
Gong et al. Cybersecurity (2024) 7:5
https://doi.org/10.1186/s42400-023-00187-4

SURVEY

Practical solutions in fully homomorphic
encryption: a survey analyzing existing
acceleration methods
Yanwei Gong1, Xiaolin Chang1* , Jelena Mišić2, Vojislav B. Mišić2, Jianhua Wang1 and Haoran Zhu1

Abstract

Fully homomorphic encryption (FHE) has experienced significant development and continuous breakthroughs
in theory, enabling its widespread application in various fields, like outsourcing computation and secure multi-
party computing, in order to preserve privacy. Nonetheless, the application of FHE is constrained by its substantial
computing overhead and storage cost. Researchers have proposed practical acceleration solutions to address these
issues. This paper aims to provide a comprehensive survey for systematically comparing and analyzing the strengths
and weaknesses of FHE acceleration schemes, which is currently lacking in the literature. The relevant researches con-
ducted between 2019 and 2022 are investigated. We first provide a comprehensive summary of the latest research
findings on accelerating FHE, aiming to offer valuable insights for researchers interested in FHE acceleration. Secondly,
we classify existing acceleration schemes from algorithmic and hardware perspectives. We also propose evaluation
metrics and conduct a detailed comparison of various methods. Finally, our study presents the future research direc-
tions of FHE acceleration, and also offers both guidance and support for practical application and theoretical research
in this field.

Keywords Acceleration, Bootstrapping, FPGA, Fully homomorphic encryption, GPU, NTT

Introduction
The exponential-growing volume of data and the rapid
development of cloud computing facilitate outsourced
computation of big data (Li et al. 2022; Hanafizadeh
2020). However, the collected data contains a large
amount of sensitive and private information, which can
lead to privacy disclosure. There exist cryptographic
technologies to safeguard privacy, among which is fully
homomorphic encryption (FHE). FHE is being explored
for protecting data privacy and then is applied to many
application scenarios, especially those involving sensitive

data, such as healthcare, finance, and government (Bos
et al. 2014; Jiayi et al. 2020 Deviani 2022). It plays an
important role in the field of privacy protection (Dijk
2020; Torres et al. 2014).

The concept of FHE was first proposed by Rivest et al.
(1978) in 1978, but the first FHE scheme was proposed by
Gentry (Craig Gentry: A fully homomorphic encryption
scheme[M]. 2009) in 2009. He also proposed a method
for constructing an FHE scheme, which means that a
somewhat homomorphic encryption (SWHE) scheme
can become an FHE scheme by using bootstrapping to
add the noise refresh process. Based on this, research-
ers carried out a lot of researches on various methods of
constructing an FHE scheme. The most representative
schemes are BGV (Brakerski and Gentry 2014), FV (Fan
and Vercauteren 2012), GSW (Gentry and Sahai 2013),
and CKKS (Homomorphic Encryption for Arithmetic
of Approximate Numbers 2017). In fact, FHE is just one

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Cybersecurity

*Correspondence:
Xiaolin Chang
xlchang@bjtu.edu.cn
1 Beijing Key Laboratory of Security and Privacy in Intelligent
Transportation, Beijing Jiaotong University, Beijing, China
2 Ryerson University, Toronto, ON, Canada

http://orcid.org/0000-0002-2975-8857
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00187-4&domain=pdf

Page 2 of 23Gong et al. Cybersecurity (2024) 7:5

of homomorphic encryption (HE), which also includes
partially homomorphic encryption (PHE) (Rivest et al.
1978; Gamal 1985; Paillier 1999) and (SWHE) (Andrew
Chi-Chih Yao 1982; Sander et al. 1999; Boneh et al.
2005). FHE allows infinite calculation and supports both
homomorphic addition (HAdd) and homomorphic mul-
tiplication (HMult) on the ciphertext. The key strength
of FHE is that it offers cryptographically-strong privacy
guarantees, but these guarantees come at the cost of
massive computational overhead. Thus, many research-
ers have shifted their study attention to FHE accelera-
tion. Although the FHE acceleration schemes have made
good progress, there is still a lack of a summary of related
works to support further development.

There are surveys about FHE. Moore et al. (2014) gave
a brief introduction to the existing FHE acceleration
schemes, which only include those based on the graphics
processing unit (GPU) and field programmable gate array
(FPGA). They did not make an analysis about them, and
there was no discussion of CKKS acceleration scheme
because it was not proposed at that time. Acar et al.
(2018) introduced the development history of HE and
concluded the theories and details of various typical algo-
rithms of HE. At the same time, this paper also sorted out
and compared the implementation libraries of some HE
algorithms. Alaya et al. (2020) summarized different HE
application ways and provide the application scenarios,
such as medical treatment, image, and other fields. Wood
et al. (2021) provided an overview of the application of
FHE in medicine and bioinformatics, along with descrip-
tions of how it can be realized by considering their dif-
ferent characteristics. Zhang et al. (2022) took the first
initiative to conduct a systematic study on the 14 FHE
accelerators. They established a qualitative connection
between different accelerators and performed testbed
evaluations of representative open-source FHE accel-
erators to provide a quantitative comparison on them.
But, similar to Moore et al. (2014), the summary of FHE

acceleration scheme is insufficient. Marcolla et al. (2022)
introduced the basic knowledge and security attributes of
HE and further summarized the application scenarios of
HE, such as machine learning, fog computing, and cloud
computing. Moreover, it also introduced some libraries
and tools for HE. However, these reviews neither referred
to the FHE acceleration schemes nor provided a compre-
hensive summary of FHE acceleration schemes.

To bridge this gap, we collate existing studies and
provide a comprehensive review of FHE acceleration
schemes. In addition, we summarize and compare the
related work in Table 1, which fully demonstrates the
necessity of this survey. It is because no other survey has
collated content similar to it.

The main limitation of the application of FHE is its per-
formance bottleneck, which means the huge cost of FHE
can not satisfy the demand for practical application. As
a result, a large number of studies began to study how
to accelerate it. At present, there mainly exist two ways.
On the one hand, it focuses on algorithm optimization to
accelerate the FHE scheme itself. On the other hand, it
uses hardware to accelerate it, such as central processing
unit (CPU), GPU, FPGA, etc. Figure 1 displays the dis-
tribution of papers focusing on FHE acceleration across

Table 1 Comparison of related works

The ‘√’ indicates that the work satisfies the attribute represented in this column. The same is true for the meaning of ‘√’ in the other tables presented in this paper

References Year Theory
summary

Scheme
summary

Application
summary

Acceleration summary

Algorithm
optimization

Hardware
optimization

Moore et al. (2014) 2014 Insufficient

Acar and Hidayet Aksu (2018) 2018 √ √

Alaya et al. (2020) 2020 √

Wood and Najarian (2021) 2020 √

Zhang et al. (2212) 2022 Insufficient

Marcolla et al. (2022) 2022 √ √

Ours 2023 √ √

CPU
11%

GPU
35%

FPGA
31%

ASIC
17%

Other
6%

CPU

GPU

FPGA

ASIC

Other

Fig. 1 The distribution of papers focusing on FHE acceleration
across various hardware platforms during the last four years

Page 3 of 23Gong et al. Cybersecurity (2024) 7:5

various hardware platforms during the last four years.
Notably, a significant portion of the papers center on
FHE acceleration via GPU and FPGA. It is speculated
that while GPU may not represent the optimal hardware
platform for FHE acceleration, GPU can be used rela-
tively simply to accelerate FHE. Therefore, in the early
stages of FHE acceleration research, it was more com-
mon for researchers to utilize GPU and achieve superior
acceleration effects compared to using CPU. Figure 2
highlights the trend of papers on FHE acceleration based
on different hardware platforms in recent years, thereby
lending further support to the aforementioned specula-
tion. The earlier stages of FHE acceleration research fea-
tured a greater emphasis on acceleration schemes based
on GPU. However, later FPGA and ASIC were found to
be more suitable hardware for FHE acceleration in terms
of acceleration efficiency. This has resulted in an increas-
ing number of papers on FHE acceleration based on them
year after year.

We review and summarize the current mainstream
FHE acceleration schemes proposed in the last four
years, with the following contributions:

• In this paper, we present a comprehensive summary
and synthesis of the latest research findings on accel-
erating FHE between 2019 and 2022. The primary
objective is to provide valuable insights for research-
ers interested in the state-of-the-art developments
and future directions of FHE acceleration.

