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5. Lecture outline

Topics:
model selection

problem setup
school performance example

setup
selection from all possible models
forward selection
backward elimination
stepwise regression
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5. Model selection

We have now been introduced to the basics of linear regression and know
enough to

1 propose a model
2 build a model
3 analyse in term of fit and satisfaction of assumptions.

Of these we have had a good look at the second and third on the list.

Our exposure to the first has been limited to examples in multiple
regression requiring the selection of independent variables from a limited
number of alternatives, and to simple linear regression where the choice
was even more straightforward.

In this lecture we look more closely at this and develop tools for model
selection in more complicated settings.

For more details see Chapter 15 of Draper and Smith (1998).
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5. Model selection

In practical situations, the models we design have to satisfy competing
principles.

On the one hand, we want them to be as accurate as possible. On the
other, we would like them to be a simple as possible.

The need for accuracy is obvious. The need for simplicity, essentially,
relates to cost, be it the cost of equipment, staff or even delay.

Even if simplicity was not a desirable feature, we know from the problem
of collinearity that the model with all potential independent variables
included may not even be viable, let alone the best amongst alternatives.
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5. Model selection

The examples of model selection we have encountered involved only a
small number of potential independent variables, allowing the analysis of
the alternatives to be conducted in an ad-hoc manner.

However, in practical situations we often have to choose the independent
variables from a very large set of potential variables.

In these situations, an ad hoc approach is infeasible because of the sheer
number of alternative models to consider.

We need a system, a set of rules and instructions that when followed
lead to the selection of the best model from possible alternatives.

Even better would be a system that can be automated.
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5. Model selection - problem setup

Consider a task involving the identification of the best-performing model
from those that can be constructed with combinations of independent
variables selected from a set of size m.

Let x be the m-dimensional vector of possible independent variables.

The best model could be one of many, ranging from the null model

Ŷ |x = β̂0

to the maximal model

Ŷ |x = β̂0 +
m∑

j=1
β̂jxj

and every simple and multiple regression model in between.
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5. Model selection - problem setup

The problem is that there are 2m possible combinations of independent
variables and therefore 2m possible regression models to test.

The number of possible models grows exponentially as the dimension m
increases.

This is an example of the curse of dimensionality that renders some
numerical tools, proven in low dimensions, infeasible in high dimensions.

Each of the model selection systems we consider has a method of
navigating, or iterating, through the possible models and for comparing
one against another.
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5. School performance example - setup

The process of model selection relies to a large extent on theory already
developed, so we illustrate the main ideas with an example

Consider the problem of finding the best performing regression model for
predicting school-average student test performance.

The response (or dependent variable) is
mean student test score (Y or score)

and potential predictors (independent variables)
staff salaries per pupil (x1 or sal)
% white-collar fathers (x2 or dad)
socioeconomic status (x3 or ses)
teachers’ mean score (x4 or teach)
mothers’ mean education level (x5 or mumed).

Data is available in verbal.csv on Canvas.
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5. School performance example - setup

After collecting the sample data (Xi,1, . . . , Xi,5, Yi), we look to
characterise the relationships between the variables, hoping to spot linear
relationships as we seek to fit a plane.
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5. School performance example - setup

From the scatter plot we spot seemingly strong positive relationships
between the sample data dependent variable Yi (scorei) and sample data
independent variables Xi,2 (dadi), X1,3 (sesi), and Xi,5 (mumed).

This visual analysis is confirmed by correlation analysis of the sample data

corr(Yi , Xi,1) = corr(scorei , sali) = 0.192
corr(Yi , Xi,2) = corr(scorei , dadi) = 0.753
corr(Yi , Xi,3) = corr(scorei , sesi) = 0.927
corr(Yi , Xi,4) = corr(scorei , teachi) = 0.334
corr(Yi , Xi,5) = corr(scorei , mumedi) = 0.732.

Seeing potential for collinearity between x2 (dad) and x3 (ses), we look
at their sample correlation

corr(Xi,2, Xi,3) = corr(dadi , sesi) = 0.827

which although high, may not be high enough to trigger a VIF (variance
inflation factor) warning.
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5. School performance example - setup

In all there are 25 = 32 possible models, ranging from the null model to
the maximal model.

We look at four possible selection methods:
selection from all possible models
forward selection
backward elimination
stepwise regression.
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5. School performance example - selection from all

The obvious way to ensure the best performing model from a set is
identified is to test them all. Using the strict interpretation of the
selection from all method, the best performing model is the one with
the best ranking statistic.

