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8. Lecture outline

Topics:
review of ordinary least squares (OLS)
generalised least squares (GLS)
weighted least squares (WLS)

example 1
example 2

OLS model
WLS model

example 3
OLS model
WLS model

example 4
OLS model
WLS model

See Chapter 9 of Draper and Smith (1998).
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8. Review of Ordinary Least Squares

Multiple regression uses sample data (X , Y ) that can be described as

Y = Xβ + ϵ (1)

with

Y =


Y1
...

Yn

 , X =


1 X1,1 · · · X1,m
...

...
. . .

...
1 Xn,1 · · · Xn,m

 , β =


β0
...

βm

 and ϵ =


ϵ1
...

ϵn

 .

The method we have been using has required imposing the critical
condition

ϵ ∼ N(0, σ2I) (2)

implying the zero-mean, normally-distributed errors
1 have constant variance σ2

2 are uncorrelated with each other.
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8. Review of Ordinary Least Squares

The models we have been fitting have been based on
E[Y |X ] = Xβ

which follows from the assumption E[ϵ] = 0.

The fitted data approximation is
Ŷ = Xβ̂ (3)

with the least squares parameter approximation of β given by
β̂ = (XT X)−1XT Y . (4)

This estimate exists as long as the inverse (XT X)−1 exists, which can be
guaranteed if the columns of X are linearly independent.

The result is the model

Ŷ |x1, . . . , xm = β̂0 +
m∑

j=1
β̂jxj (5)

where β̂j is the (j + 1)-th component of β̂.
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8. Review of Ordinary Least Squares

Necessary for the statistical analysis we have applied has been the
decomposition of the sum of squares

SST = SSR + SSE (6)

where, letting 1 be square matrix of ones, the total sum of squares

SST =
n∑

i=1
(Yi − Y )2 = Y T Y − 1

nY T 1Y , (7)

the total sum of squares due to the regression

SSR =
n∑

i=1
(Ŷi − Y )2 = β̂T XT Y − 1

nY T 1Y (8)

and the sum of squared errors

SSE = ϵ̂T ϵ̂. (9)

The residual
ϵ̂ = Y − Ŷ (10)

is the estimate of ϵ.
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8. Review of Ordinary Least Squares

Much of our work has been analysis of the residuals ϵ̂ to determine if
their behaviour is consistent with the assumption ϵ ∼ N(0, σ2I).

This has involved not only testing for normality, but also serial correlation
and non-constant variance.

Where non-compliance has been identified, we have attempted to rectify
the situation through transformation of the sample data (X , Y ) and/or
the addition of additional predictors.

Sometimes, despite best efforts, it is not possible to salvage an Ordinary
Least Squares (OLS) model.

Where the problems are due to correlation and heteroscedasticity
(non-constant variance) in the residuals an alternative method is
available, the method of Generalised Least Squares (GLS).
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8. Generalised Least Squares

Again consider the model
Y = Xβ + ϵ (11)

but relax the assumption in (2) to

ϵ ∼ N(0, σ2Σ) (12)

where Σ is a symmetric, positive-definite matrix; i.e. for any z ∈ Rn

zT Σz > 0. (13)

The form of Σ is quite flexible and permits
1 unequal diagonal entries describing heteroscedasticity
2 non-zero off-diagonal entries describing non-zero correlation.

The condition (13) allows for the matrix factorisation

Σ = ΓΓT (14)

where Γ is invertible (e.g. via Cholesky decomposition).
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8. Generalised Least Squares

Multiplying (11) by the inverse of Γ gives

Γ−1Y = Γ−1Xβ + Γ−1ϵ (15)

which after the re-labeling

Y = Γ−1Y , X = Γ−1X and e = Γ−1ϵ (16)

becomes
Y = Xβ + e. (17)

By (12), the error term appearing above has the properties

E[e] = E[Γ−1e] = Γ−1 E[e] = 0

and

covar(e) = covar(Γ−1ϵ) = Γ−1 covar(ϵ)(Γ−1)T

= σ2Γ−1Σ(Γ−1)T = σ2Γ−1ΓΓT (Γ−1)T = σ2Γ−1Γ(Γ−1Γ)T

= σ2I.
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8. Generalised Least Squares

Such transformations of normally distributed RVs preserves their
normality so the error term in (17)

e ∼ N(0, σ2I). (18)

We see that the factorisation of Σ in (14) and use in the data
transformations (16) has turned the GLS problem (11) into the OLS
problem (17).