• Our study provides a comprehensive classification
of existing acceleration methods for FHE from two
perspectives: algorithmic acceleration and hard-
ware acceleration. Further classification is conducted
based on these two main categories, which is detailed
in Sects. "Algorithm acceleration schemes" and
"Hardware acceleration schemes". Finally, we pro-
pose corresponding evaluation metrics to conduct a
detailed comparison of various acceleration methods,
aiming to offer guidance and inspiration for future

research in this field. In particular, algorithmic-based
methods achieve optimization by reducing the num-
ber of operations required for encryption, decryp-
tion, and homomorphic operations. Meanwhile,
hardware-based methods focus on designing spe-
cialized hardware that can perform FHE operations
more efficiently. Through this comprehensive com-
parison, we aim to provide a deeper understanding of
the strengths and weaknesses of different FHE accel-
eration schemes.

• This paper explores the future research directions
of FHE acceleration and provides guidance and sup-
port for practical application and theoretical research
in this field. We identify various potential research
directions, such as exploring new FHE algorithms,
designing novel hardware architectures, and inves-
tigating hybrid acceleration schemes that combine
algorithmic and hardware-based methods. By high-
lighting these potential research directions, we aim to
encourage further advancements in FHE acceleration
and its application to various fields for privacy pres-
ervation.

The rest of this paper is organized as follows. Sect. "Pre-
liminary" introduces the basic knowledge of FHE accel-
eration schemes, including the knowledge related to
algorithms and hardware. Sects. "Algorithm acceleration
schemes" and "Hardware acceleration schemes" respec-
tively present the algorithm-based and hardware-based
acceleration schemes. Following this, Sect. "Challenges
and future research directions" gives the challenges and
future research directions of FHE acceleration. Finally,
Sect. "Conclusion" provides the conclusion.

Preliminary
This section introduces the basic knowledge of FHE
acceleration, including algorithms and hardware, in order
to better understand FHE acceleration schemes discussed
in Sects. "Algorithm acceleration schemes" and "Hard-
ware acceleration schemes". Sect. "Algorithms about
FHE" focuses on those operations related to FHE per-
formance bottlenecks. Sect. "Hardware platforms about
FHE" focuses on hardware platforms exploited to acceler-
ate FHE schemes, including CPU, GPU, FPGA, and appli-
cation specific integrated circuit (ASIC).

Algorithms about FHE
This section describes operations related to the per-
formance bottlenecks of FHE, including polynomial
addition, polynomial multiplication, number theoretic
transform (NTT), and bootstrapping.

0
1
2
3
4
5
6
7

2 0 1 9 2 0 2 0 2 0 2 1 2 0 2 2

CPU GPU FPGA ASIC

year of publication

reb
mun

of
srepap

Fig. 2 The trend of papers on FHE acceleration based on various
hardware from 2019 to 2022

Page 4 of 23Gong et al. Cybersecurity (2024) 7:5

(1) Polynomial multiplication

Polynomial multiplication is an important homomor-
phic operation and the multiplication of very large degree
polynomials is one of the major performance bottlenecks
for the FHE implementations. NTT can be explored for
FHE acceleration, which is done by first converting inputs
to the NTT domain. In the NTT domain, the polynomial
operation can be converted to a coefficient-wise multipli-
cation, which is also called dot multiplication. The coeffi-
cient-wise multiplication has high parallelism and is very
suitable for executing on the hardware platform, which
has a lot of parallel computing resources. The overhead
of coefficient-wise multiplication is negligible when
being compared to NTT and inverse NTT (INTT). They
respectively represent the transformation of the polyno-
mial multiplication input into the NTT domain and the
reversal of the dot multiplication result, the overhead of
coefficient-wise multiplication.

(2) Polynomial addition

Like polynomial multiplication, polynomial addition is
another important homomorphic operation in the homo-
morphic evaluation and is the second most frequently
used operation after polynomial multiplication. Besides,
the accumulation part of relinearization also needs poly-
nomial addition. The polynomial addition can be carried
out in the Chinese remainder theorem (CRT) domain,
which provides sufficient parallelism so that the hard-
ware with parallel computing resources can be used to
accelerate it.

(3) NTT

NTT is extensively employed for FHE implementa-
tion because it enables fast polynomial multiplication
by reducing the complexity of polynomial multiplication
from O(n2) to O(nlogn) . NTT is defined as the discrete
fourier transform over Zq . An N-point NTT operation
transforms an n element vector a to another an n element
vector a . And the NTT can be naturally used for fast
cyclic convolution.

(4) Bootstrapping algorithm

Bootstrapping algorithm is used to refresh the noise
of ciphertext after a homomorphic evaluation when
the entire noise budget of a ciphertext is consumed.
It reduces the noise back to a lower level by running
decryption homomorphically in order to allow an infinite
number of computations of ciphertext. This is also the
difference between FHE and SWHE. The bootstrapping

operation consists of three major steps, including a linear
transform, a polynomial evaluation, and another linear
transform. All these steps consist of the same homomor-
phic operations, such as HAdd, HMult, and rotation.

Hardware platforms about FHE
Sect. "Hardware platforms about FHE" describes the
hardware used to accelerate FHE schemes. It analyses
the characteristics of hardware in order to determine
the optimal hardware platform for accelerating FHE
schemes.

(1) CPU

Compared with GPU, FPGA, and other hardware plat-
forms, the acceleration effect achieved by CPU is not
obvious. CPU itself is not designed to perform heavy data
computing tasks. It can provide a degree of parallel com-
puting power through multithreading, but this is far from
enough to meet the needs of FHE acceleration. Therefore,
most studies prefer to combine it with GPU or FPGA to
realize the acceleration of FHE. However, CPU has the
advantage of being a more general hardware platform
with a wide range of applications.

(2) GPU

The customization flexibility that GPU can provide is
between CPU and FPGA. General-purpose computing
on GPU yields greater efficiency when standardized by
price compared to FPGA and ASIC. GPU is a powerful
but highly specialized device that requires careful coding
to take full advantage of the large amount of parallelism it
offers. Specifically, the programming model and memory
organization are quite different from the CPU. Compared
with FPGA, it is easier to develop programs. In addition,
there is a compute unified device architecture (CUDA)
toolkit to facilitate program development.

(3) FPGA

FPGA is a chip that can be reconfigurable circuitry. It
is a hardware reconfigurable architecture, so it can pro-
vide more customization flexibility. Both CPU and GPU
belong to the von Neumann structure, while FPGA is a
no-instruction and no shared memory architecture. This
structure makes FPGA much more energy efficient than
CPU or even GPU. The function of each logic unit in an
FPGA is determined during reprogramming, without
the need for instructions. FPGA has both pipeline and
data parallelism, whereas GPU only has data parallelism
(pipeline depth is limited). Due to the flexibility of FPGA,

Page 5 of 23Gong et al. Cybersecurity (2024) 7:5

more researchers focus on the acceleration of FHE using
FPGA.

(4) ASIC

ASIC is capable of achieving maximum acceleration
effects concerning FHE, while it requires customization,
and therefore their application scope is limited. The big-
gest advantage of ASIC is that it can be designed corre-
sponding circuits completely according to the needs of
computing tasks, thus providing maximum acceleration
capability. However, ASIC needs to go through many
processes from being designed to being put into use, and
it is also costly. So its application in FHE acceleration is
more in the simulation stage. But the idea of using ASIC
to accelerate FHE can be borrowed and applied to other
hardware platforms.

Each FHE accelerator has its own strengths and weak-
ness. CPU is the most common computer processor and
can be used to implement FHE schemes. However, due
to its single-instruction pipeline architecture, its paral-
lel performance and processing speed are relatively low,
making it less suitable for high-performance homomor-
phic operations. GPU has excellent parallel computing
capabilities when processing large-scale data, so they
can be used to accelerate FHE schemes. However, since
GPU is designed for graphics processing, its support for
numerical computing is limited, and sometimes it is diffi-
cult to adapt to the special requirements of FHE schemes.
FPGA is a programmable logic device with high flexibility
and parallel performance, and can be used to implement
high-performance FHE schemes. Since FPGA is pro-
grammable, it can be customized and optimized accord-
ing to specific needs and application scenarios, thereby
achieving higher performance and efficiency. ASIC is a
chip specially designed and manufactured to implement
highly customized and optimized FHE schemes. Com-
pared with FPGA, ASIC has higher performance and
lower power consumption, but also has higher design
costs and longer development cycles.

