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6. Lecture outline

Topics:
categorical predictors

dummy variables
interaction effects
examples
partial sum squares and F-test

data set
two categories
three categories
two category with interaction

See Chapter 14 of Draper and Smith (1998).
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6. Categorical predictors

So far we have built regression models using continuous predictors.

Now we will allow for discrete effects in our models, effects often
represented by categorical predictors.

But categorical variables can’t be used directly in regression models
because regression is a numerical procedure and categorical variables
don’t have to be numeric.

A numerical proxy is required, a discrete variable taking values
corresponding to defined states of the categorical predictor.

Suitable for the purposes of regression is the dummy variable.
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6. Categorical predictors – dummy variables

Consider developing a multiple regression model including a categorical
predictor defined for two categories A and B.

There are many (actually infinite) alternatives as to how one would define
such a variable, but the most common is to specify a variable z described
by

z =
{

0, category A
1, category B.

Using z and the other m independent variables we look to fit the model

E[Y |x1, . . . , xm, z ] = β0 +
m∑

j=1
βjxj + γz

=
{

β0 +
∑m

j=1 βjxj , z = 0
β0 + γ +

∑m
j=1 βjxj , z = 1

which represents two planes separated by a parallel shift of size γ.
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6. Categorical predictors – dummy variables

Now instead of two categories, suppose there are three.

A naive approach would be to redefine z as

z =


0, category A
1, category B
2, category C

and refit the model previously described.

This might be OK if γ is the common difference between the three planes
associated with the three categories, but what if it isn’t?
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6. Categorical predictors – dummy variables

The correct approach is to use two dummy variables, z1 and z2, defined as

(z1, z2) =


(0, 0), category A
(1, 0), category B
(0, 1), category C

and then fit the model

E[Y |x1, . . . , xm, z1, z2] = β0 +
m∑

j=1
βjxj + γ1z1 + γ2z2

=


β0 +

∑m
j=1 βjxj , (z1, z2) = (0, 0)

β0 + γ1 +
∑m

j=1 βjxj , (z1, z2) = (1, 0)
β0 + γ2 +

∑m
j=1 βjxj , (z1, z2) = (0, 1)

which are three planes separated by parallel shifts of size γ1 and γ2.
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6. Categorical predictors – dummy variables

More generally, if there are M categories then M − 1 dummy variables
z1, . . . , zM−1 are required.

These variables are defined to take values according to

(z1, z2, . . . , zM−2, zM−1) =



(0, 0, . . . , 0, 0), category A
(1, 0, . . . , 0, 0), category B

...
...

(0, 0, . . . , 1, 0), category M − 1
(0, 0, . . . , 0, 1), category M

.

The category associated with

(z1, z2, . . . , zM−2, zM−1) = (0, 0, . . . , 0, 0)

is called the reference category.
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6. Categorical predictors – dummy variables

We then use least squares to fit the model

E[Y |x1, . . . , xm, z1, . . . , zM−1]

= β0 +
m∑

j=1
βjxj +

M−1∑
j=1

γjzj (1a)

=



β0 +
∑m

j=1 βjxj , (z1, z2, . . . , zM−2, zM−1) = (0, 0, . . . , 0, 0)
β0 + γ1 +

∑m
j=1 βjxj , (z1, z2, . . . , zM−2, zM−1) = (1, 0, . . . , 0, 0)

...
...

β0 + γM−2 +
∑m

j=1 βjxj , (z1, z2, . . . , zM−2, zM−1) = (0, 0, . . . , 1, 0)
β0 + γM−1 +

∑m
j=1 βjxj , (z1, z2, . . . , zM−2, zM−1) = (0, 0, . . . , 0, 1)

(1b)

which are M planes separated by parallel shifts of size γ1, γ2, . . . , γM−1.
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6. Categorical predictors – dummy variables

Using the estimated parameters determined by least squares gives the
fitted model

Ŷ |x1, . . . , xm, z1, . . . , zM−1 = β̂0 +
m∑

j=1
β̂jxj +

M−1∑
j=1

γ̂jzj . (2)

We see that the model in (1a) is equivalent to the M simpler models in
(1b).

However, if we fit the model (2) and compare it to the M simpler models
fitted to the sample data partitioned by category, we will see that we get
slightly different estimates of the parameters.

This is due to the non-linear properties of the residuals.
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6. Interaction effects

The M − 1 dummy variables introduced in the last section are designed
to capture categorical effects independently of the effect of the other m
predictors in the model.

However, it is possible that the effects of these other predictors differ
according to category.

To capture these effects in the model requires interaction terms.

To keep the notation simple, we will illustrate interaction in a model with
one continuous predictor x and one categorical predictor defined on two
states (A and B), represented in the model by the dummy variable z .
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6. Interaction effects

The model in this situation is

E[Y |x , z ] = β0 + β1x + γz + δxz

=
{

β0 + β1x , z = 0 (category A)
β0 + γ + (β1 + δ)x z = 1 (category B)

,

where the effect of the interaction term z is to change the slope of line.

