T-tests can be performed on the parameters βj , j ∈ {0, 1, . . . , m}, using
the RV

Tβ̂j
= β̂j − βj

Sβ̂j

, (14)

which follows a Students’ T-distribution with n − m − 1 degrees of
freedom.

The standard error Sβ̂j
is most conveniently expressed in matrix notation,

so we omit.
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4. Model fit – T-test

T-test hypotheses
The null hypothesis is

H0: βj = β∗
j

with β∗
j some hypothesised level of βj we hope to exclude.

The alternative hypothesis can be any of
HA: βj > β∗

j (upper-tail test)
HA: βj ̸= β∗

j (two-tail test)
HA: βj < β∗

j (lower-tail test).

Test statistic
The test statistic t∗

β̂j
is the value that the RV Tβ̂j

, given in (14), takes for
the particular model.
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4. Model fit – T-test

Rejection of null hypothesis
H0 is rejected in favour of HA at significance level 0 < α < 1/2 if

t∗
β̂j

> t1−α (upper-tail test)

|t∗
β̂j

| > t1−α/2 (two-tail test)

t∗
β̂j

< tα (lower-tail test)

where tθ is the quantile satisfying

Prob(Tβ̂j
> tθ) = θ.
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4. Model fit – T-test

Rejection of null hypothesis continued
Equivalently, H0 is rejected if

p < α

where the p-value
p = Prob(Tβ̂j

> t∗
β̂j

) (upper-tail test)

p = 2 × Prob(Tβ̂j
> |t∗

β̂j
|) (two-tail test)

p = Prob(Tβ̂j
< t∗

β̂j
) (lower-tail test).

The null hypothesis H0 is retained in any other case.

Interpretation of special case
When the null hypothesis βj = 0 is rejected, we can say the predictor xj
is statistically-significant (at significance level α).
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4. Model fit – ANOVA and F-test

Although it is possible to perform hypothesis tests on the individual
parameter estimates β̂0, . . . , β̂m using T-tests, it is much more convenient
to test them simultaneously using an F-test.

The F-test via ANOVA requires the decomposition of total variation
SST = SSR + SSE (15)

where, letting 1 be square matrix of ones, the total sum of squares

SST =
n∑

i=1
(Yi − Y )2 = Y T Y − 1

nY T 1Y , (16)

the total sum of squares due to the regression

SSR =
n∑

i=1
(Ŷi − Y )2 = β̂T XT Y − 1

nY T 1Y

and the sum of squared errors

SSE =
n∑

i=1
(Yi − Ŷi)2 =

n∑
i=1

ϵ̂2
i = ϵ̂T ϵ̂. (17)
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4. Model fit – ANOVA and F-test

Define the mean square regression

MSR = SSR
m (18)

and the mean square error

MSE = SSE
n − m − 1 (19)

where the denominators are the degrees of freedom, the number of
components necessary to calculate the sums SSR and SSE .

Under the assumption that the residuals ϵ̂i ∼ N(0, σ2) and independent, if
β1 = · · · = βm = 0

then the RV
F = MSR

MSE (20)

follows an F(m,n − m − 1) distribution.

F is the quotient of two chi-squared RVs with m and n − m − 1 degrees
of freedom respectively.
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4. Model fit – ANOVA and F-test

The PDF for an F-distributed RV for a variety of parameter value is
displayed below.

Example: PDF of X ∼ F(a, b) RV

The most extreme events occur in the upper tail, so we use upper tail
hypothesis tests.
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4. Model fit – ANOVA and F-test

F-test hypotheses

H0: β1 = · · · = βm = 0
HA: at least one βj ̸= 0.

Test statistic
The test statistic f ∗ is the value that the RV F , given in (20), takes for
the particular model.

Rejection of null hypothesis
H0 is rejected in favour of HA at significance level α if

f ∗ > f1−α

where f1−α is the quantile satisfying

Prob(F > f1−α) = α.
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4. Model fit – ANOVA and F-test

Rejection of null hypothesis continued
Equivalently, H0 is rejected if the p-value

p = Prob(F > f ∗) < α.

The null hypothesis H0 is retained in any other case.

The argument used here is that if it is so unlikely for an
F (m, n − m − 1)-distributed RV F to take values at least as large as f ∗,
then perhaps F cannot be so distributed.