In summary, the application scenario and specific
requirements must be considered for selecting an accel-
erator in order to achieve the optimal performance and
efficiency.

Table 2 compares the hardware platforms from 6
aspects. Universality refers to whether the hardware plat-
form is widely used, and it is persuasive to say that CPU is
the most widely used hardware platform. Whether or not
a hardware platform provides enough customization can
be evaluated through customization flexibility, which also
reflects the acceleration ability it can offer. ASIC is con-
sidered to be able to provide the largest customization

flexibility because it allows you to design hardware cir-
cuits. As far as practicality is concerned, there are two
aspects to consider: ease of use and acceleration ability.
In short, if a hardware platform provides good accelera-
tion but with low usability, it would be regarded as hav-
ing low practicality, such as ASIC. The metric of research
popularity, the same as in Table 3, is determined accord-
ing to the number of related papers.

Algorithm acceleration schemes
This section introduces the acceleration schemes of FHE
using algorithm optimization, which is mainly divided
into three categories, including NTT, Bootstrapping, and
Encoding. Table 3 compares their characteristics of them,
including acceleration approaches, importance, accelera-
tion effect, and research popularity. It can be seen that
NTT and bootstrapping are studied by more researchers.
Table 4 gives all the acceleration schemes discussed in
Sects. "Algorithm acceleration schemes" and "Hardware
acceleration schemes, and also shows whether they are
algorithm-based.

NTT optimization
As a very important primitive operation in FHE, NTT
has very important research value for FHE accelera-
tion. Therefore, a large amount of research works focus
on the design of acceleration schemes for NTT, includ-
ing algorithm optimization and hardware optimization.
The core idea of NTT algorithm optimization is to use
the existing algorithm to simplify the NTT operation and
replace it with a more suitable form of hardware parallel
computing.

Rashmi et al. (2020) accelerate FHE by using algo-
rithmic optimization. The most important part of this
paper in terms of algorithmic optimization is to use low-
cost operations to replace high-cost operations. Barrett

Table 2 Comparison of hardware platforms

Note that We use the number of ‘ + ’ to describe the strength of hardware
with respect to a feature, with five ‘ + ’ representing the strongest and one ‘ + ’
representing the weakest. The same is true for the meaning of ‘ + ’ in the other
tables presented in this paper

Metric Hardware platform

CPU GPU FPGA ASIC

Universality + + + + + + + + + + + + + +

Customization flexibility + + + + + + + + + + + + +

Acceleration ability + + + + + + + + + + + + +

Price + + + + + + + + + + + + + +

Practicality + + + + + + + + + + + +

Research popularity + + + + + + + + + + + +

Page 6 of 23Gong et al. Cybersecurity (2024) 7:5

reduction (Barrett 1986) method is adopted to transform
the high-consumption modular operations. In addition,
the NTT operation in polynomial multiplication is used
to perform the indices computation operation by shifting
and XOR operation, so as to accelerate the NTT process.
Similar to Rashmi (2020), Türkoglu et al. (2022) also use
Barrett Reduction to accelerate the implementation of
the algorithm.

Compared to Rashmi (2020), not only do Shivdikar
et al. (2022) use Barrett reduction, but they also improve
it. Based on several variants of Barrett reduction, an effi-
cient Barrett reduction for 64-bit integers is proposed
to accelerate the modular division of NTT operations
used in polynomial multiplication operations. Mert
et al. (2020) accelerate the encryption and decryption
process of BFV algorithm. Unlike (Shivdikar et al. 2022;
Rashmi 2020), an efficient polynomial multiplier is pro-
posed which can also be used for homomorphic opera-
tions other than encryption and decryption. They mainly
use Montgomery algorithm to reduce the modular divi-
sion operation in polynomial multiplication, so as to
achieve the algorithm acceleration. Goey et al. (2021) not
only use Barrett reduction but also use SSMA algorithm
(Schönhage and Strassen 1971) to further accelerate
NTT operation. SSMA is a fast multiplication algorithm
for large integers with a low computational complexity of
O(nlog(n)log(nlog(n))) . Therefore, in terms of accelera-
tion results, cuHE (Dai and Sunar 2015) is surpassed. Roy
et al. (2019) accelerate the BFV. But they only use the
existing latest algorithm level optimization method.

The algorithm acceleration for NTT mainly focuses on
utilizing Barrett reduction. Some studies (Türkoglu et al.
2022; Rashmi 2020) just use it, while others (Shivdikar
et al. 2022) improve it. Moreover, some studies (Goey
et al. 2021; Mert and Öztürk 2020) also use other fast
multiplication algorithms to accelerate NTT.

Bootstrapping optimization
Bootstrapping, which has huge time complexity and
space complexity, is another important performance bot-
tleneck in FHE. Therefore, the core idea of bootstrapping

optimization is to solve the memory bandwidth problem
in its implementation process and improve throughput.

Chen et al. (2019) focus on bootstrapping (Chillotti
et al. 2017) acceleration of CKKS. They use a dynamic
programming approach (Halevi and Shoup 2014) to
decide the optimal level collapsing strategy for a generic
multi-leveled linear transform in order to fully explore
the trade-off between levels consumption and the num-
ber of operations. And the result shows a large increase in
the bootstrapping throughput. In addition, they replace
the Taylor approximation with the Chebyshev interpolant
to approximate the scaled sine function, which not only
consumes fewer levels but also is more accurate than the
original method.

For the full-residue number system (full-RNS) variant
of CKKS, Han et al. (2020) combine the RNS-decomposi-
tion method (Bajard et al. 2016) and the temporary mod-
ulus technique (Gentry and Halevi 2012) to reduce about
half complexity for HMult even with a larger security
parameter. For the evaluation of sine function and cosine
function, they consider a ratio between the size of a mes-
sage and the size of a ciphertext modulus. As a result, the
number of non-scalar multiplications is almost reduced
by half compared to the previous work (Chen and Chill-
otti 2019).

Bossuat et al. (2021) accelerate the bootstrapping for
the full-RNS variant of the CKKS. They propose a new
format for rotation keys and a modified key-switching
procedure in order to improve the baby-step giant-step
algorithm (Halevi and Shoup 2021), which is used by pre-
vious works (Chen and Chillotti 2019; Han and Ki 2020;
Bossuat and Troncoso-Pastoriza 2022). The modified
key-switching procedure extends the hoisting (Halevi
2018) technique to a second layer and reduces the cost
of the linear transformations compared to the previous
hoisting approach. Moreover, they also discuss the para-
metrization of the CKKS and its bootstrapping circuit
and propose a procedure to choose and fine-tune the
parameters for a given use-case.

In (Castro et al. 2021), the optimization method of
bootstrapping is proposed aiming at improving the

Table 3 Comparison of acceleration object

Accelerated object Acceleration approaches Importance Research popularity Accelerated effect

NTT Operational substitution exploration + + + + + + + + + + + + + +

Algorithm parallelism exploration

Bootstrapping Data dependency exploration + + + + + + + + + + +

Algorithm simplification exploration

Encoding Efficient coding based on the data access
mode of the subsequent algorithm

