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Abstract 

Fully homomorphic encryption (FHE) has experienced significant development and continuous breakthroughs 
in theory, enabling its widespread application in various fields, like outsourcing computation and secure multi-
party computing, in order to preserve privacy. Nonetheless, the application of FHE is constrained by its substantial 
computing overhead and storage cost. Researchers have proposed practical acceleration solutions to address these 
issues. This paper aims to provide a comprehensive survey for systematically comparing and analyzing the strengths 
and weaknesses of FHE acceleration schemes, which is currently lacking in the literature. The relevant researches con-
ducted between 2019 and 2022 are investigated. We first provide a comprehensive summary of the latest research 
findings on accelerating FHE, aiming to offer valuable insights for researchers interested in FHE acceleration. Secondly, 
we classify existing acceleration schemes from algorithmic and hardware perspectives. We also propose evaluation 
metrics and conduct a detailed comparison of various methods. Finally, our study presents the future research direc-
tions of FHE acceleration, and also offers both guidance and support for practical application and theoretical research 
in this field.
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Introduction
The exponential-growing volume of data and the rapid 
development of cloud computing facilitate outsourced 
computation of big data (Li et  al. 2022; Hanafizadeh 
2020). However, the collected data contains a large 
amount of sensitive and private information, which can 
lead to privacy disclosure. There exist cryptographic 
technologies to safeguard privacy, among which is fully 
homomorphic encryption (FHE). FHE is being explored 
for protecting data privacy and then is applied to many 
application scenarios, especially those involving sensitive 

data, such as healthcare, finance, and government (Bos 
et  al. 2014; Jiayi et  al. 2020 Deviani 2022). It plays an 
important role in the field of privacy protection (Dijk 
2020; Torres et al. 2014).

The concept of FHE was first proposed by Rivest et al. 
(1978) in 1978, but the first FHE scheme was proposed by 
Gentry (Craig Gentry: A fully homomorphic encryption 
scheme[M]. 2009) in 2009. He also proposed a method 
for constructing an FHE scheme, which means that a 
somewhat homomorphic encryption (SWHE) scheme 
can become an FHE scheme by using bootstrapping to 
add the noise refresh process. Based on this, research-
ers carried out a lot of researches on various methods of 
constructing an FHE scheme. The most representative 
schemes are BGV (Brakerski and Gentry 2014), FV (Fan 
and Vercauteren 2012), GSW (Gentry and Sahai 2013), 
and CKKS (Homomorphic Encryption for Arithmetic 
of Approximate Numbers 2017). In fact, FHE is just one 
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of homomorphic encryption (HE), which also includes 
partially homomorphic encryption (PHE) (Rivest et  al. 
1978; Gamal 1985; Paillier 1999) and (SWHE) (Andrew 
Chi-Chih Yao 1982; Sander et  al. 1999; Boneh et  al. 
2005). FHE allows infinite calculation and supports both 
homomorphic addition (HAdd) and homomorphic mul-
tiplication (HMult) on the ciphertext. The key strength 
of FHE is that it offers cryptographically-strong privacy 
guarantees, but these guarantees come at the cost of 
massive computational overhead. Thus, many research-
ers have shifted their study attention to FHE accelera-
tion. Although the FHE acceleration schemes have made 
good progress, there is still a lack of a summary of related 
works to support further development.

There are surveys about FHE. Moore et al. (2014) gave 
a brief introduction to the existing FHE acceleration 
schemes, which only include those based on the graphics 
processing unit (GPU) and field programmable gate array 
(FPGA). They did not make an analysis about them, and 
there was no discussion of CKKS acceleration scheme 
because it was not proposed at that time. Acar et  al. 
(2018) introduced the development history of HE and 
concluded the theories and details of various typical algo-
rithms of HE. At the same time, this paper also sorted out 
and compared the implementation libraries of some HE 
algorithms. Alaya et al. (2020) summarized different HE 
application ways and provide the application scenarios, 
such as medical treatment, image, and other fields. Wood 
et  al. (2021) provided an overview of the application of 
FHE in medicine and bioinformatics, along with descrip-
tions of how it can be realized by considering their dif-
ferent characteristics. Zhang et  al. (2022) took the first 
initiative to conduct a systematic study on the 14 FHE 
accelerators. They established a qualitative connection 
between different accelerators and performed testbed 
evaluations of representative open-source FHE accel-
erators to provide a quantitative comparison on them. 
But, similar to Moore et al. (2014), the summary of FHE 

acceleration scheme is insufficient. Marcolla et al. (2022) 
introduced the basic knowledge and security attributes of 
HE and further summarized the application scenarios of 
HE, such as machine learning, fog computing, and cloud 
computing. Moreover, it also introduced some libraries 
and tools for HE. However, these reviews neither referred 
to the FHE acceleration schemes nor provided a compre-
hensive summary of FHE acceleration schemes.

To bridge this gap, we collate existing studies and 
provide a comprehensive review of FHE acceleration 
schemes. In addition, we summarize and compare the 
related work in Table  1, which fully demonstrates the 
necessity of this survey. It is because no other survey has 
collated content similar to it.

The main limitation of the application of FHE is its per-
formance bottleneck, which means the huge cost of FHE 
can not satisfy the demand for practical application. As 
a result, a large number of studies began to study how 
to accelerate it. At present, there mainly exist two ways. 
On the one hand, it focuses on algorithm optimization to 
accelerate the FHE scheme itself. On the other hand, it 
uses hardware to accelerate it, such as central processing 
unit (CPU), GPU, FPGA, etc. Figure  1 displays the dis-
tribution of papers focusing on FHE acceleration across 

Table 1 Comparison of related works

The ‘√’ indicates that the work satisfies the attribute represented in this column. The same is true for the meaning of ‘√’ in the other tables presented in this paper

References Year Theory 
summary

Scheme 
summary

Application 
summary

Acceleration summary

Algorithm 
optimization

Hardware 
optimization

Moore et al. (2014) 2014 Insufficient

Acar and Hidayet Aksu (2018) 2018 √ √

Alaya et al. ( 2020) 2020 √

Wood and Najarian (2021) 2020 √

Zhang et al. (2212) 2022 Insufficient

Marcolla et al. (2022) 2022 √ √

Ours 2023 √ √
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Fig. 1 The distribution of papers focusing on FHE acceleration 
across various hardware platforms during the last four years
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various hardware platforms during the last four years. 
Notably, a significant portion of the papers center on 
FHE acceleration via GPU and FPGA. It is speculated 
that while GPU may not represent the optimal hardware 
platform for FHE acceleration, GPU can be used rela-
tively simply to accelerate FHE. Therefore, in the early 
stages of FHE acceleration research, it was more com-
mon for researchers to utilize GPU and achieve superior 
acceleration effects compared to using CPU. Figure  2 
highlights the trend of papers on FHE acceleration based 
on different hardware platforms in recent years, thereby 
lending further support to the aforementioned specula-
tion. The earlier stages of FHE acceleration research fea-
tured a greater emphasis on acceleration schemes based 
on GPU. However, later FPGA and ASIC were found to 
be more suitable hardware for FHE acceleration in terms 
of acceleration efficiency. This has resulted in an increas-
ing number of papers on FHE acceleration based on them 
year after year.

We review and summarize the current mainstream 
FHE acceleration schemes proposed in the last four 
years, with the following contributions:

• In this paper, we present a comprehensive summary 
and synthesis of the latest research findings on accel-
erating FHE between 2019 and 2022. The primary 
objective is to provide valuable insights for research-
ers interested in the state-of-the-art developments 
and future directions of FHE acceleration.

• Our study provides a comprehensive classification 
of existing acceleration methods for FHE from two 
perspectives: algorithmic acceleration and hard-
ware acceleration. Further classification is conducted 
based on these two main categories, which is detailed 
in Sects.  "Algorithm acceleration schemes" and 
"Hardware acceleration schemes". Finally, we pro-
pose corresponding evaluation metrics to conduct a 
detailed comparison of various acceleration methods, 
aiming to offer guidance and inspiration for future 

research in this field. In particular, algorithmic-based 
methods achieve optimization by reducing the num-
ber of operations required for encryption, decryp-
tion, and homomorphic operations. Meanwhile, 
hardware-based methods focus on designing spe-
cialized hardware that can perform FHE operations 
more efficiently. Through this comprehensive com-
parison, we aim to provide a deeper understanding of 
the strengths and weaknesses of different FHE accel-
eration schemes.

• This paper explores the future research directions 
of FHE acceleration and provides guidance and sup-
port for practical application and theoretical research 
in this field. We identify various potential research 
directions, such as exploring new FHE algorithms, 
designing novel hardware architectures, and inves-
tigating hybrid acceleration schemes that combine 
algorithmic and hardware-based methods. By high-
lighting these potential research directions, we aim to 
encourage further advancements in FHE acceleration 
and its application to various fields for privacy pres-
ervation.

The rest of this paper is organized as follows. Sect. "Pre-
liminary" introduces the basic knowledge of FHE accel-
eration schemes, including the knowledge related to 
algorithms and hardware. Sects.  "Algorithm acceleration 
schemes" and "Hardware acceleration schemes" respec-
tively present the algorithm-based and hardware-based 
acceleration schemes. Following this, Sect.  "Challenges 
and future research directions" gives the challenges and 
future research directions of FHE acceleration. Finally, 
Sect. "Conclusion" provides the conclusion.

Preliminary
This section introduces the basic knowledge of FHE 
acceleration, including algorithms and hardware, in order 
to better understand FHE acceleration schemes discussed 
in Sects.  "Algorithm acceleration schemes" and "Hard-
ware acceleration schemes". Sect.  "Algorithms about 
FHE" focuses on those operations related to FHE per-
formance bottlenecks. Sect.  "Hardware platforms about 
FHE" focuses on hardware platforms exploited to acceler-
ate FHE schemes, including CPU, GPU, FPGA, and appli-
cation specific integrated circuit (ASIC).

