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9. Lecture outline

Topics:
introduction
multinomial distribution
Chi-square goodness-of-fit test
two-way tables

joint and marginal distributions
conditional distributions

Chi-square independence test
relative risks
odds and odds ratios

For the sections on Chi-square tests and two-way table analysis we have
relied on Chapter 14 of Wackerly et al. (2008).
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9. Introduction

In the remainder of the course we will look at logistic regression, a tool
for modelling categorical dependent variables.

The dependent variable of interest will be the log of odds.

In this lecture we lay the groundwork and describe how odds, and the
related odds ratios, arise in the context of two-way tables.

We also described the necessary statistical tools used in the analysis of
two-way tables.
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9. Multinomial distribution

Consider a categorical RV Z taking K possible states z1, . . . , zK .

Define pk = Prob(Z = zk) with the usual conditions 0 ≤ pk ≤ 1 and

K∑
k=1

pk = 1.

Let Z (1), . . . , Z (N) be N independent RVs drawn from this distribution
and define

Nk = #{n ∈ {1, . . . , N}|Z (n) = zk}

as the number of these RVs in state zk .

It should be clear that
K∑

k=1
Nk = N.
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9. Multinomial distribution

The RV (N1, . . . , NK ) is said to possess a multinomial distribution and
we write

(N1, . . . , NK ) ∼ Multinom(N, p1, . . . , pK ).

Each Nk possess a binomial distribution; i.e.

Nk ∼ Bin(N, pk) (1)

for k ∈ {1, . . . , K}.

We can use such RVs to describe a multinomial experiment
characterised by:

N independent trials
the result of each trial falling into one of K distinct categories or
cells
the quantity of interest being the number of trials Nk falling in the
k-th cell.
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9. Chi-square goodness-of-fit test

Using E[Nk ] = pkN, which follows from (1), it can be shown that for
large enough N the RV

X 2 =
K∑

k=1

(
Nk − E[Nk ]

)2

E[Nk ]

=
K∑

k=1

(
Nk − pkN

)2

pkN (2)

is approximately Chi-squared–distributed (we also need E[Nk ] ≥ 5 or
thereabouts – see pg. 715 Wackerly et al. (2008).

The degrees of freedom necessary to parameterise the distribution
depends on the form of the hypothesis test in which it is used.
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9. Chi-square goodness-of-fit test

A test that can be constructed using (2) as a test statistic involves
hypothesised values of pk .

Consider the hypotheses
H0: p1 = p∗

1 , . . . , pK = p∗
K

HA: at least one pk ̸= p∗
k .

Let x2
∗ be the test statistic, which is the value the RV (2) takes for this

particular test.

Also let χ2 ∼ ChiSquare(k − 1).

The null hypothesis H0 can be rejected at the α level of significance if

p = Prob(χ2 > x2
∗) < α.

We will use the results of this section to develop the Chi-square test of
independence.
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9. Two-way tables

The following table collects data from the British Household Panel
Survey, a survey collecting health-related data for respondents in Britain.

The data is broken down into two categories:
self-reported health (Health = 1 for very good, . . . , Health = 5 for
very poor)
visits to a GP (GP = 0 for infrequent, GP = 1 for frequent).

Sample data

9 / 26

124701
Pencil

124701
Pencil

124701
Pencil



9. Two-way tables – joint and marginal distributions

Define Ni,j as the observed cell count corresponding to
Health = i , GP = j ; e.g. N1,1 = 1351.

Also define
Ni,· =

∑
j

Ni,j and N·,j =
∑

i
Ni,j

so that, for instance, N1,· = 1543 and N·,1 = 3966.

Set the total observations N = 6223 and convert the frequency data into
percentages of total observations N.

Sample joint and marginal probabilities
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9. Two-way tables – joint and marginal distributions

The previous table defines the joint distribution of (Health, GP) as the
probabilities

pi,j := Prob(Health = i , GP = j)

so that, for instance, p1,1 = 0.2171.

The table also defines the marginal distribution of Health via

pi,· := Prob(Health = i) =
∑

j
pi,j

and the marginal distribution of GP via the probabilities

p·,j := Prob(GP = j) =
∑

i
pi,j

so that, for example, p1,· = 0.2480 and p·,1 = 0.6373.

Obviously these marginal probabilities sum to one.
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9. Two-way tables – conditional distributions

If we normalise the previous table so that the row probabilities sum to
one we get the following.

Sample conditional row probabilities

This table defines the conditional distribution of GP|Health; i.e.

Prob(GP = j |Health = i) = Prob(Health = i , GP = j)
Prob(Health = i) = pi,j

pi,·

so that, for example,

Prob(GP = 0|Health = 1) = p1,0
p1,·

= 0.2171
0.2480 = 0.8756.
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9. Two-way tables – conditional distributions

Of course, we can do the same thing with the columns.

Sample conditional column probabilities

This table defines the conditional distribution of Health|GP; i.e.