+ + +

Page 7 of 23Gong et al. Cybersecurity (2024) 7:5

Table 4 Comparison of different acceleration schemes

References Year Algorithm-based optimization Hardware-based optimization

NTT Bootstrapping Encoding CPU GPU FPGA ASIC Other

Chen and Chillotti (2019) 2019 √ √

Han and Ki (2020) 2020 √ √

Bossuat et al. (2021) 2021 √ √

Boemer et al. (2021) 2021 √

Ishimaki (2021) 2021 √

Inoue and Suzuki (2022) 2022 √

Jin et al. (2019) 2019 √ √

Ahmad Al Badawi (2019) 2019 √

Lupascu (2019) 2019 √

Lei et al. (2019) 2019 √

Xia et al. (2019) 2019 √

Kim and Jung (2020) 2020 √

Morshed (2020) 2020 √

Ahmad Al Badawi (2020) 2020 √

Ahmad Al Badawi (2021) 2021 √

Pedro et al. (2021) 2021 √

Goey et al. (2021) 2021 √ √

Jung et al. (2021) 2021 √

Jung and Kim (2021) 2021 √

Castro et al. (2021) 2021 √ √

Özerk and Elgezen (2022) 2022 √

Türkoglu et al. (2022) 2022 √ √

Shivdikar et al. (2022) 2022 √ √

Shen et al. (2022) 2022 √

Sujoy Sinha Roy (2019) 2019 √ √

Mert and Öztürk (2020) 2020 √ √

Riazi et al. (2020) 2020 √ √

Kim et al. (2020) 2020 √

Rashmi (2020) 2020 √ √

Turan (2020) 2020 √

Serhan et al. (2021) 2021 √

Fadhli et al. (2021) 2021 √

Ye et al. (2021) 2021 √ √

Xin and Zhao (2021) 2021 √

Syafalni et al. (2022) 2022 √

Yang et al. (2022a) 2022 √

Han et al. (2022) 2022 √

Agrawal et al. (2022) 2022 √

Ye and Kannan (2022) 2022 √

Yang et al. (2022b) 2022 √

Tan et al. (2021) 2021 √

Reagen et al. (2021) 2021 √

Samardzic et al. (2021) 2021 √

Kim and Kim (2022) 2022 √

Kim et al. (2022) 2022 √ √

Samardzic et al. (2022) 2022 √

Geelen et al. (2022) 2022 √

Jiang et al. (2022) 2022 √

Page 8 of 23Gong et al. Cybersecurity (2024) 7:5

throughput. The authors present algorithmic optimi-
zations including combining ModDown and rescale in
Mult, hoisting the ModDown in PtMatVecMult, and
compressing the key with a pseudo-random number
generator (PRNG). By combining ModDown and rescale
in Mult, they realize a faster encrypted inner product.
The ModDown in PtMatVecMult leads that the same
ciphertext can be computed more efficiently than simply
applying the rotate function. Compressing the key with a
PRNG can avoid shipping the large random polynomials
to dynamic random access memory, instead sending only
the short PRNG key. The three optimization methods can
reduce the number of operations and the consumption of
memory, thus realizing the acceleration of bootstrapping.

Ye et al. (2021) accelerate the application of FHE in
CNN. They mainly use a new convolution method and
explore the parallelism of the algorithm to realize the
algorithm acceleration. By using Im2col convolution
and Frequency domain convolution, they guarantee that
any pair of elements to be summed or multiplied are in
the same position in the vector. Therefore, only Pt-Ct
Mult and Additions without the expensive rotations are
needed for homomorphic convolution calculations.

Kim et al. (2022) propose the Minimum key-switch-
ing (Min-KS) based on the minimal key-switching pro-
posed by Halevi et al. (2018). Compared with minimal
key-switching (Halevi 2018), Min-KS further reduces
the use of the evaluation key in bootstrapping, which
means that the number of data accessed in the chip
memory at a time is decreased. In addition, the Min-KS
algorithm is generalized so that it can be better applied
to common homomorphic operations.

Since bootstrapping involves many primitive opera-
tions, many studies have been done to accelerate it by
speeding up some of them. The key-switching proce-
dure is the focus of some research works (Bossuat et al.
2021; Castro et al. 2021; Ye et al. 2021; Kim et al. 2022),
which reduce the number of operations to achieve the
purpose of acceleration.

Encoding optimization
The core idea of encoding optimization is to make the
encoded data have more parallel computing potential,
so as to accelerate the implementation of the algorithm.
However, there are a few research works on algorithm
acceleration by using encoding optimization.

Jin et al. (2019) design an encoding strategy for FHE so
that the encoded plaintext data can be better executed in
parallel. Compared with the previous work, they design
the corresponding data encoding strategy for images
with higher dimensions. In view of the feature that differ-
ent weight components are calculated simultaneously in
convolution operation, they encode the components that
can be parallel into a vector, so as to facilitate the paral-
lel homomorphic operation later. Besides, the encoding
strategy improves memory efficiency and reduces the
message size transferred.

Algorithm acceleration summary
In general, the acceleration effect of FHE schemes based
on algorithm acceleration is limited. Many research
works on the acceleration of FHE focus on the accelera-
tion of NTT and bootstrapping. And the Barrett reduc-
tion is most commonly used to accelerate NTT. There
are two main ways of algorithm optimization. One is
to replace operations, which needs high computing
resource consumption, with operations consuming high
computing resource. The other is to improve the paral-
lelism of the algorithm so that the hardware accelera-
tion schemes can be designed on this basis. In general,
the algorithm acceleration schemes are unable to achieve
a breakthrough acceleration effect and most works just
apply existing algorithms. Therefore, algorithm-based
acceleration schemes require a theoretical breakthrough,
especially for bootstrapping, in order to make FHE per-
formance closer to the actual application requirements.
However, the advantage of an acceleration scheme based
on algorithm optimization is that it is more adaptive and
can adapt to different hardware platforms.

Table 4 (continued)

References Year Algorithm-based optimization Hardware-based optimization

NTT Bootstrapping Encoding CPU GPU FPGA ASIC Other

Ahmet Can Mert (2022) 2022 √

Reis et al. (2020) 2020 √

Gupta (2021) 2021 √

Gupta and Cammarota (2022) 2022 √

Chielle et al. (2022) 2022 √

Note that the article with a ‘√’ for both algorithm-based optimization and hardware-based optimization, represents that it leverages both algorithm optimization and
hardware optimization simultaneously

Page 9 of 23Gong et al. Cybersecurity (2024) 7:5

Hardware acceleration schemes
This section introduces FHE acceleration schemes
using hardware platforms, including CPU, GPU, FPGA,
ASIC, and others. CPU has the least parallel computing
resources, resulting in the worst acceleration effect. GPU
is cheaper and easier to use. FPGA is a popular choice for
FHE acceleration due to its parallel computing resources
and customization. ASIC achieves the best acceleration
effect although it’s difficult to put into production.

CPU-based
There are only a few CPU-based acceleration schemes,
and the acceleration effect that can be achieved is limited.

Based on the Intel® Advanced Vector Extensions 512
(Intel® AVX512) instruction set, Boemer et al. (2021)
implement acceleration on polynomial modular multi-
plication and NTT. They provide it as a Homomorphic
Encryption Acceleration Library which can be used in
combination with the SEAL library. The acceleration
scheme mainly uses two optimization methods, includ-
ing loop optimization and data parallel computing opti-
mization, which are both based on the instruction set.
Loops are unrolled either manually or using a pre-pro-
cessor directive, with a manually-tuned unrolling factor.
Within manually unrolled loops, instructions are reor-
dered where possible for best pipelining. Based on the
property of the instruction set, eight 64-bit integers can
be processed simultaneously, the acceleration scheme
completes the acceleration of NTT by expressing NTT
and INTT in the form of elements and processing them
together. For the vector and vector multiplication and
polynomial and polynomial multiplication expressed in
the form of elements, the input data is also aligned based
on the purpose for simultaneous processing of eight
64-bit integers to achieve performance optimization.

In Ishimaki et al. (2021), the Trace-Type Function
Evaluation of CKKS is accelerated. The homomorphic
trace-type function evaluation is performed by repeat-
ing homomorphic rotation followed by addition (rota-
tions-and-sums). The homomorphic trace-type function
is a commonly used and time-consuming subroutine
that enables homomorphically summing up the compo-
nents of the vector or homomorphically extracting the

coefficients of the polynomial. They propose a more effi-
cient trace-type function evaluation using loop-unrolling
to reduce the number of expensive operations by lever-
aging a property of automorphisms and using a multi-
core environment, thus reducing the computational cost
compared with the sequential method (Halevi and Shoup
2014; Chen et al. 2021) at the expense of slightly increas-
ing the required storage. In addition, they successively
unroll consecutive subloops in the trace-type function
evaluation and parameterize the number of iterations
after the unrolling, which further realizes the acceleration
of the Homomorphic Trace-Type Function Evaluation.

Inoue et al. (2022) also accelerate the trace-type func-
tion by using Intel® AVX512 instruction set. Through
using loop unrolling, they implement the optimization
of the trace-type function. Their acceleration scheme can
be regarded as another implementation scheme of Intel®
AVX512 instruction set in accelerating FHE, without
much innovation.