Algorithms about FHE
This section describes operations related to the per-
formance bottlenecks of FHE, including polynomial 
addition, polynomial multiplication, number theoretic 
transform (NTT), and bootstrapping.
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Fig. 2 The trend of papers on FHE acceleration based on various 
hardware from 2019 to 2022
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(1) Polynomial multiplication

Polynomial multiplication is an important homomor-
phic operation and the multiplication of very large degree 
polynomials is one of the major performance bottlenecks 
for the FHE implementations. NTT can be explored for 
FHE acceleration, which is done by first converting inputs 
to the NTT domain. In the NTT domain, the polynomial 
operation can be converted to a coefficient-wise multipli-
cation, which is also called dot multiplication. The coeffi-
cient-wise multiplication has high parallelism and is very 
suitable for executing on the hardware platform, which 
has a lot of parallel computing resources. The overhead 
of coefficient-wise multiplication is negligible when 
being compared to NTT and inverse NTT (INTT). They 
respectively represent the transformation of the polyno-
mial multiplication input into the NTT domain and the 
reversal of the dot multiplication result, the overhead of 
coefficient-wise multiplication.

(2) Polynomial addition

Like polynomial multiplication, polynomial addition is 
another important homomorphic operation in the homo-
morphic evaluation and is the second most frequently 
used operation after polynomial multiplication. Besides, 
the accumulation part of relinearization also needs poly-
nomial addition. The polynomial addition can be carried 
out in the Chinese remainder theorem (CRT) domain, 
which provides sufficient parallelism so that the hard-
ware with parallel computing resources can be used to 
accelerate it.

(3) NTT

NTT is extensively employed for FHE implementa-
tion because it enables fast polynomial multiplication 
by reducing the complexity of polynomial multiplication 
from O(n2) to O(nlogn) . NTT is defined as the discrete 
fourier transform over Zq . An N-point NTT operation 
transforms an n element vector a to another an n element 
vector a . And the NTT can be naturally used for fast 
cyclic convolution.

(4) Bootstrapping algorithm

Bootstrapping algorithm is used to refresh the noise 
of ciphertext after a homomorphic evaluation when 
the entire noise budget of a ciphertext is consumed. 
It reduces the noise back to a lower level by running 
decryption homomorphically in order to allow an infinite 
number of computations of ciphertext. This is also the 
difference between FHE and SWHE. The bootstrapping 

operation consists of three major steps, including a linear 
transform, a polynomial evaluation, and another linear 
transform. All these steps consist of the same homomor-
phic operations, such as HAdd, HMult, and rotation.

Hardware platforms about FHE
Sect.  "Hardware platforms about FHE" describes the 
hardware used to accelerate FHE schemes. It analyses 
the characteristics of hardware in order to determine 
the optimal hardware platform for accelerating FHE 
schemes.

(1) CPU

Compared with GPU, FPGA, and other hardware plat-
forms, the acceleration effect achieved by CPU is not 
obvious. CPU itself is not designed to perform heavy data 
computing tasks. It can provide a degree of parallel com-
puting power through multithreading, but this is far from 
enough to meet the needs of FHE acceleration. Therefore, 
most studies prefer to combine it with GPU or FPGA to 
realize the acceleration of FHE. However, CPU has the 
advantage of being a more general hardware platform 
with a wide range of applications.

(2) GPU

The customization flexibility that GPU can provide is 
between CPU and FPGA. General-purpose computing 
on GPU yields greater efficiency when standardized by 
price compared to FPGA and ASIC. GPU is a powerful 
but highly specialized device that requires careful coding 
to take full advantage of the large amount of parallelism it 
offers. Specifically, the programming model and memory 
organization are quite different from the CPU. Compared 
with FPGA, it is easier to develop programs. In addition, 
there is a compute unified device architecture (CUDA) 
toolkit to facilitate program development.

(3) FPGA

FPGA is a chip that can be reconfigurable circuitry. It 
is a hardware reconfigurable architecture, so it can pro-
vide more customization flexibility. Both CPU and GPU 
belong to the von Neumann structure, while FPGA is a 
no-instruction and no shared memory architecture. This 
structure makes FPGA much more energy efficient than 
CPU or even GPU. The function of each logic unit in an 
FPGA is determined during reprogramming, without 
the need for instructions. FPGA has both pipeline and 
data parallelism, whereas GPU only has data parallelism 
(pipeline depth is limited). Due to the flexibility of FPGA, 
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more researchers focus on the acceleration of FHE using 
FPGA.

(4) ASIC

ASIC is capable of achieving maximum acceleration 
effects concerning FHE, while it requires customization, 
and therefore their application scope is limited. The big-
gest advantage of ASIC is that it can be designed corre-
sponding circuits completely according to the needs of 
computing tasks, thus providing maximum acceleration 
capability. However, ASIC needs to go through many 
processes from being designed to being put into use, and 
it is also costly. So its application in FHE acceleration is 
more in the simulation stage. But the idea of using ASIC 
to accelerate FHE can be borrowed and applied to other 
hardware platforms.

Each FHE accelerator has its own strengths and weak-
ness. CPU is the most common computer processor and 
can be used to implement FHE schemes. However, due 
to its single-instruction pipeline architecture, its paral-
lel performance and processing speed are relatively low, 
making it less suitable for high-performance homomor-
phic operations. GPU has excellent parallel computing 
capabilities when processing large-scale data, so they 
can be used to accelerate FHE schemes. However, since 
GPU is designed for graphics processing, its support for 
numerical computing is limited, and sometimes it is diffi-
cult to adapt to the special requirements of FHE schemes. 
FPGA is a programmable logic device with high flexibility 
and parallel performance, and can be used to implement 
high-performance FHE schemes. Since FPGA is pro-
grammable, it can be customized and optimized accord-
ing to specific needs and application scenarios, thereby 
achieving higher performance and efficiency. ASIC is a 
chip specially designed and manufactured to implement 
highly customized and optimized FHE schemes. Com-
pared with FPGA, ASIC has higher performance and 
lower power consumption, but also has higher design 
costs and longer development cycles.

In summary, the application scenario and specific 
requirements must be considered for selecting an accel-
erator in order to achieve the optimal performance and 
efficiency.

Table  2 compares the hardware platforms from 6 
aspects. Universality refers to whether the hardware plat-
form is widely used, and it is persuasive to say that CPU is 
the most widely used hardware platform. Whether or not 
a hardware platform provides enough customization can 
be evaluated through customization flexibility, which also 
reflects the acceleration ability it can offer. ASIC is con-
sidered to be able to provide the largest customization 

flexibility because it allows you to design hardware cir-
cuits. As far as practicality is concerned, there are two 
aspects to consider: ease of use and acceleration ability. 
In short, if a hardware platform provides good accelera-
tion but with low usability, it would be regarded as hav-
ing low practicality, such as ASIC. The metric of research 
popularity, the same as in Table 3, is determined accord-
ing to the number of related papers.

Algorithm acceleration schemes
This section introduces the acceleration schemes of FHE 
using algorithm optimization, which is mainly divided 
into three categories, including NTT, Bootstrapping, and 
Encoding. Table 3 compares their characteristics of them, 
including acceleration approaches, importance, accelera-
tion effect, and research popularity. It can be seen that 
NTT and bootstrapping are studied by more researchers. 
Table  4 gives all the acceleration schemes discussed in 
Sects.  "Algorithm acceleration schemes" and "Hardware 
acceleration schemes, and also shows whether they are 
algorithm-based.

NTT optimization
As a very important primitive operation in FHE, NTT 
has very important research value for FHE accelera-
tion. Therefore, a large amount of research works focus 
on the design of acceleration schemes for NTT, includ-
ing algorithm optimization and hardware optimization. 
The core idea of NTT algorithm optimization is to use 
the existing algorithm to simplify the NTT operation and 
replace it with a more suitable form of hardware parallel 
computing.

Rashmi et  al. (2020) accelerate FHE by using algo-
rithmic optimization. The most important part of this 
paper in terms of algorithmic optimization is to use low-
cost operations to replace high-cost operations. Barrett 

Table 2 Comparison of hardware platforms

Note that We use the number of ‘ + ’ to describe the strength of hardware 
with respect to a feature, with five ‘ + ’ representing the strongest and one ‘ + ’ 
representing the weakest. The same is true for the meaning of ‘ + ’ in the other 
tables presented in this paper

Metric Hardware platform

CPU GPU FPGA ASIC

Universality  +  +  +  +  +  +  +  +  +  +  +  +  +  + 

Customization flexibility  +  +  +  +  +  +  +  +  +  +  +  +  + 

Acceleration ability  +  +  +  +  +  +  +  +  +  +  +  +  + 

Price  +  +  +  +  +  +  +  +  +  +  +  +  +  + 

Practicality  +  +  +  +  +  +  +  +  +  +  +  + 

Research popularity  +  +  +  +  +  +  +  +  +  +  +  + 
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reduction (Barrett 1986) method is adopted to transform 
the high-consumption modular operations. In addition, 
the NTT operation in polynomial multiplication is used 
to perform the indices computation operation by shifting 
and XOR operation, so as to accelerate the NTT process. 
Similar to Rashmi (2020), Türkoglu et al. (2022) also use 
Barrett Reduction to accelerate the implementation of 
the algorithm.

Compared to Rashmi (2020), not only do Shivdikar 
et al. (2022) use Barrett reduction, but they also improve 
it. Based on several variants of Barrett reduction, an effi-
cient Barrett reduction for 64-bit integers is proposed 
to accelerate the modular division of NTT operations 
used in polynomial multiplication operations. Mert 
et  al. (2020) accelerate the encryption and decryption 
process of BFV algorithm. Unlike (Shivdikar et al. 2022; 
Rashmi 2020), an efficient polynomial multiplier is pro-
posed which can also be used for homomorphic opera-
tions other than encryption and decryption. They mainly 
use Montgomery algorithm to reduce the modular divi-
sion operation in polynomial multiplication, so as to 
achieve the algorithm acceleration. Goey et al. (2021) not 
only use Barrett reduction but also use SSMA algorithm 
(Schönhage and Strassen 1971) to further accelerate 
NTT operation. SSMA is a fast multiplication algorithm 
for large integers with a low computational complexity of 
O(nlog(n)log(nlog(n))) . Therefore, in terms of accelera-
tion results, cuHE (Dai and Sunar 2015) is surpassed. Roy 
et  al. ( 2019) accelerate the BFV. But they only use the 
existing latest algorithm level optimization method.

The algorithm acceleration for NTT mainly focuses on 
utilizing Barrett reduction. Some studies (Türkoglu et al. 
2022; Rashmi 2020) just use it, while others (Shivdikar 
et  al. 2022) improve it. Moreover, some studies (Goey 
et  al. 2021; Mert and Öztürk 2020) also use other fast 
multiplication algorithms to accelerate NTT.