But we know it must be if β1 = · · · βm = 0 and so reject this hypothesis
in favour of the alternative that at least one βj ̸= 0 for j ∈ {1, . . . , m}.

Interpretation
When the null hypothesis is rejected, we know at least one parameter
estimate is non-zero and can say the regression model Ŷ is
statistically-significant (significance level α).
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4. Model fit – ANOVA, R2 and R2
adj

The decomposition of total variation in (15) can be used, as in simple
regression, to calculate R2 as

R2 = SSR
SST = 1 − SSE

SST
which satisfies 0 ≤ R2 ≤ 1.

In the context of multiple regression, i.e. with m ≥ 2, this statistic is
deficient in that an increase in its value can be due to an increase in the
number or parameters employed and not necessarily to an improvement
in the fit of the model.

For multiple regression, a modified version of R2 is employed that
accounts for this phenomenon. This measure is called adjusted R2 and is
calculated as

R2
adj = 1 − (1 − R2) n − 1

n − m − 1 . (21)

Unlike R2, R2
adj can be used to compare models fitted to different data

sets. Note that R2
adj may be negative.
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4. Model fit – leverage and influence (*)

Now that we have the necessary machinery we can take a closer look at
leverage, residuals and influence.

To really see what is going on here requires the linear algebra perspective.

Using (10) in (11) allows us to write

Ŷ = Xβ̂ = X(XT X)−1XT Y = hY

where h is the hat matrix

h = X(XT X)−1XT . (22)

The i-th diagonal element of h is called the leverage of the i-th data
point.

The hat matrix can be used to describe the covariance structure of the
residuals as

covar(ϵ̂, ϵ̂) = (I − h)σ2.
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4. Model fit – leverage and influence (*)

This gives us the variance of the i-th residual

var(ϵ̂i) = (1 − hi,i)σ2

which can be estimated as

var(ϵ̂i) = (1 − hi,i)S2

where the sample variance S2 is given by (13).

The internally Studentised residual of the i-th point

t̂i = ϵ̂i√
var(ϵ̂i)

= ϵ̂i

S
√

1 − hii
∼ T(n − m − 1)

Based on our model assumptions, t̂i follows a Student’s T distribution
with n − m − 1 degrees of freedom. When we perform residual analysis
we look for behaviour indicating departure from this assumption.
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4. Model fit – leverage and influence (*)

The externally (deleted) Studentised residual of the i-th point

d̂i = ϵ̂i

S(i)
√

1 − hii
∼ T(n − m − 2)

where S(i) is the estimate S recalculated having excluded data point i .

Based on our model assumptions, d̂i follows a Student’s T distribution
with n − m − 2 degrees of freedom. We look for departures from this
assumption when performing residual analysis.

To measure the influence of data points we use the internally deleted and
externally deleted versions of the Studentised residuals to define Cook’s
D and DFITS respectively.

The description of these measures, and threshold values indicating
potential points of influence, are contained in Lecture 3 Notes.
Essentially, if points of influence are identified they should be removed,
the model re-run and analysed in comparison to the original.
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4. Model fit – collinearity

When adding an extra independent variable to a regression model we run
the risk that this variable is related to independent variables already in
the model.

This can impact adversely on everything from the regression parameter
estimates to the statistical tools developed to analyse model fit and to
check model assumptions.

We even lose the intuitive interpretation of the parameter as the predicted
increase in the dependent variable for a unit increase in the independent
variable, all other independent variables remaining unchanged.

The most extreme form of this phenomenon is when one independent
variable is linearly dependent on the others.
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4. Model fit – collinearity

Consider the case where there are m independent variables. The j-th
independent variable Xj is linearly dependent if it can be expressed as

Xj =
m∑

k=1,k ̸=j
ckXk

where ck are constants, i.e. as a linear combination of the other
independent variables.

In this case, the inverse of the matrix XT X , used in (10) to calculate β̂,
does not exist.

At least for this extreme case we will be aware of the problem – the
parameter estimates will not compute.

However, sometimes the dependence will be more subtle and we may not
be aware of the potential problem.
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4. Model fit - collinearity and variance inflation factors

One way to approach the issue is to use the suspect independent variable
as the dependent variable in a regression against the remaining
independent variables, looking for R2 to be very close to one.