Most studies (Boemer et al. 2021; Inoue and Suzuki
2022)) are based on the Intel® AVX512 instruction set
to accelerate FHE, since the mainstream CPU instruc-
tion set is not suitable. This also shows the limitations of
the CPU for FHE acceleration. Table 5 shows the com-
parison of acceleration schemes based on CPU. In it,
three aspects should be considered in the availability
evaluation of schemes. They are the acceleration ability
offered, whether the hardware platforms are universal,
and whether the schemes are only accelerated architec-
tures or form acceleration libraries that could be directly
called. Acceleration results are about the acceleration
effect of schemes in terms of latency. We directly cite the
acceleration results given in works to show. This is why
different schemes have the different significant digits
about acceleration result. There are some works (Ahmad
Al Badawi 2019; Goey et al. 2021; Castro et al. 2021; Fad-
hli et al. 2021; Xin and Zhao 2021) that don’t give the
exact acceleration result in terms of acceleration times.
So we compute it by using the experimental result shown
in them. And the result is rounded to two decimal places.
The Tables 6, 7, 8 and 9 are the same as the Table 5. The
‘×’ in Table 5 means the times. The same is true for the
meaning of ‘×’ in the other tables presented in this paper.

Table 5 Comparison of acceleration schemes based on CPU

Note that the ’×’ in the Table indicates that the work doesn’t satisfy the attribute represented in this column. The same is true for the meaningof ’×’ in the other tables
presented in this paper

References Year Availability Data storage
optimization

Homomorphic
parameters tuning

Accelerated object Acceleration
result (times)

Boemer et al. (2021) 2021 + √ × Bootstrapping 4.83–6.26

Ishimaki (2021) 2021 + √ √ Rotation / HAdd 1.32–2.12

Inoue and Suzuki (2022) 2022 + √ × Rotation / HAdd 1.05–2.30

Page 10 of 23Gong et al. Cybersecurity (2024) 7:5

GPU-based
GPU has been widely used in FHE acceleration in recent
years. The acceleration scheme based on GPU is mainly
realized by utilizing parallel computing resources it

provides. At the same time, the data storage strategy will
also be optimized in order to reduce the time taken to
access data. However, due to the limited customization
flexibility provided by GPU, the innovation of GPU-based

Table 6 Comparison of acceleration schemes based on GPU

*(Ahmad Al Badawi 2019) compares the performance of two optimized variants of BFV, namely BEHZ and HPS. And it doesn’t give the acceleration result

References Year Availability Data storage
optimization

Homomorphic
parameters
tuning

Accelerated object Acceleration result (times)

Ahmad Al Badawi (2019) 2019 + × × HPS RNS variant of the BFV *

Lupascu (2019) 2019 + + + × × Ciphertext multiplication 5.14 ×

Lei et al. (2019) 2019 + + + × × KeyGen / Bootstrapping 1.672–13.268 ×

Xia et al. (2019) 2019 + + × × DGHV 1.67–1.84 ×

Kim and Jung (2020) 2020 + + + √ × NTT 6.52 ×

Morshed (2020) 2020 + + × × TFHE 14.5–20 ×

Ahmad Al Badawi (2020) 2020 + × × CKKS 10–100 ×

Ahmad Al Badawi (2021) 2020 + + × × HPS RNS variant of the BFV 10–1000 ×

Pedro et al. (2021) 2021 + + + × × BFV 2.6 ×

Goey et al. 2021) 2021 + + √ × CMNT 1.41 ×

Jung et al. 2021) 2021 + + √ × CKKS 4.05 ×

Jung and Kim (2021) 2021 + + + + √ × Bootstrapping 7.02 ×

Castro et al. (2021) 2021 + × × NTT / Polynomial Multiplication 1092.29 ×

Özerk and Elgezen (2022) 2022 + + + √ × NTT / Polynomial Multiplication 90.13–141.95 ×

Türkoglu et al. (2022) 2022 + + + × × HMult / Relinearization / Rotation
/ HAdd

13.39–47.01 ×

Shivdikar et al. (2022) 2022 + + + + √ × Polynomial Multiplication 123.13 ×

Shen et al. (2022) 2022 + + + + × × BGV / BFV / CKKS 234.5–378.4 ×

Table 7 Comparison of acceleration schemes based on FPGA

*(Serhan et al. 2021) uses less hardware resource to achieve linear performance scaling with up to 16 vector lanes about matrix–vector operations in bootstrapping of
TFHE. And it doesn’t achieve significant acceleration

#(Yang et al. 2022b) also uses less hardware resource to implement FHE and doesn’t give the acceleration result in terms of latency

References Year Availability Data storage
optimization

Homomorphic
parameters tuning

Accelerated object Acceleration result

Sujoy Sinha Roy (2019) 2019 + + + × × BFV 13 ×

Mert and Öztürk (2020) 2019 + + + × × BFV 7–12 ×

Riazi et al. (2020) 2020 + + × √ CKKS 164–268 ×

Kim et al. (2020) 2020 + + + + √ × NTT 118 ×

Rashmi (2020) 2020 + + + × × Polynomial Multiplication 2950–4200 ×

Turan (2020) 2020 + + + √ × BFV 5 ×

Serhan et al. (2021) 2021 + + × × Bootstrapping *

Fadhli et al. (2021) 2021 + + × × BFV 3.85 ×

Ye et al. (2021) 2021 + + + √ × BFV 3.4–6.7 ×

Xin and Zhao (2021) 2021 + + + + × × CKKS 26.04 ×

Syafalni et al. (2022) 2022 + + × × Polynomial Multiplication 38.5 ×

Yang et al. (2022a) 2022 + + √ × BFV 5.6 ×

Han et al. (2022) 2022 + + + × × Key-switching 1.6 ×

Agrawal et al. (2022) 2022 + + + √ × Bootstrapping 533 ×

Ye and Kannan (2022) 2022 + + √ × Bootstrapping 16.5 ×

Yang et al. (2022b) 2022 + + √ × NTT #

Page 11 of 23Gong et al. Cybersecurity (2024) 7:5

acceleration schemes is also limited. On the other hand,
since GPU is a more general hardware platform, its accel-
eration scheme can be presented in the form of the accel-
eration library and put into use.

Badawi et al. (2019) implement and evaluate the perfor-
mance of two optimized variants, which are called Bajard
Eynard-Hasan-Zucca (BEHZ) and Halevi-Polyakov-
Shoup (HPS), based on CPU and GPU. The lazy reduc-
tion and several precomputations are added to optimize
the implementation of HPS. When implementing HPS
on GPU platform, the discrete galois transform (DGT) is
used for efficient polynomial multiplication using nega-
cyclic convolution. It cuts the transform length into half
and requires less amount of memory for precomputed
twiddle factors. The DGT algorithm was originally pro-
posed by Crandall (1999) for fast negacyclic convolution.
Besides, data transfer between CPU and GPU is avoided.
The final result shows that HPS performs better than
BEHZ, and for 128-bit security settings, HPS is already
practical for cloud environments supporting GPU
computations.

Lupascu et al. (2019) use several GPUs to accelerate
the FHE and first adapt them for HElib. The accelera-
tion scheme proposed in this paper is to make full use of
parallel computing resources of multiple GPUs by dis-
tributing computing tasks reasonably. For task allocation
on multiple GPUs, the unity of task loads is balanced to
maximize the work efficiency of multiple GPUs. Before

tasks are distributed, for the ciphertext addition, sub-
traction, and multiplication operations in homomorphic
operations, the parallelization of the operation sequence
is explored, and the operation sequence that can be exe-
cuted in parallel is decomposed. The innovation of the
acceleration scheme proposed in this paper is limited,
and it is just to accelerate the algorithm implementation
at the cost of consuming multiple GPUs.

Similar to Lupascu (2019), Lei et al. (2019) also use
GPUs to accelerate the adder in FHEW-V2. The cuFTT
(https:// devel oper. nvidia. com/ cufft) library is used to
accelerate the parallelization of FTTs operations in boot-
strapping. For a complex multiplication operation, they
use the parallelism of GPU to accelerate it. In addition,
for the data that need to be shared in the calculation, they
put it into the shared memory to improve the data access
speed. Different from Lupascu (2019), their acceleration
scheme also uses a multicore CPU to accelerate the algo-
rithm. For example, since bootstrapping is independent
of each key, this paper uses a multicore CPU to accelerate
the key generation process by generating different keys at
the same time.