Bootstrapping optimization
Bootstrapping, which has huge time complexity and 
space complexity, is another important performance bot-
tleneck in FHE. Therefore, the core idea of bootstrapping 

optimization is to solve the memory bandwidth problem 
in its implementation process and improve throughput.

Chen et  al. (2019) focus on bootstrapping (Chillotti 
et  al. 2017) acceleration of CKKS. They use a dynamic 
programming approach (Halevi and Shoup 2014) to 
decide the optimal level collapsing strategy for a generic 
multi-leveled linear transform in order to fully explore 
the trade-off between levels consumption and the num-
ber of operations. And the result shows a large increase in 
the bootstrapping throughput. In addition, they replace 
the Taylor approximation with the Chebyshev interpolant 
to approximate the scaled sine function, which not only 
consumes fewer levels but also is more accurate than the 
original method.

For the full-residue number system (full-RNS) variant 
of CKKS, Han et al. (2020) combine the RNS-decomposi-
tion method (Bajard et al. 2016) and the temporary mod-
ulus technique (Gentry and Halevi 2012) to reduce about 
half complexity for HMult even with a larger security 
parameter. For the evaluation of sine function and cosine 
function, they consider a ratio between the size of a mes-
sage and the size of a ciphertext modulus. As a result, the 
number of non-scalar multiplications is almost reduced 
by half compared to the previous work (Chen and Chill-
otti 2019).

Bossuat et  al. (2021) accelerate the bootstrapping for 
the full-RNS variant of the CKKS. They propose a new 
format for rotation keys and a modified key-switching 
procedure in order to improve the baby-step giant-step 
algorithm (Halevi and Shoup 2021), which is used by pre-
vious works (Chen and Chillotti 2019; Han and Ki 2020; 
Bossuat and Troncoso-Pastoriza 2022). The modified 
key-switching procedure extends the hoisting (Halevi 
2018) technique to a second layer and reduces the cost 
of the linear transformations compared to the previous 
hoisting approach. Moreover, they also discuss the para-
metrization of the CKKS and its bootstrapping circuit 
and propose a procedure to choose and fine-tune the 
parameters for a given use-case.

In (Castro et  al. 2021), the optimization method of 
bootstrapping is proposed aiming at improving the 

Table 3 Comparison of acceleration object

Accelerated object Acceleration approaches Importance Research popularity Accelerated effect

NTT Operational substitution exploration  +  +  +  +  +  +  +  +  +  +  +  +  +  + 

Algorithm parallelism exploration

Bootstrapping Data dependency exploration  +  +  +  +  +  +  +  +  +  +  + 

Algorithm simplification exploration

Encoding Efficient coding based on the data access 
mode of the subsequent algorithm

+  +  + 



Page 7 of 23Gong et al. Cybersecurity             (2024) 7:5  

Table 4 Comparison of different acceleration schemes

References Year Algorithm-based optimization Hardware-based optimization

NTT Bootstrapping Encoding CPU GPU FPGA ASIC Other

Chen and Chillotti (2019) 2019 √ √

Han and Ki (2020) 2020 √ √

Bossuat et al. (2021) 2021 √ √

Boemer et al. (2021) 2021 √

Ishimaki (2021) 2021 √

Inoue and Suzuki (2022) 2022 √

Jin et al. (2019) 2019 √ √

Ahmad Al Badawi (2019) 2019 √

Lupascu (2019) 2019 √

Lei et al. (2019) 2019 √

Xia et al. (2019) 2019 √

Kim and Jung (2020) 2020 √

Morshed (2020) 2020 √

Ahmad Al Badawi (2020) 2020 √

Ahmad Al Badawi (2021) 2021 √

Pedro et al. (2021) 2021 √

Goey et al. (2021) 2021 √ √

Jung et al. (2021) 2021 √

Jung and Kim (2021) 2021 √

Castro et al. (2021) 2021 √ √

Özerk and Elgezen (2022) 2022 √

Türkoglu et al. (2022) 2022 √ √

Shivdikar et al. (2022) 2022 √ √

Shen et al. (2022) 2022 √

Sujoy Sinha Roy (2019) 2019 √ √

Mert and Öztürk (2020) 2020 √ √

Riazi et al. (2020) 2020 √ √

Kim et al. (2020) 2020 √

Rashmi (2020) 2020 √ √

Turan (2020) 2020 √

Serhan et al. (2021) 2021 √

Fadhli et al. (2021) 2021 √

Ye et al. (2021) 2021 √ √

Xin and Zhao (2021) 2021 √

Syafalni et al. (2022) 2022 √

Yang et al. (2022a) 2022 √

Han et al. (2022) 2022 √

Agrawal et al. (2022) 2022 √

Ye and Kannan (2022) 2022 √

Yang et al. (2022b) 2022 √

Tan et al. (2021) 2021 √

Reagen et al. (2021) 2021 √

Samardzic et al. (2021) 2021 √

Kim and Kim (2022) 2022 √

Kim et al. (2022) 2022 √ √

Samardzic et al. (2022) 2022 √

Geelen et al. (2022) 2022 √

Jiang et al. (2022) 2022 √
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throughput. The authors present algorithmic optimi-
zations including combining ModDown and rescale in 
Mult, hoisting the ModDown in PtMatVecMult, and 
compressing the key with a pseudo-random number 
generator (PRNG). By combining ModDown and rescale 
in Mult, they realize a faster encrypted inner product. 
The ModDown in PtMatVecMult leads that the same 
ciphertext can be computed more efficiently than simply 
applying the rotate function. Compressing the key with a 
PRNG can avoid shipping the large random polynomials 
to dynamic random access memory, instead sending only 
the short PRNG key. The three optimization methods can 
reduce the number of operations and the consumption of 
memory, thus realizing the acceleration of bootstrapping.

Ye et  al. (2021) accelerate the application of FHE in 
CNN. They mainly use a new convolution method and 
explore the parallelism of the algorithm to realize the 
algorithm acceleration. By using Im2col convolution 
and Frequency domain convolution, they guarantee that 
any pair of elements to be summed or multiplied are in 
the same position in the vector. Therefore, only Pt-Ct 
Mult and Additions without the expensive rotations are 
needed for homomorphic convolution calculations.

Kim et  al. (2022) propose the Minimum key-switch-
ing (Min-KS) based on the minimal key-switching pro-
posed by Halevi et al. (2018). Compared with minimal 
key-switching (Halevi 2018), Min-KS further reduces 
the use of the evaluation key in bootstrapping, which 
means that the number of data accessed in the chip 
memory at a time is decreased. In addition, the Min-KS 
algorithm is generalized so that it can be better applied 
to common homomorphic operations.

Since bootstrapping involves many primitive opera-
tions, many studies have been done to accelerate it by 
speeding up some of them. The key-switching proce-
dure is the focus of some research works (Bossuat et al. 
2021; Castro et al. 2021; Ye et al. 2021; Kim et al. 2022), 
which reduce the number of operations to achieve the 
purpose of acceleration.

Encoding optimization
The core idea of encoding optimization is to make the 
encoded data have more parallel computing potential, 
so as to accelerate the implementation of the algorithm. 
However, there are a few research works on algorithm 
acceleration by using encoding optimization.

Jin et al. (2019) design an encoding strategy for FHE so 
that the encoded plaintext data can be better executed in 
parallel. Compared with the previous work, they design 
the corresponding data encoding strategy for images 
with higher dimensions. In view of the feature that differ-
ent weight components are calculated simultaneously in 
convolution operation, they encode the components that 
can be parallel into a vector, so as to facilitate the paral-
lel homomorphic operation later. Besides, the encoding 
strategy improves memory efficiency and reduces the 
message size transferred.

Algorithm acceleration summary
In general, the acceleration effect of FHE schemes based 
on algorithm acceleration is limited. Many research 
works on the acceleration of FHE focus on the accelera-
tion of NTT and bootstrapping. And the Barrett reduc-
tion is most commonly used to accelerate NTT. There 
are two main ways of algorithm optimization. One is 
to replace operations, which needs high computing 
resource consumption, with operations consuming high 
computing resource. The other is to improve the paral-
lelism of the algorithm so that the hardware accelera-
tion schemes can be designed on this basis. In general, 
the algorithm acceleration schemes are unable to achieve 
a breakthrough acceleration effect and most works just 
apply existing algorithms. Therefore, algorithm-based 
acceleration schemes require a theoretical breakthrough, 
especially for bootstrapping, in order to make FHE per-
formance closer to the actual application requirements. 
However, the advantage of an acceleration scheme based 
on algorithm optimization is that it is more adaptive and 
can adapt to different hardware platforms.

Table 4 (continued)

References Year Algorithm-based optimization Hardware-based optimization

NTT Bootstrapping Encoding CPU GPU FPGA ASIC Other

Ahmet Can Mert (2022) 2022 √

Reis et al. (2020) 2020 √

Gupta (2021) 2021 √

Gupta and Cammarota (2022) 2022 √

Chielle et al. (2022) 2022 √

Note that the article with a ‘√’ for both algorithm-based optimization and hardware-based optimization, represents that it leverages both algorithm optimization and 
hardware optimization simultaneously
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Hardware acceleration schemes
This section introduces FHE acceleration schemes 
using hardware platforms, including CPU, GPU, FPGA, 
ASIC, and others. CPU has the least parallel computing 
resources, resulting in the worst acceleration effect. GPU 
is cheaper and easier to use. FPGA is a popular choice for 
FHE acceleration due to its parallel computing resources 
and customization. ASIC achieves the best acceleration 
effect although it’s difficult to put into production.

CPU-based
There are only a few CPU-based acceleration schemes, 
and the acceleration effect that can be achieved is limited.

Based on the Intel® Advanced Vector Extensions 512 
(Intel® AVX512) instruction set, Boemer et  al. (2021) 
implement acceleration on polynomial modular multi-
plication and NTT. They provide it as a Homomorphic 
Encryption Acceleration Library which can be used in 
combination with the SEAL library. The acceleration 
scheme mainly uses two optimization methods, includ-
ing loop optimization and data parallel computing opti-
mization, which are both based on the instruction set. 
Loops are unrolled either manually or using a pre-pro-
cessor directive, with a manually-tuned unrolling factor. 
Within manually unrolled loops, instructions are reor-
dered where possible for best pipelining. Based on the 
property of the instruction set, eight 64-bit integers can 
be processed simultaneously, the acceleration scheme 
completes the acceleration of NTT by expressing NTT 
and INTT in the form of elements and processing them 
together. For the vector and vector multiplication and 
polynomial and polynomial multiplication expressed in 
the form of elements, the input data is also aligned based 
on the purpose for simultaneous processing of eight 
64-bit integers to achieve performance optimization.