The solution to the transformed problem is the approximation

Ŷ = Xβ̂ (19)

with least squares estimate of β,

β̂ = (XTX)−1XTY, (20)

obtained in the usual fashion.

Of course, the estimate exists only if the inverse (XTX)−1 exists, which
can be guaranteed if the columns of X are linearly independent.
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8. Generalised Least Squares

To transform the solution back to the original coordinate system
left-multiply (19) by Γ so that

ΓŶ = ΓXβ̂

which by (16) becomes
Ŷ = Xβ̂ (21)

with

β̂ = (XTX)−1XTY = (XT Σ−1X)−1XT Σ−1Y (22)

following after various matrix manipulations.

The result is the fitted model

Ŷ |x1, . . . , xm = β̂0 +
m∑

j=1
β̂jxj (23)

where β̂j is the (j + 1)-th component of β̂ described in (22).
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8. Generalised Least Squares

As with every other regression model we have built, the fitted GLS model
requires further analysis.

The model must be tested for statistical significance using F-tests and/or
T-tests on the individual parameters.

Potential points of influence need to be identified using Cook’s D or
DFITs.

Comparison in terms of R2
adj needs to be conducted where multiple

models are being considered.

Most importantly, residual analysis need to be undertaken. This is done
in terms of the errors e in the transformed model (17) according to the
assumption (18).

The assumption of the residuals in the transformed GLS model is the
same for those in the OLS models we have been studying - we look for
departures from this assumption in exactly the same way.
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8. Weighed Least Squares

Weighted least squares (WLS) is a particular case of GLS where the
assumption on the errors

ϵ ∼ N(0, σ2Σ) (24)

involves a covariance matrix of the form

Σ =


1

w1
0 · · · 0

0 1
w2

· · · 0
...

...
. . .

...
0 0 · · · 1

wn


so that the variance of the i-th error ϵi = σ2

wi
for all i ∈ {1, . . . , n}.

The correlation between the residuals (ϵi , ϵk), i ̸= k, is zero, as indicated
by the zero off-diagonal components in Σ.

So the residuals may have non-constant variance, but they must still be
independent.
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8. Weighed Least Squares

The decomposition of Σ in (14)

Σ = ΓΓT

is trivial with

Γ =


1√w1

0 · · · 0
0 1√w2

· · · 0
...

...
. . .

...
0 0 · · · 1√wn


as is the inverse

Σ−1 =


w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...
0 0 · · · wn


used to find β̂ in (22).
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8. Weighed Least Squares

For WLS models, the components of (16) have the simpler forms

X =


√w1

√w1X1,1 · · · √w1X1,m√w2
√w2X2,1 · · · √w2X2,m

...
...

. . .
...√wn

√wnXn,1 · · · √wnXn,m

 ,

Y =


√w1Y1√w2Y2

...√wnYn

 and e =


√w1ϵ1√w2ϵ2

...√wnϵn

 ,

the last of which can be used to modify the residuals produced by R
before conducting the usual analysis (R only produces raw residuals when
the WLS option is used).
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8. Weighed Least Squares

The major difficulty in WLS, indeed in GLS, is identification of the matrix
Σ.

This issue did not arise in our earlier study of OLS as by definition Σ = I.

There are a variety of estimation techniques available, which we do not
go into here.

An alternative is to start with an OLS model and then inspect the
residuals for patterns suggestive of particular forms of Σ.

In this way, WLS regression is seen as a version of the data
transformation techniques under OLS described in the previous lecture.