Based on the joint architecture of CPU and GPU,
Xia et al. (2019) accelerate the DGHV (Dijk and Gen-
try 2010). Aiming at serialization operations of DGHV,
they explore the method of parallel implementation and
use parallel computing resources of GPU to carry out
the implementation of corresponding algorithms. For

Table 8 Comparison of acceleration schemes based on ASIC

References Year Availability Data storage
optimization

Homomorphic
parameters tuning

Accelerated object Acceleration result (times)

Tan et al. (2021) 2021 + + √ × Bootstrapping 2.43 ×

Reagen et al. (2021) 2021 + + √ √ BFV 79 ×

Samardzic et al. (2021) 2021 + + + + √ × BGV 5400–14,000 ×

Kim and Kim (2022) 2022 + + + √ √ Bootstrapping 1306–5556 ×

Kim et al. (2022) 2022 + + + √ × Bootstrapping 11,590–18,214 ×

Samardzic et al. (2022) 2022 + + + + √ × CKKS 4600 ×

Geelen et al. (2022) 2022 + + + √ × BGV 4000 ×

Jiang et al. (2022) 2022 + + + √ × TFHE 24–160 ×

Ahmet Can Mert (2022) 2022 + + + √ × CKKS 68–78 ×

Table 9 Comparison of acceleration schemes based on other hardware

References Year Availability Data storage
optimization

Homomorphic
parameters tuning

Accelerated object Acceleration
result (times)

Reis et al. (2020) 2020 + + √ × BFV 14.3 ×

Gupta (2021) 2021 + + √ × Bootstrapping 88,397 ×

Gupta and Cammarota (2022) 2022 + + + √ × GSW 20,000 ×

Chielle et al. (2022) 2022 + + √ √ Bootstrapping 10–100 ×

https://developer.nvidia.com/cufft

Page 12 of 23Gong et al. Cybersecurity (2024) 7:5

example, for the long message sequence, the acceleration
scheme adopts the method of dividing the message into
blocks and then simultaneously encrypting each message
block. For HAdd, the acceleration scheme also uses the
computing resources of GPU to implement it in parallel.
In general, the acceleration scheme (Xia et al. 2019) is rel-
atively simple, and the exploration of algorithm parallel-
ism is not very sufficient. So the final acceleration effect
is limited.

Different from studies mentioned above, based on
GPU, Kim et al. (2020) aim at the severe memory band-
width bottleneck faced by NTT operation under a larger
homomorphic parameters set. An implementation
scheme of runtime data generation is proposed, which
uses factorization recursion to calculate the rotation
factor, thus balancing the calculation speed and space
consumption.

Based on CPU and GPU, Morshed et al. (2020) design
and implement an acceleration scheme for TFHE homo-
morphic encryption. On the one hand, they analyze the
parallelism for HAdd, HMult, and other operations, and
realize the algorithm acceleration by assigning tasks,
which can be computed in parallel, to different threads
provided by CPU. On the other hand, they improve the
parallelization of the algorithm by optimizing Bit Coa-
lescing, Compound Gate, Karatsuba Multiplication (Kar-
atsuba 1962), and so on, so as to make full use of the
parallel computing resources of GPU.

Badaw et al. (2020) realize the acceleration of CKKS
based on GPU, while the important optimization they
used here is related to matrix packing. Packing is use-
ful in FHE to reduce both the number of homomorphic
operations due to single instruction multiple data (SIMD)
evaluation and the number of ciphertexts. In general, the
innovation of the acceleration scheme proposed in this
paper is limited, and it can not achieve an obvious accel-
eration effect.

Based on multiple GPUs, Badawi et al. (2021) also
design a data allocation strategy for the computation
process of the FHE algorithm, which ensures the load
balancing of multiple GPUs. According to the size of the
polynomial matrix, the strategy allocates data with lim-
ited rows and columns, which achieves acceleration simi-
lar to the task allocation strategy proposed by Lupascu
et al. (2019). However, Badawi et al. (2021) also design an
efficient CPU-GPU communication protocol, thus realiz-
ing better algorithm acceleration.

In Alves et al. (2021), the acceleration scheme of
BFV algorithm is designed based on GPU. Due to the
inspiration of Bailey’s version of the Fast Fourier Trans-
form (David 1989), they proposed a novel hierarchical
formulation of the DGT that offers about two times
lower latency than the best version available in the

previous work. The DGT is also faster than NTT due to
its lower memory bandwidth requirement. Moreover,
they also choose the compatible parameters between
the DGT and the RNS representation. In addition, a
more efficient and polynomial-oriented state machine
is designed to reduce the need for moving data in and
out of the DGT domain and between the main memory
and the GPU global memory. In a word, in order to bet-
ter play the performance of the GPU, this paper inno-
vatively uses some mathematical tools and implements
them on the GPU through CUDA.

Goey et al. (2021) accelerate CMNT (Coron and
Mandal 2011) based on GPU. In terms of hardware
optimization, they propose to buffer the twiddle fac-
tors in GPU registers and then access these data across
different threads during the NTT computation through
warp shuffle instruction. Combined with algorithm
optimization mentioned in Sect. "NTT optimization",
the acceleration scheme finally realizes the further sur-
passing of cuHE.

Jung et al. (2021) explore the parallel implementation
and data access of CKKS. Based on this, the correspond-
ing acceleration schemes are implemented on CPU and
GPU and the result shows the effectiveness of the acceler-
ation method. For CPU, the acceleration scheme is based
on scatter instructions in AVX-512 (Boemer et al. 2021),
which accelerates matrix multiplication. For GPU, they
assign each independently computable output element to
a thread, so as to realize the acceleration of the algorithm
through parallel calculation of non-interference data.
This also makes the acceleration scheme more sufficiently
explore the parallelism of algorithm implementation
compared with cuHE. In addition to the design of parallel
strategy, they also calculate and store data in advance to
speed up data access.

Jung et al. (2021) implement the optimization of CKKS
bootstrapping. By fully exploring the parallelism in FHE,
they discover that the major performance bottleneck is
their high main-memory bandwidth requirement, which
is exacerbated by leveraging existing optimizations tar-
geted to reduce the required computation. Further, they
find that inner product in key-switching is a major bottle-
neck when attempting to accelerate HMult. On this basis,
kernel fusion and reordering primary functions, which
are memory-centric optimizations, are used to accelerate
bootstrapping. And the result shows that the acceleration
scheme has achieved good acceleration effect.

Through the analysis of bootstrapping, Castro et al.
(2021) find that the main performance bottleneck of
bootstrapping mainly comes from the memory band-
width bottleneck. That is, a large number of interme-
diate process data needs to be generated and stored
during the execution of bootstrapping. On this basis,

Page 13 of 23Gong et al. Cybersecurity (2024) 7:5

the optimization method of bootstrapping is proposed,
which mainly uses physical address mapping optimi-
zation. The physical address mapping of the data in the
main memory has a substantial impact on the time it
takes to transfer data. The reduction of data transfer time
speeds up the implementation of bootstrapping.

Based on GPU, Özerk et al. (2022) design and imple-
ment a corresponding acceleration scheme for key gen-
eration, encryption, and decryption of FHE using NTT
operation. In this paper, the parallel operation of NTT
is designed based on the parallel computing resources
provided by GPU. At the same time, they also optimize
the GPU memory usage and kernel function call, so as to
realize the algorithm acceleration. The difference is that
they focus on different acceleration objects mentioned
above.

Türkoğlu et al. (2022) design and implement a corre-
sponding acceleration scheme for HMult, relinearization,
rotation, and HAdd. They use the CUDA to further accel-
erate the Barrett reduction process. And they provide the
corresponding GPU FHE acceleration library.

Based on GPU, Shivdikar et al. (2022) design an accel-
eration method for polynomial multiplication, which is a
very important performance bottleneck in homomorphic
encryption. The method optimizes the memory access of
GPU to improve the data access speed and throughput
during the algorithm operation process, so as to achieve
further acceleration.

