


37252 Regression and Linear Models

Lab 7: Weighted Least Squares Regression

This lab is marked out of 24.

Please save your file in PDF format with name
37252_Lab7_Surname_FirstName

Due: 12 noon Wednesday 1 May 2024

In this week’s lab we use regression in a different way, this time to compare the accuracy of estimates of flock count made by two observers. The data are available in 37252_Lab7_data.csv which can be downloaded from Canvas.

The variables we now consider are summarised in the table below.

	Name
	Role
	Description

	
	response
	true flock count

	
	predictor
	estimated flock count observer 1

	
	predictor
	estimated flock count observer 2



Scenario.
Aerial survey methods have been used to estimate the number of snow geese in their summer range areas west of Hudson’s Bay in Canada. Small aircraft fly over the range, and when a flock of geese is spotted an experienced observer estimates the number of geese in the flock. The method can obviously be used for other types of birds, and in Australia for the numbers of kangaroos or buffaloes in a herd. But is it a reliable method? One study investigated this by using two independent observers in the aeroplane, backing up their observations with a photograph. The photo was later used to obtain an accurate count of the number of birds.


(a) Obtain scatter plots of  versus  and of  versus  (a matrix scatter plot will do). If you carried out a simple linear regression of  versus  or  versus , what problems would you expect [1 mark]? Why is it appropriate to take  as the response variable [1 mark]? Assuming high quality observers, why is simple linear regression more appropriate than a multiple linear regression using  and  as independent variables [1 mark]?

> photodat <- read.csv("~/2024_37252/Labs/Lab7/37252_Lab7_data.csv")
> pairs(~ photo + obs1 + obs2, data = photodat)
[image: ]

In both cases the variation is increasing. This increasing variance in the data will be reflected in the fitted model residuals (with respect to the predictors), contrary to the assumptions of OLS [1 mark].

The observer’s estimate is used to gauge the true count, i.e. estimate → true. In a modelling sense this is estimate as predictor, true as response allowing testing of the significance of estimate in this role [1 mark].

If we did model with two observers who were good at their jobs, we should expect high correlation between both predictors and potential multi-collinearity problems [1 mark].


Fit a simple linear regression model of  versus  and (separately) of  versus .

> mod1_obs1 <- lm(photo ~ obs1, data = photodat)
> mod1obs1.st.resid<-rstandard(mod1_obs1)
> plot(photodat$obs1, mod1obs1.st.resid, xlab = "Obs1", ylab = "Standardised residuals")

> mod1_obs2 <- lm(photo ~ obs2, data = photodat)
> mod1obs2.st.resid<-rstandard(mod1_obs2)
> plot(photodat$obs2, mod1obs2.st.resid, xlab = "Obs2", ylab = "Standardised residuals")

(b) What problems do the residual scatter plots show about the fit of the simple linear regression models [1 mark]? What action could you take [1 mark]?

[image: ][image: ]

In both models there appears to be increasing variance in the residuals as the independent variable increases [1 mark].
We could solve this by fitting a weighted regression model (or by transforming the data appropriately) [1 mark].


Since the variability in the residuals seems to be increasing proportionally with the independent variable, we can try WLS.

Let  represent the residuals from the simple OLS model with  as predictor, and  the residuals from the model with  as predictor.

Suppose

and


(c) What would the weights be for the WLS regression of  versus  [1 mark]? What would we multiply the data by if we wish to transform the model directly [1 mark]?

To use the R WLS feature, use the weights  for  [1 mark].

To weight the data and use OLS, multiple the -th observation by  (including the “1” term for the intercept parameter) [1 mark].

Running a WLS regression
Before we can run the WLS regression models we need to create the weight variables.