The difference is that the form of transformation is suggested by
inspection of the residuals, not the sample data.
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8. Weighted least squares - example 1

Recall the toy example from Lecture 7, where we generated sample data
(Xi , Yi), i ∈ {1, . . . , 500}, according to the rule

Yi = 1 + 2Xi + ϵi , ϵ ∼ N(0, I).

The sample data is plotted below.

(Data for all examples is available in “WLS.sav” on Canvas).
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8. Weighted least squares - example 1

In this case there is no need for WLS and we can build an OLS model.

> mod1 <- lm(y1 ˜ x, data = dat)
> summary(mod1)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.94916 0.09303 10.20 <2e-16 ***
x 2.02275 0.04022 50.29 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

Residual standard error: 1.038 on 498 degrees of freedom
Multiple R-squared: 0.8355,Adjusted R-squared: 0.8352
F-statistic: 2529 on 1 and 498 DF, p-value: < 2.2e-16

> durbinWatsonTest(mod1)
lag Autocorrelation D-W Statistic p-value

1 -0.03014957 2.059866 0.548
Alternative hypothesis: rho != 0
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8. Weighted least squares - example 1

Given the nature of the toy data, we expect no problems with the
residuals.
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8. Weighted least squares - example 2

Now let the errors ϵ ∼ N(0, Σ) where

Σ =


X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · Xn

 .

The sample data is plotted below.

20 / 44



8. Weighted least squares - example 2 (OLS model)

For an OLS model, R produces the following output.

> mod2 <- lm(y2 ˜ x, data = dat)
> summary(mod2)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.02124 0.12646 8.076 5.09e-15 ***
x 1.99546 0.05468 36.497 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

Residual standard error: 1.412 on 498 degrees of freedom
Multiple R-squared: 0.7279,Adjusted R-squared: 0.7273
F-statistic: 1332 on 1 and 498 DF, p-value: < 2.2e-16

> durbinWatsonTest(mod2)
lag Autocorrelation D-W Statistic p-value

1 -0.01506471 2.029039 0.728
Alternative hypothesis: rho != 0
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8. Weighted least squares - example 2 (OLS model)

Increasing variance of the residuals is revealed in the scatter plots.

22 / 44



8. Weighted least squares - example 2 (WLS model)

The covariance matrix can be composed as

Σ =


X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · Xn



=


√

X1 0 · · · 0
0

√
X2 · · · 0

...
...

. . .
...

0 0 · · ·
√

Xn




√
X1 0 · · · 0
0

√
X2 · · · 0

...
...

. . .
...

0 0 · · ·
√

Xn


= ΓΓT

and the WLS model weights

wi = 1
Xi

.
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8. Weighted least squares - example 2 (WLS model)

Using these weights, R produces the following output.

> wt2 <- 1/dat$x
> mod2_wls <- lm(y2 ˜ x, data = dat, weights = wt2)
> summary(mod2_wls)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.95155 0.04237 22.46 <2e-16 ***
x 2.03024 0.03900 52.05 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.037 on 498 degrees of freedom
Multiple R-squared: 0.8448,Adjusted R-squared: 0.8444
F-statistic: 2710 on 1 and 498 DF, p-value: < 2.2e-16

> durbinWatsonTest(mod2_wls)
lag Autocorrelation D-W Statistic p-value

1 -0.01417072 2.027391 0.774
Alternative hypothesis: rho != 0
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8. Weighted least squares - example 2 (WLS model)

Unfortunately, R does not produce the weighted residuals, so these must
be calculated.

The weighted raw residuals are given by

ê = Γ−1ϵ̂

or component wise
êi = 1√

Xi
ϵ̂i .

From this the Student T version of the standardised weighted residuals t̂i
can be calculated as

t̂i = êi − ê

Sê
,

with the sample mean ê and standard deviation Sê available from R.
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8. Weighted least squares - example 2 (WLS model)

> summary(mod2_wls$residuals)
Min. 1st Qu. Median Mean 3rd Qu. Max.