Prob(Health = i |GP = j) = Prob(Health = i , GP = j)
Prob(GP = j) = pi,j

p·,j

so that, for example,

Prob(Health = 1|GP = 0) = p1,0
p·,0

= 0.2171
0.6373 = 0.3406.
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9. Chi-square independence test

The Chi-square test of independence relies on a fundamental property
of independent RVs.

Let X , Y be independent categorical (or discrete numerical) RVs. Then
the joint probability of X , Y equals the multiple of their marginal
probabilities; i.e.

Prob(X = x , Y = y) = Prob(X = x) Prob(Y = y).

(Note: for continuous numerical RVs we need a slight modification.)

We can construct the table of joint probabilities Prob(Health, GP) under
the assumption of independence from the table Sample joint and
marginal probabilities table.

Define

p∗
i,j := Prob(Health = i) × Prob(GP = j) = pi,· × p·,j

as the joint probability under the assumption of independence.
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9. Chi-square independence test

For example, under the assumption of independence

p∗
1,1 = p1,· × p·,1 = 0.2480 × 0.6373 = 0.1580.

Proceeding in this manner results in the following table.

Independent joint and marginal probabilities
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9. Chi-square independence test

These probabilities can then be used to calculate the expected value of
the cell frequencies under independence, which we define as

N∗
i,j := E[Ni,j |Health, GP independent] ≡ E[Ni,j ] = N × p∗

i,j .

For example, the expected number of observations corresponding to
(Health = 1, GP = 0) is

N∗
1,1 = N × p∗

1,1 = 6223 × 0.1580 ≈ 983.

This procedure produces the following table.

Expected cell counts under independence
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9. Chi-square independence test

Under the assumption that Health and GP are independent we have

N∗
i,j ∼ Multinom(N, p∗

i,j).

The test statistic, derived from (2), takes the value

x2
∗ =

∑
i,j

(
Ni,j − E[Ni,j ]

)2

E[Ni,j ]
=

K∑
k=1

(
Ni,j − N∗

i,j
)2

N∗
i,j

≈ 1184

and is, under the assumption of independence, from a Chi-square
distribution with (5 − 1)(2 − 1) = 4 degrees of freedom.
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9. Chi-square independence test

We now formalise the Chi-square independent test.

Define the hypotheses
H0: Health and GP are independent
HA: Health and GP are not independent.

Let χ2 ∼ ChiSquare(4).

As
0.0 ≈ Prob(χ2 > 1184) < 0.05

we can reject H0 and conclude that Health and GP are not independent.
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9. Relative risks

We can use the conditional probabilities, calculated above, to calculate
Relative Risk (RR).

Reconsider the conditional probabilities Prob(GP|Health).

Sample conditional row probabilities

The RR for those with very poor health (Health = 5) visiting the GP
frequently (GP=1) compared to those with very good health
(Health = 1) is

Prob(GP = 1|Health = 5)
Prob(GP = 1|Health = 1) = 0.9231

0.1244 ≈ 7.42.
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9. Relative risks

Repeating this calculation for all Health = i gives the following table.

Relative risks

This gives the multiple over the baseline Health = 1 of the likelihood of
visiting the GP frequently.
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9. Odds and odds ratios

We can also use the conditional probabilities to define odds and odds
ratios.

Define
pi := Prob(GP = 1|Health = i).

Then given Health = i , the odds of visiting the GP frequently over
infrequently is given by

oddsi := pi
1 − pi

. (3)

The odds ratio for Health = i over the reference group Health = 1 is
given by

oddsRatioi,1 := oddsi
odds1

. (4)
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9. Odds and odds ratios

Applying this rule gives the following table.

Odds and odds ratios

We see, for instance, that the odds of those with very poor health visiting
the GP frequently are more than 84 times those with very good health.

22 / 26

124701
Pencil



9. Odds and odds ratios

Using Health = 1 as the reference group set

odds1 = p1
1 − p1

= eβ0 .

Also set the odds ratio for the group Health = 5
oddsRatio5,1 = eβ1 .

Then by (4)
odds5 = odds1 × oddsRatio5,1 = eβ0 × eβ1 .

This gives rise to the multiplicative model
pi

1 − pi
= eβ0 × eβ1xi , xi ∈ {0, 1},

the log of which

ln
( pi

1 − pi

)
= β0 + β1xi , xi ∈ {0, 1},

is the basis for the logistic regression with a two-state categorical
predictor.
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9. Odds and odds ratios

Recall that with the Chi-square test of independence we were able to
reject the null hypothesis that Health and GP were independent.

If we were not able to reject this hypothesis, then the conditional
probabilities

Prob(GP = j |Health = i) = Prob(Health = i , GP = j)
Prob(Health = i)

= Prob(Health = i) Prob(GP = j)
Prob(Health = i)

= Prob(GP = j) =
{

0.6373, j = 0
0.3627, j = 1

contradicting those in the table Sample conditional row probabilities.

Using these probabilities, oddsi would be the the same for all i and
oddsRatioi,1 = 1 for all i , giving us nothing to model with a logistic
regression.
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