> wt1 <- 1/photodat$obs1
> mod2_obs1 <- lm(photo ~ obs1, data = photodat, weights = wt1)
> summary(mod2_obs1)
> resid1_WLS <- mod2_obs1$residuals*sqrt(wt1)
> st.resid1_WLS <- (resid1_WLS - mean(resid1_WLS))/sd(resid1_WLS)
> plot(photodat$obs1, resid1_WLS, xlab = "Obs1", ylab = "Standardised WLS residuals")

> wt2 <- 1/photodat$obs2
> mod2_obs2 <- lm(photo ~ obs2, data = photodat, weights = wt2)
> summary(mod2_obs2)
> resid2_WLS <- mod2_obs2$residuals*sqrt(wt2)
> st.resid2_WLS <- (resid2_WLS - mean(resid2_WLS))/sd(resid2_WLS)
> plot(photodat$obs2, resid2_WLS, xlab = "Obs2", ylab = "Standardised WLS residuals")


(d) For both WLS models, analyse the Student-T version of the standardised, weighted residuals using scatter plots involving the independent variables. Has weighting improved the behaviour of the residuals [2 marks]?


[image: ][image: ]

For both models, weighting has removed the increasing variance [2 marks].


(e) For both WLS models, describe the results of the two-sided T-test with null hypothesis  [2 marks]. Explain, in the context of these models, why we are interested in such tests [2 marks].
 
> summary(mod2_obs1)

Call:
lm(formula = photo ~ obs1, data = photodat, weights = wt1)

Weighted Residuals:
     Min       1Q   Median       3Q      Max 
-10.6968  -1.9668  -0.1675   2.7977   7.2061 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  8.93337    4.47915   1.994   0.0525 .  
obs1         1.14451    0.09255  12.366  9.4e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.831 on 43 degrees of freedom
Multiple R-squared:  0.7805,	Adjusted R-squared:  0.7754 
F-statistic: 152.9 on 1 and 43 DF,  p-value: 9.402e-16
 
> summary(mod2_obs2)

Call:
lm(formula = photo ~ obs2, data = photodat, weights = wt2)

Weighted Residuals:
    Min      1Q  Median      3Q     Max 
-5.0823 -1.7633 -0.1905  1.6731  8.4908 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   9.8330     3.5455   2.773  0.00817 ** 
obs2          0.8403     0.0571  14.718  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.851 on 43 degrees of freedom
Multiple R-squared:  0.8344,	Adjusted R-squared:  0.8305 
F-statistic: 216.6 on 1 and 43 DF,  p-value: < 2.2e-16

Hypothesis tests
For obs2 we can reject the null hypothesis  but the result is borderline insignificant for obs1. [2 marks].

Why this test?
If the observers had perfect accuracy the population models would be


Therefore we hope to retain the null  so that when  we have . If this is not the case then the observers are making some linear bias in their estimates [2 marks].


(f) For both WLS models, perform a two-sided T-test with null .  Write down the null and alternative hypotheses [2 marks], the test-statistic [2 marks] and the result of the test with reason [2 marks]. Explain, in the context of these models, why we are interested in such tests [2 marks].

Model with  
Hypotheses
H0:	
HA:	
[1 mark]
Test statistic and p-value
Test stat	.
P-value:	
[1 mark]

Test result
Since  we retain the null hypothesis [1 mark].
Model with  
Hypotheses
H0:	
HA:	
[1 mark]
Test statistic and p-value
Test stat	.
P-value:	
[1 mark]
Test result
Since  swe reject the null hypothesis [1 mark].


Why this test?
If the observers had perfect accuracy the population models would be


Therefore we hope to retain the null  so that when  we have . If this is not the case then the observers are making some multiplicative bias in their estimates [2 marks].


(g) With reference to your answers in (e) and (f), which observer should be preferred [1 mark]? Why [2 marks]?

Observer 1 [1 mark].

The hypothesis  was rejected for obs1 but borderline insignificant for obs2. [1 mark].

The hypothesis  was also rejected for the model with  as predictor, and retained for the model with  as predictor. So Observer 1 should be preferred [1 mark].
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