The acceleration scheme proposed by Shen et al. (2022)
is GPU-based and accelerated for word-size FHE, includ-
ing BGV, BFV, and CKKS. They mainly combine some
previous acceleration optimization methods and develop
the acceleration library on this basis. This acceleration
library can be used for both ordinary GPU and embed-
ded GPU. Meanwhile, it can better support the use of
Internet of Things devices. And aiming at the security
vulnerabilities of FHE acceleration stock in preventing
side-channel attacks, they implement time consistency
for multiply-accumulation, conditional subtraction, and
Barrett reduction. At the same time, it also carried on
the simplification of the implementation instructions.
Besides, they also implement two versions for NTT oper-
ations, which are performance first and memory first. In
view of the limited performance, the operation is further
accelerated by simplifying the instructions. For polyno-
mial multiplication operations and ciphertext multipli-
cation operations, a general RNS multiplication kernel
is designed to speed up the calculation. In a word, com-
pared with the FHE accelerated GPU library (Türkoglu
et al. 2022), the acceleration library has three advantages,
which are better adaption, higher security, and more
features.

Due to the need for CPU cooperation, most studies
(Ahmad Al Badawi 2019, 2021; Xia et al. 2019; Morshed
2020; Jung et al. 2021) based on GPU acceleration require
support from CPU. However, schemes designed by these
studies focus on using GPU to accelerate FHE. Thus, we
have classified these schemes as GPU-based FHE acceler-
ation schemes. Research on GPU-based FHE acceleration
started earlier, and currently, GPU-based acceleration
schemes are gradually transitioning from proposing
acceleration architectures to forming acceleration librar-
ies (Türkoglu et al. 2022; Shen et al. 2022), which greatly
improves availability. Additionally, some works (Lupascu
2019; Lei et al. 2019) utilize multiple GPUs instead of a
single GPU for accelerating FHE. Table 6 shows the com-
parison of acceleration schemes based on GPU. We can
see that all FHE acceleration schemes based on GPU do
not utilize homomorphic parameters tuning. This may
be because parameters tuning itself is a complex process,
and early acceleration of FHE could achieve good results
by just using GPUs. And researchers have not delved
deeply into the acceleration of GPU-based schemes.
Hence, incorporating homomorphic parameters tuning is
also a direction for research into accelerating FHE using
GPU.

FPGA-based
Compared with GPU, FPGA can provide more flexible
parallel computing resources. Therefore, the acceleration
schemes based on FPGA will further explore the parallel
computing implementation of FHE. In addition, the data
access patterns and data placement strategies are also
the focus of researchers. Reasonable data placement can
not only speed up data access but also improve the paral-
lelism of algorithm execution. In short, the acceleration
scheme based on FPGA can achieve a better acceleration
effect compared with GPU on the whole. However, the
corresponding acceleration scheme is also more difficult
to design.

Based on the joint architecture of ARM-FPGA, Roy
et al. (2019) accelerate the BFV. They mainly use the
hardware parallel computing resources to design the
hardware acceleration architecture and finally realize it,
which is more efficient than the software implementa-
tion. The acceleration scheme is based on the NTT paral-
lel computing method (Sujoy Sinha Roy 2014) and at the
same time they make improvements to it, which is that
on-chip memory is used to store a constant rotation fac-
tor to save cycles for further acceleration.

Mert et al. (2020) accelerate the encryption and decryp-
tion process of BFV by using FPGA. In this paper, a more
efficient parallel hardware architecture is proposed for
NTT operation, which is divided into two parts. Then
the input of each part is calculated in parallel, and finally

Page 14 of 23Gong et al. Cybersecurity (2024) 7:5

the calculation results are combined to complete the
NTT operation, thus realizing the acceleration of NTT
operation. In addition, the most important part of this
acceleration scheme is to implement a faster polynomial
multiplier using FPGA. And compared with the accelera-
tion scheme (Seiler 2018), the acceleration scheme (Mert
and Öztürk 2020) can adapt to larger homomorphic
parameters.

Riazi et al. (2020) (HEAX) are based on FPGA to opti-
mize the performance of CKKS, which explores multi-
level parallelism for the implementation of algorithms
and gives the corresponding optimization method and
implementation framework. For HMult, HEAX first
modifies the SEAL library so that more parameters can
be adapted. In addition, it realizes optimization of poly-
nomial multiplication by storing multiple correlation
coefficients of a polynomial in memory space that can
be accessed in parallel, thus speeding up the reading and
writing speed of the data access. At the same time, the
data access mode in NTT process is analyzed. In view of
the key-switching operation, the pipeline architecture is
designed by analyzing the data dependency, which can
execute many key-switching operations simultaneously.
As can be seen from the above introduction, the biggest
advantage of HEAX is that it sufficiently explores the
parallelism of algorithm implementation and carries out
optimization implementation on this basis. Therefore, a
good acceleration effect has been achieved by HEAX.

Kim et al. (2020), based on FPGA, mainly accelerate
NTT operation. Compared with acceleration schemes
(Sujoy Sinha Roy 2019; Riazi et al.2020), they focus more
on bootstrapping and RNS domain and present a novel
hardware architecture of NTT. In the design of the accel-
eration scheme, they take into account the algorithm to
realize the time consumption and space consumption,
which maximizes the use of resources. Aiming at butter-
fly operation in INTT, the acceleration scheme designs
the corresponding computing unit to realize it. At the
same time, according to the characteristics of butterfly
operation and hardware I/O characteristics, it adopts the
method of organizing butterfly operation in the way of
serialization connection and carries out parallel design
of butterfly operation unit in a small range. In addition,
data storage is reorganized to speed up the speed of data
access during butterfly operation execution. In order to
reduce the consumption of memory and balance the con-
sumption of memory and time, some data used in the
process of NTT is stored in advance. And the rest of the
data is generated during the execution of NTT opera-
tion, so as to ensure the fast implementation speed of the
algorithm and less memory consumption. However, run-
time-generated data and pre-generated data have their
own advantages and disadvantages, which are about the

balance between time consumption and space consump-
tion, and should be used according to the actual situation.

For the basic operation of LWE-based FHE, such
as RNS, CRT, NTT-based polynomial multiplica-
tion, modulo inverse, modulo reduction, and all the
other polynomial and scalar operations are carried out
to design and implement the hardware acceleration
library by Rashmi et al. (2020). By mining the parallel-
ism of some basic operations, they adopt the paralleli-
zation method for multi-round calculation in RNS, so
as to realize the acceleration of the algorithm.

Turan et al. (2020) (HEAWS) accelerate the BFV
based on FPGA, who design multiple parallel coproc-
essors in the FPGA in order to execute several opera-
tions simultaneously. At the same time, they also design
an off-chip data transfer strategy to meet the needs of
multiple coprocessors. Because the FPGA used by them
is cloud-based FPGA, which brings the extra commu-
nication overhead brought, the state-of-the-art 512-bit
XDMA feature of high bandwidth communication is
used to reduce the overhead of HW/SW data transfer.
However, one of the innovative points of HEAWS is
that it uses cloud-based FPGA for the first time, which
improves its availability.

Gener et al. (2021) accelerate the bootstrapping algo-
rithm of TFHE based on FPGA. They design an accel-
erator, which adds TFHE-specific custom instruction
extensions to an FPGA-based programmable vector
engine. This makes linear performance scale as the
number of vector lanes increases from 4 to 16. How-
ever, this paper only presents a preliminary architec-
ture to accelerate TFHE bootstrapping, which still uses
an o(n2) algorithm of the polynomial multiplier. And as
the paper says, this is one direction in which the accel-
erator designed could be improved.

Fadhli et al. (2021) mainly realize the systolic arrays
by using FPGA, so as to achieve acceleration of the
algorithm. Systolic arrays feature the ability to perform
multiple calculations on a single input without waiting.
At the same time, it can continue to input the required
data while calculating.

Ye et al. (2021) focus on the acceleration of the plain-
text multiplication ciphertext operation. In this paper,
based on multiple processing elements (PEs), paralleli-
zation is designed and realized for Hadamard product
and accumulations operations of vectors, which is that
the vector is divided into subvectors, and then paral-
lelization operations between subvectors were realized.
The communication delay between FPGA and external
memory is avoided by means of a double data cache.
Besides, based on the designed performance model, the
optimal homomorphic parameters are selected for each
layer of the neural network, so as to achieve further

Page 15 of 23Gong et al. Cybersecurity (2024) 7:5

acceleration of the neural network using the FHE.
Compared to prior work, the acceleration scheme first
proposes the low latency inference accelerator for con-
volutional layers of ResNet-50 based on FPGA.