If we label the value of R2 returned by this regression model as R2
j , we

can define the variance inflation factor (VIF) of the j-independent
variable as

VIFj = 1
1 − R2

j
.

As a rule of thumb, the j-th independent variable should be considered as
potentially collinear if VIFj > 5 and collinear if VIFj > 10.
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4. R example

Consider the data set cars.csv (available on Canvas) and the task of
developing a regression model with fuel consumption as the dependent
variable, measured for scaling reasons as gallons per one hundred miles
(scaling the data also scales the model parameter estimates).

Potential independent variables include
car weight measured in thousands of lbs
engine displacement
engine horsepower measured in tens of hp.

The first step is to visually inspect the relationship between the
dependent variable and each of the independent variables, checking for
linear relationships that are suitable for such modelling.

If none are apparent, consider possible data transformations, examples of
which were given in Lecture 2 Notes.
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4. R example

The following scatter plots are computed.

Each dependent/independent variable scatter plot shows a linear
relationship.
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4. R example

We decide to use horsepower and weight as the dependent variables.

R returns the following Coefficients table.

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.12850 0.15356 0.837 0.403
hp10 0.19392 0.02133 9.093 <2e-16 ***
weight1000 0.88727 0.09567 9.275 <2e-16 ***

The estimated model is

ĝallons = 0.128 + 0.194 × horsepower
10 + 0.887 × weight

1000

with T-tests showing the statistical significance of the model parameters.
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4. R example

Summary statistics of model fit are also provided.

Residual standard error: 0.8304 on 389 degrees of freedom
(15 observations deleted due to missingness)

Multiple R-squared: 0.7522, Adjusted R-squared: 0.751
F-statistic: 590.5 on 2 and 389 DF, p-value: < 2.2e-16

We see that the regression model captures 75.2% of the total variation
and that the F-test allows the hypothesis that the non-intercept
parameters are zero to be rejected (as we also saw from the T-tests).

> summary(aov(mod1))
Df Sum Sq Mean Sq F value Pr(>F)

hp10 1 755.0 755.0 1094.97 <2e-16 ***
weight1000 1 59.3 59.3 86.02 <2e-16 ***
Residuals 389 268.2 0.7
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4. R example

We then consider adding displacement to the model but wonder about
possible collinearity between this and the other independent variables –
indeed, perhaps between them all. We investigate this with a correlation
analysis.

> library(’Hmisc’)
> cars_cor <- as.matrix(cbind(cars$engine, cars$hp10, cars$weight1000))
> colnames(cars_cor)<-c("engine displacement", "horsepower", "vehicle
weight")
> cars_cor_res<-rcorr(cars_cor, type="pearson")
> round(cars_cor_res$r,3)

engine displacement horsepower vehicle weight
engine displacement 1.000 0.897 0.933
horsepower 0.897 1.000 0.859
vehicle weight 0.933 0.859 1.000
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4. R example

> round(cars_cor_res$P,3)
engine displacement horsepower vehicle weight

engine displacement NA 0 0
horsepower 0 NA 0
vehicle weight 0 0 NA

We see this to be the case, with high Pearson’s Correlation coefficients
and very significant rejection of the zero correlation hypotheses.
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4. R example

Although correlated, we still need to know whether this correlation is
strong enough to call into question the regression model returned. We
request a variance inflation analysis.

> mod2 <- lm(gallons100 ˜ hp10 + weight1000 + engine, data =
cars)
> summary(mod2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.413388 0.236368 1.749 0.0811 .
hp10 0.173493 0.024888 6.971 1.36e-11 ***
weight1000 0.728051 0.138674 5.250 2.51e-07 ***
engine 0.002068 0.001306 1.583 0.1142
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4. R example

We can also request a variance inflation analysis.

> vif(mod2)
hp10 weight1000 engine

5.154281 7.951901 10.691926

We see that VIFdisplacement > 10, which is above the threshold indicating
collinearity strong enough to disturb the model.

We also note weak collinearity for the other independent variables with
VIFhorsepower , VIFweight > 5.

Therefore we leave the model as is and do not enter displacement as an
additional independent variable.

36 / 37



References I

Hosmer, D. W. and Lemeshow, S. (2000). Applied Logistic Regression.
2nd edition.

37 / 37


	References