-4.12904 -0.91325 0.03236 0.00000 0.83919 4.32077
> sd(mod2_wls$residuals)
[1] 1.410866
> weighted_mod2_resid<-mod2_wls$residuals*sqrt(wt2)
> summary(weighted_mod2_resid)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.628982 -0.736788 0.029813 0.001275 0.728310 3.088846
> sd(weighted_mod2_resid)
[1] 1.036405
> std_weighted_mod2_resid<-
(weighted_mod2_resid-mean(weighted_mod2_resid))/sd(weighted_mod2_resid)
> summary(std_weighted_mod2_resid)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.53786 -0.71214 0.02754 0.00000 0.70150 2.97912
> sd(std_weighted_mod2_resid)
[1] 1
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8. Weighted least squares - example 2 (WLS model)

The Student T version of the standardised residuals, t̂i , behave as
assumed, as can be seen from the plots below.

27 / 44



8. Weighted least squares - example 3

Now let the errors ϵ ∼ N(0, Σ) where

Σ =


X 2

1 0 · · · 0
0 X 2

2 · · · 0
...

...
. . .

...
0 0 · · · X 2

n

 .

The sample data is plotted below.
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8. Weighted least squares - example 3 (OLS model)

For an OLS model, R produces the following output.

> summary(mod3)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.08011 0.20117 5.369 1.22e-07 ***
x 1.96992 0.08698 22.648 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

Residual standard error: 2.246 on 498 degrees of freedom
Multiple R-squared: 0.5074,Adjusted R-squared: 0.5064
F-statistic: 512.9 on 1 and 498 DF, p-value: < 2.2e-16

> durbinWatsonTest(mod3)
lag Autocorrelation D-W Statistic p-value

1 -0.02138337 2.040964 0.736
Alternative hypothesis: rho != 0
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8. Weighted least squares - example 3 (OLS model)

All of the residual plots reveal violations of assumptions.
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8. Weighted least squares - example 3 (WLS model)

The covariance matrix can be composed as

Σ =


X 2

1 0 · · · 0
0 X 2

2 · · · 0
...

...
. . .

...
0 0 · · · X 2

n



=


X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · Xn




X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · Xn


= ΓΓT

and the WLS model weights

wi = 1
X 2

i
.
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8. Weighted least squares - example 3 (WLS model)

Using these weights, R produces the following output.

> wt3 <- 1/(dat$x)ˆ2
> mod3_wls <- lm(y3 ˜ x, data = dat, weights = wt3)
> summary(mod3_wls)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.99477 0.00667 149.15 <2e-16 ***
x 2.00364 0.04779 41.92 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

Residual standard error: 1.038 on 498 degrees of freedom
Multiple R-squared: 0.7792,Adjusted R-squared: 0.7788
F-statistic: 1758 on 1 and 498 DF, p-value: < 2.2e-16

> durbinWatsonTest(mod3_wls)
lag Autocorrelation D-W Statistic p-value

1 -0.02096808 2.040219 0.668
Alternative hypothesis: rho != 0

32 / 44



8. Weighted least squares - example 3 (WLS model)

Again, R does not produce the weighted residuals, so these must be
calculated.

The weighted raw residuals are given by

ê = Γ−1ϵ̂

or component wise
êi = 1

Xi
ϵ̂i .

The Student T version of the standardised weighted residuals, t̂i , can be
calculated as

t̂i = êi − ê

Sê
,

with the sample mean ê and standard deviation Sê available from R.
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8. Weighted least squares - example 3 (WLS model)

> summary(mod3_wls$residuals) # raw residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-7.39285 -1.04621 0.02688 0.01777 1.15229 7.82954
> sd(mod3_wls$residuals)
[1] 2.243883
> weighted_mod3_resid<-mod3_wls$residuals*sqrt(wt3)
> summary(weighted_mod3_resid)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.68311 -0.73086 0.03609 0.00000 0.70158 3.04010
> sd(weighted_mod3_resid)
[1] 1.037148
> std_weighted_mod3_resid<-
(weighted_mod3_resid-mean(weighted_mod3_resid))/sd(weighted_mod3_resid)
> summary(std_weighted_mod3_resid)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.5870 -0.7047 0.0348 0.0000 0.6764 2.9312
> sd(std_weighted_mod3_resid)
[1] 1
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8. Weighted least squares - example 3 (WLS model)

The Student T version of the standardised residuals, t̂i , behave as
assumed, as can be seen from the plots below.
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8. Weighted least squares - example 4

Finally let the errors ϵ ∼ N(0, Σ) where

Σ =


X 4

1 0 · · · 0
0 X 4

2 · · · 0
...