In Ishimaki et  al. (2021), the Trace-Type Function 
Evaluation of CKKS is accelerated. The homomorphic 
trace-type function evaluation is performed by repeat-
ing homomorphic rotation followed by addition (rota-
tions-and-sums). The homomorphic trace-type function 
is a commonly used and time-consuming subroutine 
that enables homomorphically summing up the compo-
nents of the vector or homomorphically extracting the 

coefficients of the polynomial. They propose a more effi-
cient trace-type function evaluation using loop-unrolling 
to reduce the number of expensive operations by lever-
aging a property of automorphisms and using a multi-
core environment, thus reducing the computational cost 
compared with the sequential method (Halevi and Shoup 
2014; Chen et al. 2021) at the expense of slightly increas-
ing the required storage. In addition, they successively 
unroll consecutive subloops in the trace-type function 
evaluation and parameterize the number of iterations 
after the unrolling, which further realizes the acceleration 
of the Homomorphic Trace-Type Function Evaluation.

Inoue et al. (2022) also accelerate the trace-type func-
tion by using Intel® AVX512 instruction set. Through 
using loop unrolling, they implement the optimization 
of the trace-type function. Their acceleration scheme can 
be regarded as another implementation scheme of Intel® 
AVX512 instruction set in accelerating FHE, without 
much innovation.

Most studies (Boemer et  al. 2021; Inoue and Suzuki 
2022)) are based on the Intel® AVX512 instruction set 
to accelerate FHE, since the mainstream CPU instruc-
tion set is not suitable. This also shows the limitations of 
the CPU for FHE acceleration. Table  5 shows the com-
parison of acceleration schemes based on CPU. In it, 
three aspects should be considered in the availability 
evaluation of schemes. They are the acceleration ability 
offered, whether the hardware platforms are universal, 
and whether the schemes are only accelerated architec-
tures or form acceleration libraries that could be directly 
called. Acceleration results are about the acceleration 
effect of schemes in terms of latency. We directly cite the 
acceleration results given in works to show. This is why 
different schemes have the different significant digits 
about acceleration result. There are some works (Ahmad 
Al Badawi 2019; Goey et al. 2021; Castro et al. 2021; Fad-
hli et  al. 2021; Xin and Zhao 2021) that don’t give the 
exact acceleration result in terms of acceleration times. 
So we compute it by using the experimental result shown 
in them. And the result is rounded to two decimal places. 
The Tables 6, 7, 8 and 9 are the same as the Table 5. The  
‘×’  in Table 5 means the times. The same is true for the 
meaning of ‘×’ in the other tables presented in this paper.

Table 5 Comparison of acceleration schemes based on CPU

Note that the ’×’ in the Table indicates that the work doesn’t satisfy the attribute represented in this column. The same is true for the meaningof ’×’ in the other tables 
presented in this paper

References Year Availability Data storage 
optimization

Homomorphic 
parameters tuning

Accelerated object Acceleration 
result (times)

Boemer et al. (2021) 2021  + √  × Bootstrapping 4.83–6.26

Ishimaki (2021) 2021  + √ √ Rotation / HAdd 1.32–2.12

Inoue and Suzuki (2022) 2022  + √  × Rotation / HAdd 1.05–2.30
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GPU-based
GPU has been widely used in FHE acceleration in recent 
years. The acceleration scheme based on GPU is mainly 
realized by utilizing parallel computing resources it 

provides. At the same time, the data storage strategy will 
also be optimized in order to reduce the time taken to 
access data. However, due to the limited customization 
flexibility provided by GPU, the innovation of GPU-based 

Table 6 Comparison of acceleration schemes based on GPU

*(Ahmad Al Badawi 2019) compares the performance of two optimized variants of BFV, namely BEHZ and HPS. And it doesn’t give the acceleration result

References Year Availability Data storage 
optimization

Homomorphic 
parameters 
tuning

Accelerated object Acceleration result (times)

Ahmad Al Badawi (2019) 2019  +  ×  × HPS RNS variant of the BFV *

Lupascu (2019) 2019  +  +  +  ×  × Ciphertext multiplication 5.14 × 

Lei et al. (2019) 2019  +  +  +  ×  × KeyGen / Bootstrapping 1.672–13.268 × 

Xia et al. (2019) 2019  +  +  ×  × DGHV 1.67–1.84 × 

Kim and Jung (2020) 2020  +  +  + √  × NTT 6.52 × 

Morshed (2020) 2020  +  +  ×  × TFHE 14.5–20 × 

Ahmad Al Badawi (2020) 2020  +  ×  × CKKS 10–100 × 

Ahmad Al Badawi (2021) 2020  +  +  ×  × HPS RNS variant of the BFV 10–1000 × 

Pedro et al. (2021) 2021  +  +  +  ×  × BFV 2.6 × 

Goey et al. 2021) 2021  +  + √  × CMNT 1.41 × 

Jung et al. 2021) 2021  +  + √  × CKKS 4.05 × 

Jung and Kim (2021) 2021  +  +  +  + √  × Bootstrapping 7.02 × 

Castro et al. (2021) 2021  +  ×  × NTT / Polynomial Multiplication 1092.29 × 

Özerk and Elgezen (2022) 2022  +  +  + √  × NTT / Polynomial Multiplication 90.13–141.95 × 

Türkoglu et al. (2022) 2022  +  +  +  ×  × HMult / Relinearization / Rotation 
/ HAdd

13.39–47.01 × 

Shivdikar et al. (2022) 2022  +  +  +  + √  × Polynomial Multiplication 123.13 × 

Shen et al. (2022) 2022  +  +  +  +  ×  × BGV / BFV / CKKS 234.5–378.4 × 

Table 7 Comparison of acceleration schemes based on FPGA

*(Serhan et al. 2021) uses less hardware resource to achieve linear performance scaling with up to 16 vector lanes about matrix–vector operations in bootstrapping of 
TFHE. And it doesn’t achieve significant acceleration

#(Yang et al. 2022b) also uses less hardware resource to implement FHE and doesn’t give the acceleration result in terms of latency

References Year Availability Data storage 
optimization

Homomorphic 
parameters tuning

Accelerated object Acceleration result

Sujoy Sinha Roy (2019) 2019  +  +  +  ×  × BFV 13 × 

Mert and Öztürk (2020) 2019  +  +  +  ×  × BFV 7–12 × 

Riazi et al. (2020) 2020  +  +  × √ CKKS 164–268 × 

Kim et al. (2020) 2020  +  +  +  + √  × NTT 118 × 

Rashmi (2020) 2020  +  +  +  ×  × Polynomial Multiplication 2950–4200 × 

Turan (2020) 2020  +  +  + √  × BFV 5 × 

Serhan et al. (2021) 2021  +  +  ×  × Bootstrapping *

Fadhli et al. (2021) 2021  +  +  ×  × BFV 3.85 × 

Ye et al. (2021) 2021  +  +  + √  × BFV 3.4–6.7 × 

Xin and Zhao (2021) 2021  +  +  +  +  ×  × CKKS 26.04 × 

Syafalni et al. (2022) 2022  +  +  ×  × Polynomial Multiplication 38.5 × 

Yang et al. (2022a) 2022  +  + √  × BFV 5.6 × 

Han et al. (2022) 2022  +  +  +  ×  × Key-switching 1.6 × 

Agrawal et al. (2022) 2022  +  +  + √  × Bootstrapping 533 × 

Ye and Kannan (2022) 2022  +  + √  × Bootstrapping 16.5 × 

Yang et al. (2022b) 2022  +  + √  × NTT #
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acceleration schemes is also limited. On the other hand, 
since GPU is a more general hardware platform, its accel-
eration scheme can be presented in the form of the accel-
eration library and put into use.

Badawi et al. (2019) implement and evaluate the perfor-
mance of two optimized variants, which are called Bajard 
Eynard-Hasan-Zucca (BEHZ) and Halevi-Polyakov-
Shoup (HPS), based on CPU and GPU. The lazy reduc-
tion and several precomputations are added to optimize 
the implementation of HPS. When implementing HPS 
on GPU platform, the discrete galois transform (DGT) is 
used for efficient polynomial multiplication using nega-
cyclic convolution. It cuts the transform length into half 
and requires less amount of memory for precomputed 
twiddle factors. The DGT algorithm was originally pro-
posed by Crandall (1999) for fast negacyclic convolution. 
Besides, data transfer between CPU and GPU is avoided. 
The final result shows that HPS performs better than 
BEHZ, and for 128-bit security settings, HPS is already 
practical for cloud environments supporting GPU 
computations.

Lupascu et  al. (2019) use several GPUs to accelerate 
the FHE and first adapt them for HElib. The accelera-
tion scheme proposed in this paper is to make full use of 
parallel computing resources of multiple GPUs by dis-
tributing computing tasks reasonably. For task allocation 
on multiple GPUs, the unity of task loads is balanced to 
maximize the work efficiency of multiple GPUs. Before 

tasks are distributed, for the ciphertext addition, sub-
traction, and multiplication operations in homomorphic 
operations, the parallelization of the operation sequence 
is explored, and the operation sequence that can be exe-
cuted in parallel is decomposed. The innovation of the 
acceleration scheme proposed in this paper is limited, 
and it is just to accelerate the algorithm implementation 
at the cost of consuming multiple GPUs.

Similar to Lupascu (2019), Lei et  al. (2019) also use 
GPUs to accelerate the adder in FHEW-V2. The cuFTT 
(https:// devel oper. nvidia. com/ cufft) library is used to 
accelerate the parallelization of FTTs operations in boot-
strapping. For a complex multiplication operation, they 
use the parallelism of GPU to accelerate it. In addition, 
for the data that need to be shared in the calculation, they 
put it into the shared memory to improve the data access 
speed. Different from Lupascu (2019), their acceleration 
scheme also uses a multicore CPU to accelerate the algo-
rithm. For example, since bootstrapping is independent 
of each key, this paper uses a multicore CPU to accelerate 
the key generation process by generating different keys at 
the same time.