The ultimate barrier to this method is the curse of dimensionality
mentioned earlier, but with only 32 models to choose from this is not an
issue here.

Even when feasible, this method still produces many models for analysis
with no prescriptive method to do so.

If not applied strictly, many statistical properties of each model must be
compared which, given the often conflicting information they provide, can
lead to selection being performed in an ad hoc or subjective manner.

In this example we use R2
adj and the p-value from the F-test as ranking

statistics.
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5. School performance example - selection from all

Data from all models (but null) is summarised below.

> library(’olsrr’)
> mod1 <- lm(score ˜ ., data = verbal)
> ols_step_all_possible(mod1)
Index N Predictors R-Square Adj. R-Square Mallow’s Cp
3 1 1 ses 0.85962771 0.851829254 5.002821
2 2 1 dad 0.56761278 0.543591266 48.694760
5 3 1 mumed 0.53571268 0.509918939 53.467726
4 4 1 teach 0.11132200 0.061950995 116.966026
1 5 1 sal 0.03697606 -0.016525270 128.089834
-----------------------------------------------------------------------
13 6 2 ses teach 0.88734850 0.874095385 2.855174
14 7 2 ses mumed 0.86180687 0.845548856 6.676771
10 8 2 dad ses 0.86020753 0.843761359 6.916067
7 9 2 sal ses 0.86007615 0.843614519 6.935725
11 10 2 dad teach 0.65497310 0.614381699 37.623710
15 11 2 teach mumed 0.59599405 0.548463939 46.448290
12 12 2 dad mumed 0.57561917 0.525692012 49.496826
6 13 2 sal dad 0.57083444 0.520344375 50.212728
9 14 2 sal mumed 0.53820829 0.483879856 55.094327
8 15 2 sal teach 0.11213031 0.007675058 118.845084
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5. School performance example - selection from all

19 16 3 sal ses teach 0.90071101 0.882094325 2.855845
25 17 3 ses teach mumed 0.88884972 0.868009037 4.630559
22 18 3 dad ses teach 0.88738875 0.866274139 4.849152
20 19 3 sal ses mumed 0.86222800 0.836395753 8.613760
23 20 3 dad ses mumed 0.86216960 0.836326405 8.622498
16 21 3 sal dad ses 0.86067265 0.834548777 8.846475
17 22 3 sal dad teach 0.66622665 0.603644148 37.939928
24 23 3 dad teach mumed 0.65590099 0.591382431 39.484877
21 24 3 sal teach mumed 0.60260264 0.528090632 47.459498
18 25 3 sal dad mumed 0.57813337 0.499033377 51.120646
-----------------------------------------------------------------------
29 26 4 sal ses teach mumed 0.90185831 0.875687195 4.684183
26 27 4 sal dad ses teach 0.90096690 0.874558069 4.817558
30 28 4 dad ses teach mumed 0.89224918 0.863515622 6.121924
27 29 4 sal dad ses mumed 0.86255877 0.825907778 10.564269
28 30 4 sal dad teach mumed 0.66696870 0.578160357 39.828901
-----------------------------------------------------------------------
31 31 5 sal dad ses teach mumed 0.90643105 0.873013562 6.000000
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5. School performance example - selection from all

Note:
You can request the coefficients in each model by using
ols_step_all_possible_betas(mod1)

.
We can also use regsubsets function in leaps package which gives
the best subset of each size according to some selection criteria.
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5. School performance example - selection from all

Let’s see how far we get selecting the best performing model as the
regression with the highest R2

adj with p value less than 0.05 (regression is
significant).

1st Choice: R2
adj = 0.882

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.11951 9.03643 1.341 0.199
sal -1.73581 1.18290 -1.467 0.162
ses 0.55321 0.04907 11.273 5.06e-09 ***
teach 1.03582 0.40479 2.559 0.021 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

Residual standard error: 1.997 on 16 degrees of freedom
Multiple R-squared: 0.9007,Adjusted R-squared: 0.8821
F-statistic: 48.38 on 3 and 16 DF, p-value: 3.011e-08

If not we have to decide what to do with x1 (sal), which is insignificant
(p = 0.162). Should it be removed or does it contribute to the regression
assumptions being satisfied?
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5. School performance example - selection from all
2nd Choice: R2

adj = 0.876
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.52853 12.34376 1.258 0.2276
sal -1.71421 1.21571 -1.410 0.1789
ses 0.58246 0.08612 6.763 6.38e-06 ***
teach 1.02494 0.41645 2.461 0.0265 *
mumed -0.52545 1.25481 -0.419 0.6813
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

Residual standard error: 2.051 on 15 degrees of freedom
Multiple R-squared: 0.9019,Adjusted R-squared: 0.8757
F-statistic: 34.46 on 4 and 15 DF, p-value: 2.133e-07

This model is next in the ranking, but now we have two variables, x1
(sal) and x5 (mumed), that are insignificant. This is hardly an
improvement over the previous model, which had only one insignificant
variable and a higher R2

adj.