...
. . .

...
0 0 · · · X 4

n

 .

The sample data is plotted below.
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8. Weighted least squares - example 4 (OLS model)

For an OLS model, R produces the following output.
> mod4 <- lm(y4 ˜ x, data = dat)
> summary(mod4)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.2761 0.6004 2.125 0.034 *
x 1.8620 0.2596 7.173 2.68e-12 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’
1

Residual standard error: 6.703 on 498 degrees of freedom
Multiple R-squared: 0.09364,Adjusted R-squared: 0.09182
F-statistic: 51.45 on 1 and 498 DF, p-value: 2.677e-12

> durbinWatsonTest(mod4)
lag Autocorrelation D-W Statistic p-value

1 -0.05586149 2.108398 0.264
Alternative hypothesis: rho != 0 37 / 44



8. Weighted least squares - example 4 (OLS model)

All of the residual plots reveal violations of assumptions.
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8. Weighted least squares - example 4 (WLS model)

The covariance matrix can be composed as

Σ =


X 4

1 0 · · · 0
0 X 4

2 · · · 0
...

...
. . .

...
0 0 · · · X 4

n



=


X 2

1 0 · · · 0
0 X 2

2 · · · 0
...

...
. . .

...
0 0 · · · X 2

n




X 2
1 0 · · · 0

0 X 2
2 · · · 0

...
...

. . .
...

0 0 · · · X 2
n


= ΓΓT

and the WLS model weights

wi = 1
X 4

i
.
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8. Weighted least squares - example 4 (WLS model)

Using these weights, R produces the following output.

> wt4 <- 1/(dat$x)ˆ4
> mod4_wls <- lm(y4 ˜ x, data = dat, weights = wt4)
> summary(mod4_wls)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.0001116 0.0001474 6782.9 <2e-16 ***
x 1.9846842 0.0149593 132.7 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.038 on 498 degrees of freedom
Multiple R-squared: 0.9725,Adjusted R-squared: 0.9724
F-statistic: 1.76e+04 on 1 and 498 DF, p-value: < 2.2e-16

> durbinWatsonTest(mod4_wls)
lag Autocorrelation D-W Statistic p-value

1 -0.05528315 2.10741 0.252
Alternative hypothesis: rho != 0
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8. Weighted least squares - example 4 (WLS model)

R does not produce the weighted residuals, so these must be calculated.

The weighted raw residuals are given by

ê = Γ−1ϵ̂

or component wise
êi = 1

X 2
i

ϵ̂i .

The Student T version of the standardised weighted residuals, t̂i , can be
calculated as

t̂i = êi − ê

Sê
,

with the sample mean ê and standard deviation Sê available from R.
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8. Weighted least squares - example 4 (WLS model)

> summary(mod4_wls$residuals) # raw residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-25.118555 -1.651478 0.007525 0.030229 2.334118 25.249810
> sd(mod4_wls$residuals)
[1] 6.697527
> weighted_mod4_resid<-mod4_wls$residuals*sqrt(wt4)
> summary(weighted_mod4_resid)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.65044 -0.71983 0.04747 0.01504 0.73823 3.06874
> sd(weighted_mod4_resid)
[1] 1.036449
> std_weighted_mod4_resid<-
(weighted_mod4_resid-mean(weighted_mod4_resid))/sd(weighted_mod4_resid)
> summary(std_weighted_mod4_resid)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.57174 -0.70902 0.03129 0.00000 0.69776 2.94631
> sd(std_weighted_mod4_resid)
[1] 1

42 / 44



8. Weighted least squares - example 4 (WLS model)

The Student T version of the standardised residuals, t̂i , behave as
assumed, as can be seen from the plots below.
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