Based on the joint architecture of CPU and GPU, 
Xia et  al. (2019) accelerate the DGHV (Dijk and Gen-
try 2010). Aiming at serialization operations of DGHV, 
they explore the method of parallel implementation and 
use parallel computing resources of GPU to carry out 
the implementation of corresponding algorithms. For 

Table 8 Comparison of acceleration schemes based on ASIC

References Year Availability Data storage 
optimization

Homomorphic 
parameters tuning

Accelerated object Acceleration result (times)

Tan et al. (2021) 2021  +  + √  × Bootstrapping 2.43 × 

Reagen et al. (2021) 2021  +  + √ √ BFV 79 × 

Samardzic et al. (2021) 2021  +  +  +  + √  × BGV 5400–14,000 × 

Kim and Kim (2022) 2022  +  +  + √ √ Bootstrapping 1306–5556 × 

Kim et al. (2022) 2022  +  +  + √  × Bootstrapping 11,590–18,214 × 

Samardzic et al. (2022) 2022  +  +  +  + √  × CKKS 4600 × 

Geelen et al. (2022) 2022  +  +  + √  × BGV 4000 × 

Jiang et al. (2022) 2022  +  +  + √  × TFHE 24–160 × 

Ahmet Can Mert (2022) 2022  +  +  + √  × CKKS 68–78 × 

Table 9 Comparison of acceleration schemes based on other hardware

References Year Availability Data storage 
optimization

Homomorphic 
parameters tuning

Accelerated object Acceleration 
result (times)

Reis et al. (2020) 2020  +  + √  × BFV 14.3 × 

Gupta (2021) 2021  +  + √  × Bootstrapping 88,397 × 

Gupta and Cammarota (2022) 2022  +  +  + √  × GSW 20,000 × 

Chielle et al. (2022) 2022  +  + √ √ Bootstrapping 10–100 × 

https://developer.nvidia.com/cufft
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example, for the long message sequence, the acceleration 
scheme adopts the method of dividing the message into 
blocks and then simultaneously encrypting each message 
block. For HAdd, the acceleration scheme also uses the 
computing resources of GPU to implement it in parallel. 
In general, the acceleration scheme (Xia et al. 2019) is rel-
atively simple, and the exploration of algorithm parallel-
ism is not very sufficient. So the final acceleration effect 
is limited.

Different from studies mentioned above, based on 
GPU, Kim et al. (2020) aim at the severe memory band-
width bottleneck faced by NTT operation under a larger 
homomorphic parameters set. An implementation 
scheme of runtime data generation is proposed, which 
uses factorization recursion to calculate the rotation 
factor, thus balancing the calculation speed and space 
consumption.

Based on CPU and GPU, Morshed et al. (2020) design 
and implement an acceleration scheme for TFHE homo-
morphic encryption. On the one hand, they analyze the 
parallelism for HAdd, HMult, and other operations, and 
realize the algorithm acceleration by assigning tasks, 
which can be computed in parallel, to different threads 
provided by CPU. On the other hand, they improve the 
parallelization of the algorithm by optimizing Bit Coa-
lescing, Compound Gate, Karatsuba Multiplication (Kar-
atsuba 1962), and so on, so as to make full use of the 
parallel computing resources of GPU.

Badaw et  al. (2020) realize the acceleration of CKKS 
based on GPU, while the important optimization they 
used here is related to matrix packing. Packing is use-
ful in FHE to reduce both the number of homomorphic 
operations due to single instruction multiple data (SIMD) 
evaluation and the number of ciphertexts. In general, the 
innovation of the acceleration scheme proposed in this 
paper is limited, and it can not achieve an obvious accel-
eration effect.

Based on multiple GPUs, Badawi et  al. (2021) also 
design a data allocation strategy for the computation 
process of the FHE algorithm, which ensures the load 
balancing of multiple GPUs. According to the size of the 
polynomial matrix, the strategy allocates data with lim-
ited rows and columns, which achieves acceleration simi-
lar to the task allocation strategy proposed by Lupascu 
et al. (2019). However, Badawi et al. (2021) also design an 
efficient CPU-GPU communication protocol, thus realiz-
ing better algorithm acceleration.

In Alves et  al. (2021), the acceleration scheme of 
BFV algorithm is designed based on GPU. Due to the 
inspiration of Bailey’s version of the Fast Fourier Trans-
form (David 1989), they proposed a novel hierarchical 
formulation of the DGT that offers about two times 
lower latency than the best version available in the 

previous work. The DGT is also faster than NTT due to 
its lower memory bandwidth requirement. Moreover, 
they also choose the compatible parameters between 
the DGT and the RNS representation. In addition, a 
more efficient and polynomial-oriented state machine 
is designed to reduce the need for moving data in and 
out of the DGT domain and between the main memory 
and the GPU global memory. In a word, in order to bet-
ter play the performance of the GPU, this paper inno-
vatively uses some mathematical tools and implements 
them on the GPU through CUDA.

Goey et  al. (2021) accelerate CMNT (Coron and 
Mandal 2011) based on GPU. In terms of hardware 
optimization, they propose to buffer the twiddle fac-
tors in GPU registers and then access these data across 
different threads during the NTT computation through 
warp shuffle instruction. Combined with algorithm 
optimization mentioned in Sect.  "NTT optimization", 
the acceleration scheme finally realizes the further sur-
passing of cuHE.

Jung et  al. (2021) explore the parallel implementation 
and data access of CKKS. Based on this, the correspond-
ing acceleration schemes are implemented on CPU and 
GPU and the result shows the effectiveness of the acceler-
ation method. For CPU, the acceleration scheme is based 
on scatter instructions in AVX-512 (Boemer et al. 2021), 
which accelerates matrix multiplication. For GPU, they 
assign each independently computable output element to 
a thread, so as to realize the acceleration of the algorithm 
through parallel calculation of non-interference data. 
This also makes the acceleration scheme more sufficiently 
explore the parallelism of algorithm implementation 
compared with cuHE. In addition to the design of parallel 
strategy, they also calculate and store data in advance to 
speed up data access.

Jung et al. (2021) implement the optimization of CKKS 
bootstrapping. By fully exploring the parallelism in FHE, 
they discover that the major performance bottleneck is 
their high main-memory bandwidth requirement, which 
is exacerbated by leveraging existing optimizations tar-
geted to reduce the required computation. Further, they 
find that inner product in key-switching is a major bottle-
neck when attempting to accelerate HMult. On this basis, 
kernel fusion and reordering primary functions, which 
are memory-centric optimizations, are used to accelerate 
bootstrapping. And the result shows that the acceleration 
scheme has achieved good acceleration effect.

Through the analysis of bootstrapping, Castro et  al. 
(2021) find that the main performance bottleneck of 
bootstrapping mainly comes from the memory band-
width bottleneck. That is, a large number of interme-
diate process data needs to be generated and stored 
during the execution of bootstrapping. On this basis, 
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the optimization method of bootstrapping is proposed, 
which mainly uses physical address mapping optimi-
zation. The physical address mapping of the data in the 
main memory has a substantial impact on the time it 
takes to transfer data. The reduction of data transfer time 
speeds up the implementation of bootstrapping.

Based on GPU, Özerk et  al. (2022) design and imple-
ment a corresponding acceleration scheme for key gen-
eration, encryption, and decryption of FHE using NTT 
operation. In this paper, the parallel operation of NTT 
is designed based on the parallel computing resources 
provided by GPU. At the same time, they also optimize 
the GPU memory usage and kernel function call, so as to 
realize the algorithm acceleration. The difference is that 
they focus on different acceleration objects mentioned 
above.

Türkoğlu et  al. (2022) design and implement a corre-
sponding acceleration scheme for HMult, relinearization, 
rotation, and HAdd. They use the CUDA to further accel-
erate the Barrett reduction process. And they provide the 
corresponding GPU FHE acceleration library.

Based on GPU, Shivdikar et al. (2022) design an accel-
eration method for polynomial multiplication, which is a 
very important performance bottleneck in homomorphic 
encryption. The method optimizes the memory access of 
GPU to improve the data access speed and throughput 
during the algorithm operation process, so as to achieve 
further acceleration.

The acceleration scheme proposed by Shen et al. (2022) 
is GPU-based and accelerated for word-size FHE, includ-
ing BGV, BFV, and CKKS. They mainly combine some 
previous acceleration optimization methods and develop 
the acceleration library on this basis. This acceleration 
library can be used for both ordinary GPU and embed-
ded GPU. Meanwhile, it can better support the use of 
Internet of Things devices. And aiming at the security 
vulnerabilities of FHE acceleration stock in preventing 
side-channel attacks, they implement time consistency 
for multiply-accumulation, conditional subtraction, and 
Barrett reduction. At the same time, it also carried on 
the simplification of the implementation instructions. 
Besides, they also implement two versions for NTT oper-
ations, which are performance first and memory first. In 
view of the limited performance, the operation is further 
accelerated by simplifying the instructions. For polyno-
mial multiplication operations and ciphertext multipli-
cation operations, a general RNS multiplication kernel 
is designed to speed up the calculation. In a word, com-
pared with the FHE accelerated GPU library (Türkoglu 
et al. 2022), the acceleration library has three advantages, 
which are better adaption, higher security, and more 
features.

Due to the need for CPU cooperation, most studies 
(Ahmad Al Badawi 2019, 2021; Xia et al. 2019; Morshed 
2020; Jung et al. 2021) based on GPU acceleration require 
support from CPU. However, schemes designed by these 
studies focus on using GPU to accelerate FHE. Thus, we 
have classified these schemes as GPU-based FHE acceler-
ation schemes. Research on GPU-based FHE acceleration 
started earlier, and currently, GPU-based acceleration 
schemes are gradually transitioning from proposing 
acceleration architectures to forming acceleration librar-
ies (Türkoglu et al. 2022; Shen et al. 2022), which greatly 
improves availability. Additionally, some works (Lupascu 
2019; Lei et  al. 2019) utilize multiple GPUs instead of a 
single GPU for accelerating FHE. Table 6 shows the com-
parison of acceleration schemes based on GPU. We can 
see that all FHE acceleration schemes based on GPU do 
not utilize homomorphic parameters tuning. This may 
be because parameters tuning itself is a complex process, 
and early acceleration of FHE could achieve good results 
by just using GPUs. And researchers have not delved 
deeply into the acceleration of GPU-based schemes. 
Hence, incorporating homomorphic parameters tuning is 
also a direction for research into accelerating FHE using 
GPU.