Note that this model is formed by adding a variable to the 1st Choice
model.
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5. School performance example - selection from all
3rd Choice: R2

adj = 0.875
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.535220 9.781866 1.179 0.257
sal -1.755821 1.224347 -1.434 0.172
ses 0.538487 0.090308 5.963 2.6e-05 ***
teach 1.052506 0.426037 2.470 0.026 *
dad 0.006525 0.033145 0.197 0.847
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

Residual standard error: 2.06 on 15 degrees of freedom
Multiple R-squared: 0.901,Adjusted R-squared: 0.8746
F-statistic: 34.12 on 4 and 15 DF, p-value: 2.281e-07

This model is third in the ranking, but again we have two variables, this
time x1 (sal) and x2 (dad), that are insignificant. This model is inferior
to the 1st Choice.

Note that this model is formed by adding a variable to the 1st Choice
model.
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5. School performance example - selection from all

4th Choice: R2
adj = 0.874

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.58268 9.17541 1.589 0.1304
ses 0.54156 0.05004 10.822 4.81e-09 ***
teach 0.74989 0.36664 2.045 0.0566 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

Residual standard error: 2.064 on 17 degrees of freedom
Multiple R-squared: 0.8873,Adjusted R-squared: 0.8741
F-statistic: 66.95 on 2 and 17 DF, p-value: 8.705e-09

Now looking at the fourth on the list, once more there is an insignificant
variable, x4 (teach), albeit with a p-value not too far from the 0.05
significance level. (p = 0.057). But if we are going break rules we might
as well stay with the 1st Choice model.

Note that this model is formed by removing a variable from the 1st
Choice model.
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5. School performance example - selection from all

5th Choice: R2
adj = 0.852

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 33.32280 0.52800 63.11 < 2e-16 ***
ses 0.56033 0.05337 10.50 4.2e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

Residual standard error: 2.239 on 18 degrees of freedom
Multiple R-squared: 0.8596,Adjusted R-squared: 0.8518
F-statistic: 110.2 on 1 and 18 DF, p-value: 4.199e-09

It has taken until fifth in the ranking before finding a model with no
insignificant variables, and this one is a simple linear regression.

Note that this model is formed by removing a variable from the 4th
Choice model.
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5. School performance example - selection from all

What can be learned from attempting to use a measure like R2
adj to rank

the performance of all models in this example?
1 Easy to be in a situation requiring some statistics to be either

ignored or treated inconsistently.
2 Moving between models in the ranking involved adding or removing

independent variables.

The second point hints at a different approach to model selection, one
based on choosing a particular model as a starting point (often the null
or maximal model) and adding or deleting independent variables until
some condition is met.

The final stop in such an iterative process is the model selected as best
performing.
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5. School performance example - selection from all

One such approach could be to start with the significant simple regression
model with the highest R2

adj. At each iteration the variable associated
with the largest increase in R2

adj (keeping the regression significant) is
added to the model. The process stops the first time R2

adj falls.

The models considered under this scheme are summarised below.

This method involves selection from a subset of all regressions.
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5. School performance example - selection from all

The principle argument used against the selection from all method
becomes weaker as processing power increases. However, in activities
where processing power is already fully deployed (e.g. quantitative
trading), this argument still stands.

Rather than R2
adj, the selection from all method can use Mallows Cp

statistic, Akaike Information Criterion (AIC) or Bayseian Information
Criterion (BIC) as the ranking statistic.

Don’t use the selection from all method with R2 as the ranking statistic.
This results in the maximal model being selected (recall that R2 increases
with m).
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5. School performance example - forward selection

The first method is forward selection, where a provisionally optimal
model Ŷ ∗ is augmented with the most significant additional predictor at
each iteration.