This simple situation can be generalised to m continuous predictors and a
categorial predictor defined on M states, represented in the model by
M − 1 dummy variables.
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6. Interaction effects

The terms involving the numerical and categorical predictors are known
as the main effects and the interaction terms as the interaction effects.

Two points worth noting:
if an interaction effect is deemed statistically-significant then the
main effects variable involved in the interaction MUST be included
in the model;
interaction effects do not necessarily have to involve both numerical
and categorical predictors – they can involve combinations of any
type of predictor.
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6. Partial sum squares and F-test

Recall a predictor taking three (or more) categories requires two (or
more) dummy variables and that these dummies must be treated as a
group. As the T-test can no longer be used to test significance, we
require an alternative – the partial F-test .

This test is quite general, and can be used on any groups of predictors,
discrete and continuous alike. For this reason we use the β-notation used
previously when describing the F-test.

Simple partition of the set parameters
Consider the partition of parameters {β0, . . . , βq} and {βq+1, . . . , βm}.

By partition we mean

{β0, . . . , βq}
⋂

{βq+1, . . . , βm} = ∅

and
{β0, . . . , βq}

⋃
{βq+1, . . . , βm} = {β0, . . . , βm}.
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6. Partial sum squares and F-test

The starting point is the full model decomposition of sum squares
(i.e., decomposition from F-test on the model of m predictors)

SST = SSR + SSE

but we go further and decompose SSR as

SSR = SSRq + SSRm−q (3)

where SSRq is the total sum squares of the regression model on the first
q predictors.
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6. Partial sum squares and F-test

The mean square regression for the partial F-test is

MSRm−q = SSRm−q
m − q (4)

and the mean square error

MSE = SSE
n − m − 1

where the denominators are the relevant degrees of freedom.

If the usual assumptions are satisfied and if

βq+1 = · · · = βm = 0

then the RV
Fm−q = MSRm−q

MSE (5)

follows an F(m-q,n − m − 1) distribution.
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6. Partial sum squares and F-test

The partial F-test procedure is a minor modification of the F-test
procedure.

Partial F-test hypotheses

H0: βq+1 = · · · = βm = 0
HA: at least one βj ̸= 0.

Test statistic
The test statistic f ∗

m−q is the value that the RV Fm−q, given in (5), takes
for each particular test.
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6. Partial sum squares and F-test

Rejection of null hypothesis
H0 is rejected in favour of HA at significance level α if

f ∗
m−q > f1−α

where f1−α is the quantile satisfying

Prob(Fm−q > f1−α) = α.

Equivalently, H0 is rejected if the p-value

p = Prob(Fm−q > f ∗
m−q) < α.

The null hypothesis H0 is retained in any other case.
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6. Examples – data set

In what follows we use the data set mathsdata.csv, available on Canvas,
which includes the variables

school – categorical variable taking values 1, 2 and 3
sex – categorical variable taking values 0 (male) and 1 (female)
eg – categorical variable taking values 0 (white) and 1 (African
Carribean)
mathatt1 – numerical variable representing maths attainment at end
of year 1
curric – numerical variable representing curriculum coverage during
year 2
mathatt2 – numerical variable representing maths attainment at end
of year 2.
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6. Examples – data set

Correlation information involving the numerical variables mathatt1,
curric and mathatt2 is displayed below.
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6. Examples – data set

> round(mathsdata_cor_res$r,3)
Maths attainment, end of yr 1 Curriculum coverage

Maths attainment, end of yr 1 1.000 0.596
Curriculum coverage 0.596 1.000
Maths attainment, end of yr 2 0.744 0.657

Maths attainment, end of yr 2
Maths attainment, end of yr 1 0.744
Curriculum coverage 0.657
Maths attainment, end of yr 2 1.000

> round(mathsdata_cor_res$P,3)
Maths attainment, end of yr 1 Curriculum coverage

Maths attainment, end of yr 1 NA 0
Curriculum coverage 0 NA
Maths attainment, end of yr 2 0 0

Maths attainment, end of yr 2
Maths attainment, end of yr 1 0
Curriculum coverage 0
Maths attainment, end of yr 2 NA
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6. Examples – two categories

The first regression model we build uses the independent categorical
variable sex and dependent variable mathatt2.

As sex is defined as a zero/one variable it is already in the form required
of a dummy variable and can be used directly in the estimated regression
model

̂mathatt2 = β̂ + γ̂sex .

The Coefficients Table from R is displayed below.

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 32.826 2.012 16.317 < 2e-16 ***
sex -9.889 3.141 -3.148 0.00324 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’
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6. Examples – two categories

Extracting the parameter estimates gives the fitted model

̂mathatt2 = β̂ + γ̂sex
= 32.826 − 9.889sex

=
{

32.826, sex = 0 (male)
22.937, sex = 1 (female)

where the estimates have the interpretations
β̂ = 32.826 as the predicted year 2 maths attainment score for males
(the reference category)
γ̂ = −9.889 as the predicted difference in year 2 maths attainment
score for females compared to males.