FPGA-based
Compared with GPU, FPGA can provide more flexible 
parallel computing resources. Therefore, the acceleration 
schemes based on FPGA will further explore the parallel 
computing implementation of FHE. In addition, the data 
access patterns and data placement strategies are also 
the focus of researchers. Reasonable data placement can 
not only speed up data access but also improve the paral-
lelism of algorithm execution. In short, the acceleration 
scheme based on FPGA can achieve a better acceleration 
effect compared with GPU on the whole. However, the 
corresponding acceleration scheme is also more difficult 
to design.

Based on the joint architecture of ARM-FPGA, Roy 
et  al. (2019) accelerate the BFV. They mainly use the 
hardware parallel computing resources to design the 
hardware acceleration architecture and finally realize it, 
which is more efficient than the software implementa-
tion. The acceleration scheme is based on the NTT paral-
lel computing method (Sujoy Sinha Roy 2014) and at the 
same time they make improvements to it, which is that 
on-chip memory is used to store a constant rotation fac-
tor to save cycles for further acceleration.

Mert et al. (2020) accelerate the encryption and decryp-
tion process of BFV by using FPGA. In this paper, a more 
efficient parallel hardware architecture is proposed for 
NTT operation, which is divided into two parts. Then 
the input of each part is calculated in parallel, and finally 
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the calculation results are combined to complete the 
NTT operation, thus realizing the acceleration of NTT 
operation. In addition, the most important part of this 
acceleration scheme is to implement a faster polynomial 
multiplier using FPGA. And compared with the accelera-
tion scheme (Seiler 2018), the acceleration scheme (Mert 
and Öztürk 2020) can adapt to larger homomorphic 
parameters.

Riazi et al. (2020) (HEAX) are based on FPGA to opti-
mize the performance of CKKS, which explores multi-
level parallelism for the implementation of algorithms 
and gives the corresponding optimization method and 
implementation framework. For HMult, HEAX first 
modifies the SEAL library so that more parameters can 
be adapted. In addition, it realizes optimization of poly-
nomial multiplication by storing multiple correlation 
coefficients of a polynomial in memory space that can 
be accessed in parallel, thus speeding up the reading and 
writing speed of the data access. At the same time, the 
data access mode in NTT process is analyzed. In view of 
the key-switching operation, the pipeline architecture is 
designed by analyzing the data dependency, which can 
execute many key-switching operations simultaneously. 
As can be seen from the above introduction, the biggest 
advantage of HEAX is that it sufficiently explores the 
parallelism of algorithm implementation and carries out 
optimization implementation on this basis. Therefore, a 
good acceleration effect has been achieved by HEAX.

Kim et  al. (2020), based on FPGA, mainly accelerate 
NTT operation. Compared with acceleration schemes 
(Sujoy Sinha Roy 2019;  Riazi et al.2020), they focus more 
on bootstrapping and RNS domain and present a novel 
hardware architecture of NTT. In the design of the accel-
eration scheme, they take into account the algorithm to 
realize the time consumption and space consumption, 
which maximizes the use of resources. Aiming at butter-
fly operation in INTT, the acceleration scheme designs 
the corresponding computing unit to realize it. At the 
same time, according to the characteristics of butterfly 
operation and hardware I/O characteristics, it adopts the 
method of organizing butterfly operation in the way of 
serialization connection and carries out parallel design 
of butterfly operation unit in a small range. In addition, 
data storage is reorganized to speed up the speed of data 
access during butterfly operation execution. In order to 
reduce the consumption of memory and balance the con-
sumption of memory and time, some data used in the 
process of NTT is stored in advance. And the rest of the 
data is generated during the execution of NTT opera-
tion, so as to ensure the fast implementation speed of the 
algorithm and less memory consumption. However, run-
time-generated data and pre-generated data have their 
own advantages and disadvantages, which are about the 

balance between time consumption and space consump-
tion, and should be used according to the actual situation.

For the basic operation of LWE-based FHE, such 
as RNS, CRT, NTT-based polynomial multiplica-
tion, modulo inverse, modulo reduction, and all the 
other polynomial and scalar operations are carried out 
to design and implement the hardware acceleration 
library by Rashmi et al. (2020). By mining the parallel-
ism of some basic operations, they adopt the paralleli-
zation method for multi-round calculation in RNS, so 
as to realize the acceleration of the algorithm.

Turan et  al. (2020) (HEAWS) accelerate the BFV 
based on FPGA, who design multiple parallel coproc-
essors in the FPGA in order to execute several opera-
tions simultaneously. At the same time, they also design 
an off-chip data transfer strategy to meet the needs of 
multiple coprocessors. Because the FPGA used by them 
is cloud-based FPGA, which brings the extra commu-
nication overhead brought, the state-of-the-art 512-bit 
XDMA feature of high bandwidth communication is 
used to reduce the overhead of HW/SW data transfer. 
However, one of the innovative points of HEAWS is 
that it uses cloud-based FPGA for the first time, which 
improves its availability.

Gener et al. (2021) accelerate the bootstrapping algo-
rithm of TFHE based on FPGA. They design an accel-
erator, which adds TFHE-specific custom instruction 
extensions to an FPGA-based programmable vector 
engine. This makes linear performance scale as the 
number of vector lanes increases from 4 to 16. How-
ever, this paper only presents a preliminary architec-
ture to accelerate TFHE bootstrapping, which still uses 
an o(n2) algorithm of the polynomial multiplier. And as 
the paper says, this is one direction in which the accel-
erator designed could be improved.

Fadhli et  al. (2021) mainly realize the systolic arrays 
by using FPGA, so as to achieve acceleration of the 
algorithm. Systolic arrays feature the ability to perform 
multiple calculations on a single input without waiting. 
At the same time, it can continue to input the required 
data while calculating.

Ye et al. (2021) focus on the acceleration of the plain-
text multiplication ciphertext operation. In this paper, 
based on multiple processing elements (PEs), paralleli-
zation is designed and realized for Hadamard product 
and accumulations operations of vectors, which is that 
the vector is divided into subvectors, and then paral-
lelization operations between subvectors were realized. 
The communication delay between FPGA and external 
memory is avoided by means of a double data cache. 
Besides, based on the designed performance model, the 
optimal homomorphic parameters are selected for each 
layer of the neural network, so as to achieve further 
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acceleration of the neural network using the FHE. 
Compared to prior work, the acceleration scheme first 
proposes the low latency inference accelerator for con-
volutional layers of ResNet-50 based on FPGA.

Based on FPGA, a multi-level parallelism degree 
is explored for FHE by Xin et  al. (2021). And parallel 
scheme is designed and implemented to realize algorithm 
acceleration. This paper mainly implements paralleliza-
tion acceleration for three levels of the algorithm. NTT 
parallel implementation is the basic parallel acceleration 
method. About this acceleration scheme, by designing 
several butterfly computing units and executing them 
in parallel, the parallel acceleration of NTT algorithm 
is realized. RNS parallel implementation is the medium 
parallel acceleration method. Based on the NTT core 
composed of multiple butterfly units, it uses three NTT 
cores to realize acceleration of polynomial multiplication 
of RNS form. The parallel implementation of two cipher-
text operations is the advanced parallel acceleration 
method. They equip NTT cores for each polynomial in 
both two ciphertexts and form the high-level parallelism 
in ciphertexts. Compared with the acceleration scheme 
(Riazi et al. 2020), under the condition of using the same 
number of digital signal processor (DSP) blocks, the 
NTT cores in the acceleration scheme (Xin and Zhao 
2021) consume fewer resources.

Aiming at the polynomial multiplication operation 
used in BFV, Syafalni et  al. (2022) propose a method 
based on a convolution approach to complete the cor-
responding polynomial multiplication operation. At the 
same time, this paper also designs a two-dimensional sys-
tolic array on the level of hardware implementation, so as 
to complete the polynomial multiplication with high par-
allelism. In order to avoid data transmission delay caused 
by noise generated by software, they first design a corre-
sponding hardware noise generation module.

Based on FPGA, Yang et al. (2022a) design and imple-
ment the corresponding acceleration scheme for SCNN 
which uses FHE. They analyze the memory access 
requirement in the process of FHE, so as to obtain the 
memory access pattern. Based on the memory access 
pattern, they continue to redesign the data flow to avoid 
memory access conflicts and realize highly parallel exe-
cution of the algorithm, so as to complete the accelera-
tion of the algorithm.

Aiming at key-switching operation, which is the per-
formance bottleneck in CKKS, Han et al. (2022) explore 
the data dependence in this operation to minimize the 
interdependence between data. Then, based on this, they 
maximize the parallel calculation of data and achieve the 
acceleration of the algorithm.

Agrawal et  al. (2022) (FAB), aiming at the bootstrap-
ping process of large homomorphic parameters, design a 

new hardware architecture and balance the memory con-
sumption and computing consumption. FAB architecture 
efficiently utilizes the available U/BRAM blocks on the 
FPGA as on-chip memory. Mapping the polynomial data 
bit-width to that of the U/BRAM blocks data width ena-
bles storage of up to 43 MB of on-chip data.

Aiming at the bootstrapping of TFHE, the acceleration 
scheme is designed and implemented by Ye et al. (2022). 
On one hand, to enable efficient multi-level parallelism, 
they customize the data layout of TFHE ciphertext for 
FPGA on-chip SRAM to optimize data access and reduce 
memory access conflict. The data layout also improves 
data reuse to effectively utilize the external memory 
bandwidth. On the other hand, the acceleration scheme 
is parameterized and can be configured to achieve high 
throughput and low latency for TFHE bootstrapping 
when different users have specific security requirements. 
This improves its availability of it in another way com-
pared with (Turan 2020).

Yang et al. (2022b) accelerate NTT based on FPGA. To 
reduce latency, the acceleration scheme merges the pre-
processing and postprocessing into the NTT and INTT, 
respectively. Besides, a reconfigurable modular multi-
plier, which is based on DSP, is proposed to speed up the 
modular multiplication. In order to avoid designing an 
independent memory access pattern for INTT, a unified 
read/write structure of NTT/INTT is presented. Fur-
thermore, they propose a novel memory access pattern 
named "cyclic-sharing" to reduce 25% memory capacity. 
In summary, the most significant feature of the accelera-
tion scheme is reconfigurability.