It is defined by the following sequential steps:
1 set Ŷ ∗ as null model (no predictors)
2 construct all possible models by adding one predictor to Ŷ ∗

if all models are insignificant (F-test) GO TO 3
if not set Ŷ ∗ as model with most significant new predictor (T-test)
and REPEAT 2

3 the optimal model is current iteration of Ŷ ∗. STOP.
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5. School performance example - forward selection

In R, we can use the command
ols_step_forward_p(mod1, penter = 0.5, details = T) to
perform forward selection. Using this method, the model selected has
independent variable x3 (ses) with R2

adj = 0.852, the 5th Choice using
selection from all.
Final Model Output
------------------

Parameter Estimates
----------------------------------------------------------------------------------------

model Beta Std. Error Std. Beta t Sig lower upper
----------------------------------------------------------------------------------------
(Intercept) 33.323 0.528 63.112 0.000 32.214 34.432

ses 0.560 0.053 0.927 10.499 0.000 0.448 0.672
----------------------------------------------------------------------------------------
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5. School performance example - backward selection

Another method is backward selection, where a provisionally optimal
model Ŷ ∗ is contracted by removing the least significant predictor at
each iteration.

It is defined by the following sequential steps:
1 set Ŷ ∗ as maximal model (all predictors)
2 identify least significant predictor (T-test) in Ŷ ∗

if all are significant GO TO 3
if not construct model by removing identified predictor, set Ŷ ∗ as
this model and REPEAT 2

3 the optimal model is current iteration of Ŷ ∗. STOP.
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5. School performance example - backward selection

In R, we can use the command
ols_step_backward_p(mod1, prem = 0.1, details=T) to perform
forward selection. Using this method, the model selected has independent
variables x3 (ses) and x4 (teach) with R2

adj = 0.874, the 4th Choice using
selection from all.
Final Model Output
------------------

Parameter Estimates
----------------------------------------------------------------------------------------

model Beta Std. Error Std. Beta t Sig lower upper
----------------------------------------------------------------------------------------
(Intercept) 14.583 9.175 1.589 0.130 -4.776 33.941

ses 0.542 0.050 0.896 10.822 0.000 0.436 0.647
teach 0.750 0.367 0.169 2.045 0.057 -0.024 1.523

----------------------------------------------------------------------------------------
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5. School performance example - backward selection

Elimination Summary
-----------------------------------------------------------------------

Variable Adj.
Step Removed R-Square R-Square C(p) AIC RMSE
-----------------------------------------------------------------------

1 dad 0.9019 0.8757 4.6842 91.7366 2.0510
2 mumed 0.9007 0.8821 2.8558 89.9690 1.9974
3 sal 0.8873 0.8741 2.8552 90.4943 2.0641

-----------------------------------------------------------------------
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5. School performance example - backward selection

Note that we remove variables if p > 0.1 (prem=0.1). Setting this to the
more conservative p > 0.050001 (removal threshold must be set greater
than significance level) results in the selection of the model with
independent variable x3 (ses) and R2

adj = 0.852, the 5th Choice using
selection from all and the same model using forward selection.
Elimination Summary
-----------------------------------------------------------------------

Variable Adj.
Step Removed R-Square R-Square C(p) AIC RMSE
-----------------------------------------------------------------------

1 dad 0.9019 0.8757 4.6842 91.7366 2.0510
2 mumed 0.9007 0.8821 2.8558 89.9690 1.9974
3 sal 0.8873 0.8741 2.8552 90.4943 2.0641
4 teach 0.8596 0.8518 5.0028 92.8943 2.2392

-----------------------------------------------------------------------
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5. School performance example - stepwise regression

The final iterative method is stepwise regression.

It is defined by the following sequential steps:
1 set Ŷ ∗ as chosen initial model (often null or maximal)
2 construct all possible models by adding one predictor to Ŷ ∗

if all models are insignificant (F-test) GO TO 4
if not set Ŷ ∗ as model with most significant new predictor (T-test)
and GO TO 3

3 identify least significant predictor (T-test) in Ŷ ∗

if all are significant GO TO 4
if not construct model by removing identified predictor, set Ŷ ∗ as
this model and GO TO 2

4 the optimal model is current iteration of Ŷ ∗. STOP.
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5. School performance example - stepwise regression

In R, we can use the command
ols_step_both_p(mod1, pent = 0.05, prem = 0.1, details = T))
to perform stepwise selection.

Using this method, the model selected has independent variable x3 (ses)
with R2

adj = 0.852, the 5th Choice using selection from all, also the model
selected using forward selection and also the model using backward
selection (if default exit threshold is lowered from 0.1).

Parameter Estimates
----------------------------------------------------------------------------------------

model Beta Std. Error Std. Beta t Sig lower upper
----------------------------------------------------------------------------------------
(Intercept) 33.323 0.528 63.112 0.000 32.214 34.432

ses 0.560 0.053 0.927 10.499 0.000 0.448 0.672
----------------------------------------------------------------------------------------
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