With very low p-values, both parameters must be deemed statistically
significant which means that there is a statistically significant difference
in predicted year 2 maths attainment scores between males and females.
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6. Examples – two categories

For such a simple example we do not require regression and could have
obtained the same result via other statistical means, as the output below
confirms.
> leveneTest(mathsdata$mathatt2, as.factor(mathsdata$sex))
Levene’s Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)
group 1 3.2785 0.07832 .

37
---

> t.test(mathatt2 ˜ sex, data = mathsdata, var.equal=T)

Two Sample t-test

data: mathatt2 by sex
t = 3.1483, df = 37, p-value = 0.003241
alternative hypothesis: true difference in means between group 0 and group 1 is not
equal to 0
95 percent confidence interval:

3.524516 16.252658
sample estimates:
mean in group 0 mean in group 1

32.82609 22.93750
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6. Examples – three categories

The second regression model we build uses the independent categorical
variable school and dependent variable mathatt2.

Unlike the previous example, school is not in the optimal form for
capturing the categorical effect in a regression model (refer earlier
discussion).

We define the dummy variables sc2 and sc3 as

(sc2, sc3) =


(0, 0), school 1
(1, 0), school 2
(0, 1), school 3

and estimate the model

̂mathatt2 = β̂ + γ̂1sc2 + γ̂2sc3.
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6. Examples – three categories

From the Coefficients table

(Intercept) 33.643 2.754 12.218 2.28e-14 ***
factor(school)2 -8.976 4.402 -2.039 0.0488 *
factor(school)3 -6.830 3.771 -1.811 0.0784 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

we extract the parameter estimates and write the fitted model as

̂mathatt2 = β̂ + γ̂1sc2 + γ̂2sc3
= 33.643 − 8.976sc2 − 6.830sc3

=


33.643, (sc2, sc3) = (0, 0) (school 1)
24.667, (sc2, sc3) = (1, 0) (school 2)
26.813, (sc2, sc3) = (0, 1) (school 3)

.
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6. Examples – three categories

The parameter estimates have the interpretations
β̂ = 33.643 as the predicted year 2 maths attainment score for
school 1 (the reference category)
γ̂1 = −8.976 as the predicted difference in year 2 maths attainment
score for school 2 compared to school 1
γ̂2 = −6.830 as the predicted difference in year 2 maths attainment
score for school 3 compared to school 1

of which their associated p-values allow β̂ and γ̂1 to be deemed
statistically significant (at 0.05 level) but not γ̂2.

From the estimates γ̂1 and γ̂2 we might infer 2.146 as the predicted
difference in year 2 maths attainment score for school 3 compared to
school 2.

The easiest way to test this formally is to fit a modified regression model
with either school 2 or 3 as the reference category.
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6. Examples – three categories

To determine whether there is a statistically significant “school” effect we
can refer to the ANOVA results copied below.

> mod2 <- lm(mathatt2 ˜ factor(school), data = mathsdata)
> anova(mod2)
Analysis of Variance Table

Response: mathatt2
Df Sum Sq Mean Sq F value Pr(>F)

factor(school) 2 545.3 272.64 2.5682 0.09065 .
Residuals 36 3821.7 106.16
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

With an insignificant p-value (at 0.05 level) associated with the F-test we
conclude there is no evidence that school makes a difference (defined with
school 1 as reference category) to mean year 2 maths attainment scores.

Note: ANOVA involving categorical variables is sometimes referred to as
analysis of covariance (ANCOVA).
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6. Examples – two category with interaction

For the final example we model the dependent variable mathatt2 using
the main effect predictors mathatt1 and sex .

We also include the interaction term mathatt1 × sex , which is in
appropriate form as the zero/one variable sex can be used directly as a
dummy variable in the model we seek to fit

̂mathatt2 = β̂0 + β̂1mathatt1 + γ̂sex + δmathatt1 × sex .

R output is reproduced below.

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 16.58660 3.31108 5.009 1.56e-05 ***
mathatt1 0.95040 0.17496 5.432 4.33e-06 ***
sex -4.75849 5.19321 -0.916 0.366
mathatt1:sex -0.08754 0.33107 -0.264 0.793
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’
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6. Examples – two category with interaction

From the coefficients table we extract the parameter estimates and write
the fitted model as

̂mathatt2 = β̂0 + β̂1mathatt1 + γ̂sex + δmathatt1 × sex
= 16.587 + 0.950mathatt1 − 4.758sex − 0.088mathatt1 × sex

=
{

16.587 + 0.950mathatt1, sex = 0 (male)
11.829 + 0.862mathatt1, sex = 1 (female)

.

Of the parameter estimates, only β̂0 and β̂1 can be deemed statistically
significant.

The interaction effect and the main effect variable associated with this
term are deemed statistically insignificant.

From here we would refit the model with the interaction term excluded
and see if the model improves.
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