In summary, various researchers have proposed FPGA-
based hardware acceleration schemes for different FHE 
algorithms. These schemes focus on optimizing specific 
operations, such as NTT, polynomial multiplication, 
and bootstrapping. The key to achieving acceleration is 
to explore the parallelism of the algorithm and design 
hardware architectures that can utilize it. Some schemes 
(Sujoy Sinha Roy 2019; Agrawal et al. 2022; Ye and Kan-
nan 2022) also use on-chip memory to store constant 
factors or pre-generated data to reduce computation 
time and memory consumption. Cloud-based FPGA 
is also used to improve the availability of the accelera-
tion scheme (Turan 2020). However, there is still room 
for improvement in some schemes, such as combining 
homomorphic parameters tuning to further acceler-
ate FHE. Table  7 shows the comparison of acceleration 
schemes based on FPGA. It can be seen that the availabil-
ity of FHE schemes based on FPGA is relatively high.

ASIC-based
ASIC offers the greatest customization flexibility of any 
hardware platform. However, this is why it is the most 
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difficult to design accelerated solutions based on ASIC 
because it requires a lot of expertise. Most of the accel-
eration schemes based on ASIC aim to optimize the data 
placement strategy, as well as design the correspond-
ing computational circuit so that it can achieve the best 
effect in the acceleration of FHE. One weakness based on 
ASIC is that the production process of ASIC is complex 
and requires a large number of resources. Therefore, the 
corresponding ASIC-based acceleration solution is diffi-
cult to be practical.

In (Tan et al. 2021), aiming at the NTT operation used 
in bootstrapping, the parallelism of it is fully explored. 
On the basis of the design and integration of multiple 
PEs, the corresponding memory management is carried 
out in the algorithm implementation. They design mul-
tiple PEs by exploring the degree of parallelism of the 
algorithm. Each PE can be adjusted dynamically to per-
form a different task, including NTT, INTT, and point-
wise multiplication. Thus, they realize highly parallel 
algorithm execution based on multiple PEs. Because, in 
theory, more PEs should lead to more parallel comput-
ing. In addition, suitable memory management strategies 
are also explored for each execution stage of polynomial 
multiplication by taking into account the number of PEs. 
Through memory management, they realize the efficient 
utilization of memory resources, so as to further realize 
the algorithm acceleration.

Reagen et al. (2021) implement the acceleration of FHE 
applications, named as Cheetah, which is different from 
the general FHE algorithm optimization. Instead, Chee-
tah combines it with the DNN model to optimize the 
FHE performance. For example, the optimal parameter 
analysis model is established to select the optimal param-
eter first. Then the optimal parameters are selected for 
FHE used by each layer network in the DNN model in 
order to reduce algorithm complexity. For the dot prod-
uct operation involved in BFV homomorphic encryption 
algorithm, the partial alignment operation is carried out. 
At the same time, the homomorphic operation sequence 
is optimized for performance-sensitive homomorphic 
operation, in order to minimize the use of noise budget. 
A lower noise budget allows smaller homomorphic 
parameters to be selected. Cheetah also proposes a hard-
ware acceleration architecture, which greatly acceler-
ates the computation speed of the FHE combined DNN 
model by utilizing the parallel computing resources of 
hardware devices, so that it can meet the needs of prac-
tical applications. Compared with prior work, Cheetah 
has been further improved in practicability, which makes 
the application of FHE combined with DNN more in line 
with the practical demand.

Samardzic et  al. (2021) (F1) introduce universal pro-
grammable hardware accelerators in order to accelerate 

the BGV based on ASIC. Based on ASIC’s characteris-
tics, the accelerator speeds up BGV. For various homo-
morphic operations performed using wide vectors, such 
as modular addition, modular multiplication, NTTs 
(forward and inverse in the same unit), and automor-
phisms, the tailored functional units (FUs) are designed 
to accelerate them. Several FUs are also grouped in com-
putational clusters for further acceleration. Besides, the 
programmable framework proposed in F1 fully explores 
the memory management of FPGA. And then they pro-
pose a multi-level memory management system to accel-
erate the FHE. F1 also uses decoupled data orchestration 
to hide main memory latency. At the same time, it imple-
ments a single-stage bit-sliced crossbar network (Pas-
sas et  al. 2012) that provides full bisection bandwidth. 
Moreover F1 adopts a static, exposed microarchitecture: 
all components have fixed latencies, which are exposed to 
the compiler. Static scheduling simplifies logic through-
out the chip. Compared with the acceleration scheme 
(Lupascu 2019), F1 is more available because of its 
programmability.

Kim et  al. (2022) (BTS) are optimized for the boot-
strapping of CKKS. In view of the problem that different 
selections of homomorphic parameters will affect the 
performance of FHE in many ways, they study the time 
required by different combinations of homomorphic 
parameters for each slot in the bootstrapping process on 
the premise of ensuring security, so as to select the opti-
mal homomorphic parameters. As a result, BTS achieves 
a balance between safety and performance. Besides, a 
lot of time-consuming functions are analyzed, includ-
ing NTT, INTT, and BConv. On this basis, two kinds of 
data parallelism modes are explored, which are residue-
polynomial level parallelism (rPLP) and coefficient-level 
parallelism (CLP). And finally, the CLP method is used 
to accelerate the parallel algorithm. Based on the CLP, 
the corresponding parallel execution microarchitecture 
is designed. At the same time, based on the different 
types of memory and the data access frequency related 
to the algorithm, the data storage strategy is optimized to 
achieve further acceleration of bootstrapping of CKKS. 
Compared with F1, BTS improves the throughput of 
bootstrapping.

Kim et  al. (2022) (ARK) analyze the memory bottle-
neck for CKKS bootstrapping hardware acceleration 
process and design the corresponding solution, which 
solves the problem of on-chip memory limitation for 
hardware platforms such as CPU, GPU, and FPGA. 
On one hand, they design the on-the-fly limb exten-
sion, which can pre-calculate the data required for 
PMult and PAdd operation, so as to reduce the num-
ber of times they access data to the on-chip memory. 
On the other hand, they also design specialized FUs for 
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operations for BConv, thus realizing the acceleration of 
BConv. In addition, a data distribution strategy is set 
based on access patterns for BConv to speed up data 
access. The ARK greatly reduces the number of accesses 
to the memory under the chip, thus greatly speeding up 
the implementation of the algorithm. However, the cor-
responding hardware resource consumption also has 
increased.

Based on ASIC, Samardzic et  al. (2022) (CraterLake) 
study the acceleration scheme for the application of FHE 
combined with DNN. CraterLake mainly focuses on 
solving the huge computing overhead of key-switching 
and uses boosted key-switching. The key innovation in 
boosted key-switching is to expand the input polyno-
mial to use wider coefficients. It reduces a large auxil-
iary operand for key-switching hint (KSH). CraterLake 
also designs the CRB unit and the KSHGen unit. The 
CRB unit exploits the high internal reuse to allow much 
higher throughput than independent multipliers and 
adders communicating through the register file. KSHGen 
implements an optimization approach primarily through 
hardware, which has been previously implemented in 
software (Halevi and Shoup 2020). In addition, they have 
optimized scalar modular multipliers and pipeline each 
multiplier to its energy-optimal point. Compared with 
F1, CraterLake can support unlimited depth of multipli-
cation. At the same time, compared with HEAX, (Mert 
and Öztürk 2020), HEAWS, etc., CraterLake can execute 
the entire application based on FHE.

Geelen et  al. (2022) (BASALISC) explore ASIC to 
accelerate bootstrapping. BASALISC is a three-abstrac-
tion-layer RISC architecture. In the process of designing 
PEs for NTT, BASALISC avoids memory access conflicts 
in order to accelerate the realization of NTT. Meanwhile, 
for the twiddle factor, BASALISC designs a twiddle fac-
tor factory to reduce the number of twiddles needed to 
be stored. In addition, the multiply-accumulate unit is 
designed to accelerate the key-switching process of BGV. 
The result shows that BASALISC achieves a good balance 
between performance and resource consumption, and a 
good acceleration effect. Compared with F1, BASALISC 
provides better security. And compared with HEAX, 
BASALISC can adapt homomorphic parameters more in 
line with realistic requirements.

Jiang et al. (2022) (MATCHA) accelerate TFHE based 
on ASIC. They first identify the possibility to use approx-
imate integer FFTs and IFFTs to accelerate TFHE without 
decryption errors. The depth-first iterative conjugate-
pair FFT algorithm (Bécoulet and Verguet 2021) also is 
adopted to decrease the computing overhead of a single 
FFT or IFFT kernel. Moreover, they propose a pipeline 
flow for MATCHA to support aggressive bootstrapping 
key unrolling (Bourse et al. 2018; Zhou et al. 2018), which 

can reduce the number of HAdd, thus achieving further 
acceleration. In this paper, the acceleration design for 
TFHE is relatively novel and can achieve better accelera-
tion effect.

Mert et  al. (2022) (Medha) accelerate the homomor-
phic evaluation for CKKS based on ASIC. Medha is 
able to flexibly support several homomorphic encryp-
tion parameter sets by using a technique, which is called 
divide-and-conquer. In addition, the corresponding FUs 
are designed after sufficiently exploring the parallelism 
of the algorithm implementation. Further, during the 
design process, the communication efficiency of each 
unit is taken into account. And a memory-conservative 
approach is designed to get rid of any off-chip memory 
access during homomorphic evaluations.

Due to the significant acceleration effect of ASIC-based 
FHE acceleration solutions, some researchers (Reagen 
et  al. 2021; Samardzic et  al. 2022) have been studying 
how to efficiently apply them to DNN to meet practical 
needs, and have achieved good results. Table 8 shows the 
comparison of acceleration schemes based on ASIC. It 
can be seen that all schemes for FHE acceleration based 
on ASIC will optimize data storage policy. which has to 
do with the accelerated customization flexibility ASIC 
can provide.

Other acceleration schemes
Compared to the hardware mentioned above, a few 
works have been focused on leveraging other hardware 
for FHE acceleration, such as processing in memory 
(PiM). PiM, which is also called computing-in-memory 
or storage and computing fusions, is different from all the 
above hardware. Its biggest feature is that it can be calcu-
lated directly in memory. Therefore, the time consump-
tion of data transmission is greatly reduced. Based on 
this, the algorithm can be accelerated. As a new hardware 
platform, the design of FHE acceleration scheme based 
on PiM is more at the theoretical level, and it is also dif-
ficult to put into production and application. Table  9 
shows the comparison of acceleration schemes based on 
other hardware.

Reis et al. (2020) are the first to support the execution 
of all essential evaluation operations of the BFV scheme 
within a PiM framework and propose a mapping of poly-
nomial primitives to the underlying PiM hardware, with 
support to polynomial ring operations. They also use 
complementary metal sxide semiconductor-based cus-
tom memory peripherals to support different operations. 
As a result, the acceleration scheme achieve a good accel-
eration result.

Based on the PiM, Gupta et  al. (2021) accelerate the 
key homomorphic operations, including bootstrapping, 
HAdd, homomorphic subtraction, HMult, polynomial 
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addition, polynomial multiplication, and NTT. The big-
gest contribution of PiM is avoiding frequent movement 
of data and speeding up data access. Then the time con-
sumption of data-intensive computing tasks is reduced. 
Later, they in Gupta and Cammarota (2022) accelerate 
GSW and design the pipeline structure based on PiM, so 
as to accelerate the implementation of the algorithm.

In (Chielle et al. 2022), the analog–digital implementa-
tion and circuit implementation of FHE is converted, so 
that more homomorphic operations can be supported. 
At the same time, the algorithm implementation is 
accelerated.

Hardware acceleration summary
Compared with acceleration based on algorithm optimi-
zation, scholars pay more attention to hardware-based 
FHE acceleration. Specifically, a lot of researchers focus 
on it based on FPGA. This is because, on the one hand, 
FPGA can provide parallelism similar to GPU, while at 
the same time, they can provide customization similar 
to ASIC. Therefore, FPGA has the greatest practicabil-
ity, which can realize the ideal acceleration effect and 
facilitate more extensive applications. Compared with 
FPGA, GPU-based acceleration schemes are easier to use 
and still have good acceleration effects. Moreover, the 
acceleration of FHE based on GPU is gradually mature, 
forming some GPU acceleration libraries that can be 
directly called. There are two main types of hardware-
based acceleration. One is to make full use of the parallel 
computing resources of the hardware platform, by fully 
exploring the parallelism of the algorithm, especially for 
NTT, and then design the pipeline structure. This kind 
of optimization method can fully combine the paral-
lel computing resources of hardware with the parallel 
execution of the algorithm, so as to accelerate FHE. The 
other is that, based on hardware memory characteris-
tics and algorithmic data access patterns, different data 
generation and storage strategies are designed, such as 
data precomputation, data runtime generation, data pre-
placement, and other operations. This kind of optimi-
zation method can speed up the data access speed and 
thus accelerate the implementation of the algorithm. 
The advantage of a hardware-based acceleration solution 
is that it can achieve a better acceleration effect, while 
it requires hardware support and is difficult to develop, 
especially for hardware platforms such as FPGA and 
ASIC.

Challenges and future research directions
In this paper, we review FHE acceleration from two 
aspects: algorithm-based acceleration and hardware-
based acceleration. Owing to the considerable poten-
tial for privacy protection provided by FHE while the 

bottleneck lies in its performance, a rapid development 
is witnessed in accelerating FHE. The chosen of hard-
ware used for acceleration is from the common CPU 
to the complex ASIC, which is more suitable for FHE 
acceleration, with more and more algorithmic optimiza-
tions applied. Despite the progress made in accelerating 
FHE, there remain several open problems, and the per-
formance of FHE is yet to mature to meet the demands 
of real-time services. To inspire the following research of 
it, here we list several future directions worthy of further 
investigation.

Homomorphic parameters selection The selection of 
homomorphic parameters also needs further research 
while a few studies on it. The homomorphic parameters 
selection not only decides the security of FHE, but also 
a reasonable selection of it can further improve the per-
formance of FHE. It is quite a complex process, while 
each scheme has specifically selected parameters, all of 
which are interlinked. And these parameters are usually 
selected based on current possible lattice-based attacks 
and their existing limits. An example of a weakness in 
this approach to parameter selection was exploited in an 
attack by Lee (Moon Sung Lee 2011), where the parame-
ter selection in the scheme (Gentry and Halevi 2011) was 
not conservative enough to prevent a lattice-based attack 
exploiting the sparse subset sum problem. In addition, 
according to different application requirements, there are 
usually different optimal homomorphic parameters. For 
example, when FHE is applied to DNN, the correspond-
ing optimal parameter can be selected for each layer of 
the network. Therefore, more efforts into parameter 
selection are needed, which must ensure the most suit-
able parameters are chosen to guarantee both efficiency 
and security.

Memory management Memory storage is another 
major bottleneck in the implementation of practical FHE. 
It involves the use of large parameter sizes and very large 
ciphertext sizes, which can consume significant amounts 
of memory. As a result, memory management becomes 
crucial in FHE implementations. Different FHE schemes, 
different execution stages of the same FHE scheme, will 
have different data access patterns. At the same time, dif-
ferent hardware has corresponding memory structures. 
Existing work explores the data access pattern and data 
dependency, and designs memory management strate-
gies, including data pregeneration, data preplacement, 
and data reuse, which also take the characteristics of 
hardware into account. For example, some methods 
optimize the utilization of highly accessed data by plac-
ing it in the fastest accessible memory in the hardware. 
However, the current research on memory management 
strategy is still not enough. Taking GPU as an example, 
the programming flexibility it provides limits the design 
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of optimal memory management strategies. In addition, 
most of the research on memory management focuses 
on NTT and bootstrapping. Therefore, the research on 
the design of better memory management strategies 
based on hardware that can provide more flexible mem-
ory management needs to be further developed. How 
to combine hardware characteristics with specific algo-
rithms to minimize storage overhead is important. Espe-
cially for special devices, good memory management is 
extremely important. At the same time, it is necessary to 
further explore the data dependency and data access pat-
tern of other FHE primitive operations.

More suitable hardware At present, the GPU, FPGA, 
and ASIC are the major hardware used for FHE accel-
eration. Among them, the research on GPU has been 
relatively mature and there are some GPU-based FHE 
acceleration libraries, including cuHE, cuFHE (CUDA-
accelerated Fully Homomorphic Encryption Library 
2018). In practice, however, the GPU is not suitable for 
FHE acceleration because of its bandwidth bottleneck. 
This is because when GPU performs a computing task, 
data must be transferred from CPU to GPU and then 
sent back to CPU after the task execution. The large 
amount of data that FHE generates results in a large 
memory bandwidth requirement. FPGA and ASIC also 
have the problem of memory limitation. In addition, 
due to the specificity of AISC itself, which means that 
manufacturing ASIC is costly and difficult for research-
ers to manufacture ASIC, the acceleration scheme based 
on it only stays in emulation. And it is difficult to directly 
evaluate and apply, although acceleration schemes based 
on it have the best acceleration results. Therefore, it is 
necessary for further research to use new hardware to 
accelerate FHE. For example, Gupta et  al. (Gupta and 
Cammarota 2022) try to use PiM to accelerate FHE. At 
one end of the spectrum, it is still of great research value 
to design better FHE acceleration schemes based on 
existing hardware.

Application convenience and flexibility There are 
many acceleration schemes for FHE, but a few of them 
are easy to use. The construction theory of FHE is much 
more complex than the basic symmetric and asymmet-
ric encryption algorithms, such as AES, DES, and RSA, 
which undoubtedly makes it more difficult for non-pro-
fessionals to use it. Moreover, since almost all existing 
acceleration schemes rely on hardware, extra hardware 
knowledge hinders the use of FHE acceleration schemes 
even for cryptography professionals. Therefore, the con-
venience of the accelerated program needs to be further 
improved. At the same time, different application sce-
narios have different application requirements for FHE. 
Therefore, a general acceleration framework also requires 

further investigation, with the ability to meet different 
application requirements.

Algorithm optimization At present, most research 
works on using algorithm optimization to accelerate FHE 
focus on just applying existing algorithms. Unfortunately, 
this does not address the inherent performance bottle-
neck of the FHE itself. Especially for the bootstrapping 
process, due to its huge computing resources and storage 
overhead, FHE is often applied in the practical applica-
tion process in the way of leveled FHE. Therefore, if we 
want to significantly improve the performance of FHE, 
we need to make a theoretical breakthrough in FHE itself, 
and this is a very worthy direction for further research, 
although it is extremely difficult. Still, further research 
is needed to explore existing algorithms and techniques 
that are more suitable for FHE acceleration. For example, 
batching techniques proposed for FHE schemes could 
greatly improve the performance of any implementation 
and should also be investigated further.

In summary, while theoretical innovations in FHE hold 
promise for greatly improving performance, it may take 
a significant amount of time to realize these improve-
ments. In the short term, the hardware-based accel-
eration of FHE is bringing us closer to practical FHE. In 
addition, how to effectively combine various optimization 
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methods to achieve fine-grained FHE acceleration is also 
an issue that researchers need to consider. Figures  3, 4, 
5 and 6 respectively shows the reference relationship for 

comparison of acceleration effects of FHE acceleration 
schemes based on different hardware. The articles in blue 
represent themselves discussed in this paper, which are 
related to FHE acceleration and published between 2019 
and 2022. The articles in orange are related to FHE accel-
eration but were published earlier than 2019. The black 
node represents the FHE implementation library. In the 
process of drawing them, we found that there is no good 
baseline when comparing the acceleration effect of FHE 
acceleration schemes. Therefore, how to create a reason-
able baseline is also a valuable research direction, which 
can promote the development of FHE accelerated resea
rch.

Conclusion
By conducting a thorough analysis and comparison of 
various methods for accelerating fully homomorphic 
encryption (FHE), we comprehensively explored the 
future research directions of homomorphic encryp-
tion acceleration from multiple perspectives. The pri-
mary objective of this article is to provide researchers 
in the field of homomorphic encryption acceleration 
with a clear, comprehensive, and in-depth perspective, 
in order to facilitate a better understanding and applica-
tion of homomorphic encryption technology, and to offer 
valuable guidance and support for the development of 
homomorphic encryption in practical applications and 
theoretical research. It is our belief that the novel ideas 
and solutions presented in this article will have a posi-
tive impact and drive the research and application of 
homomorphic encryption acceleration, and promote the 
advancement and dissemination of FHE.
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