Based on FPGA, a multi-level parallelism degree
is explored for FHE by Xin et al. (2021). And parallel
scheme is designed and implemented to realize algorithm
acceleration. This paper mainly implements paralleliza-
tion acceleration for three levels of the algorithm. NTT
parallel implementation is the basic parallel acceleration
method. About this acceleration scheme, by designing
several butterfly computing units and executing them
in parallel, the parallel acceleration of NTT algorithm
is realized. RNS parallel implementation is the medium
parallel acceleration method. Based on the NTT core
composed of multiple butterfly units, it uses three NTT
cores to realize acceleration of polynomial multiplication
of RNS form. The parallel implementation of two cipher-
text operations is the advanced parallel acceleration
method. They equip NTT cores for each polynomial in
both two ciphertexts and form the high-level parallelism
in ciphertexts. Compared with the acceleration scheme
(Riazi et al. 2020), under the condition of using the same
number of digital signal processor (DSP) blocks, the
NTT cores in the acceleration scheme (Xin and Zhao
2021) consume fewer resources.

Aiming at the polynomial multiplication operation
used in BFV, Syafalni et al. (2022) propose a method
based on a convolution approach to complete the cor-
responding polynomial multiplication operation. At the
same time, this paper also designs a two-dimensional sys-
tolic array on the level of hardware implementation, so as
to complete the polynomial multiplication with high par-
allelism. In order to avoid data transmission delay caused
by noise generated by software, they first design a corre-
sponding hardware noise generation module.

Based on FPGA, Yang et al. (2022a) design and imple-
ment the corresponding acceleration scheme for SCNN
which uses FHE. They analyze the memory access
requirement in the process of FHE, so as to obtain the
memory access pattern. Based on the memory access
pattern, they continue to redesign the data flow to avoid
memory access conflicts and realize highly parallel exe-
cution of the algorithm, so as to complete the accelera-
tion of the algorithm.

Aiming at key-switching operation, which is the per-
formance bottleneck in CKKS, Han et al. (2022) explore
the data dependence in this operation to minimize the
interdependence between data. Then, based on this, they
maximize the parallel calculation of data and achieve the
acceleration of the algorithm.

Agrawal et al. (2022) (FAB), aiming at the bootstrap-
ping process of large homomorphic parameters, design a

new hardware architecture and balance the memory con-
sumption and computing consumption. FAB architecture
efficiently utilizes the available U/BRAM blocks on the
FPGA as on-chip memory. Mapping the polynomial data
bit-width to that of the U/BRAM blocks data width ena-
bles storage of up to 43 MB of on-chip data.

Aiming at the bootstrapping of TFHE, the acceleration
scheme is designed and implemented by Ye et al. (2022).
On one hand, to enable efficient multi-level parallelism,
they customize the data layout of TFHE ciphertext for
FPGA on-chip SRAM to optimize data access and reduce
memory access conflict. The data layout also improves
data reuse to effectively utilize the external memory
bandwidth. On the other hand, the acceleration scheme
is parameterized and can be configured to achieve high
throughput and low latency for TFHE bootstrapping
when different users have specific security requirements.
This improves its availability of it in another way com-
pared with (Turan 2020).

Yang et al. (2022b) accelerate NTT based on FPGA. To
reduce latency, the acceleration scheme merges the pre-
processing and postprocessing into the NTT and INTT,
respectively. Besides, a reconfigurable modular multi-
plier, which is based on DSP, is proposed to speed up the
modular multiplication. In order to avoid designing an
independent memory access pattern for INTT, a unified
read/write structure of NTT/INTT is presented. Fur-
thermore, they propose a novel memory access pattern
named "cyclic-sharing" to reduce 25% memory capacity.
In summary, the most significant feature of the accelera-
tion scheme is reconfigurability.

In summary, various researchers have proposed FPGA-
based hardware acceleration schemes for different FHE
algorithms. These schemes focus on optimizing specific
operations, such as NTT, polynomial multiplication,
and bootstrapping. The key to achieving acceleration is
to explore the parallelism of the algorithm and design
hardware architectures that can utilize it. Some schemes
(Sujoy Sinha Roy 2019; Agrawal et al. 2022; Ye and Kan-
nan 2022) also use on-chip memory to store constant
factors or pre-generated data to reduce computation
time and memory consumption. Cloud-based FPGA
is also used to improve the availability of the accelera-
tion scheme (Turan 2020). However, there is still room
for improvement in some schemes, such as combining
homomorphic parameters tuning to further acceler-
ate FHE. Table 7 shows the comparison of acceleration
schemes based on FPGA. It can be seen that the availabil-
ity of FHE schemes based on FPGA is relatively high.

ASIC-based
ASIC offers the greatest customization flexibility of any
hardware platform. However, this is why it is the most

Page 16 of 23Gong et al. Cybersecurity (2024) 7:5

difficult to design accelerated solutions based on ASIC
because it requires a lot of expertise. Most of the accel-
eration schemes based on ASIC aim to optimize the data
placement strategy, as well as design the correspond-
ing computational circuit so that it can achieve the best
effect in the acceleration of FHE. One weakness based on
ASIC is that the production process of ASIC is complex
and requires a large number of resources. Therefore, the
corresponding ASIC-based acceleration solution is diffi-
cult to be practical.

In (Tan et al. 2021), aiming at the NTT operation used
in bootstrapping, the parallelism of it is fully explored.
On the basis of the design and integration of multiple
PEs, the corresponding memory management is carried
out in the algorithm implementation. They design mul-
tiple PEs by exploring the degree of parallelism of the
algorithm. Each PE can be adjusted dynamically to per-
form a different task, including NTT, INTT, and point-
wise multiplication. Thus, they realize highly parallel
algorithm execution based on multiple PEs. Because, in
theory, more PEs should lead to more parallel comput-
ing. In addition, suitable memory management strategies
are also explored for each execution stage of polynomial
multiplication by taking into account the number of PEs.
Through memory management, they realize the efficient
utilization of memory resources, so as to further realize
the algorithm acceleration.

Reagen et al. (2021) implement the acceleration of FHE
applications, named as Cheetah, which is different from
the general FHE algorithm optimization. Instead, Chee-
tah combines it with the DNN model to optimize the
FHE performance. For example, the optimal parameter
analysis model is established to select the optimal param-
eter first. Then the optimal parameters are selected for
FHE used by each layer network in the DNN model in
order to reduce algorithm complexity. For the dot prod-
uct operation involved in BFV homomorphic encryption
algorithm, the partial alignment operation is carried out.
At the same time, the homomorphic operation sequence
is optimized for performance-sensitive homomorphic
operation, in order to minimize the use of noise budget.
A lower noise budget allows smaller homomorphic
parameters to be selected. Cheetah also proposes a hard-
ware acceleration architecture, which greatly acceler-
ates the computation speed of the FHE combined DNN
model by utilizing the parallel computing resources of
hardware devices, so that it can meet the needs of prac-
tical applications. Compared with prior work, Cheetah
has been further improved in practicability, which makes
the application of FHE combined with DNN more in line
with the practical demand.

Samardzic et al. (2021) (F1) introduce universal pro-
grammable hardware accelerators in order to accelerate

the BGV based on ASIC. Based on ASIC’s characteris-
tics, the accelerator speeds up BGV. For various homo-
morphic operations performed using wide vectors, such
as modular addition, modular multiplication, NTTs
(forward and inverse in the same unit), and automor-
phisms, the tailored functional units (FUs) are designed
to accelerate them. Several FUs are also grouped in com-
putational clusters for further acceleration. Besides, the
programmable framework proposed in F1 fully explores
the memory management of FPGA. And then they pro-
pose a multi-level memory management system to accel-
erate the FHE. F1 also uses decoupled data orchestration
to hide main memory latency. At the same time, it imple-
ments a single-stage bit-sliced crossbar network (Pas-
sas et al. 2012) that provides full bisection bandwidth.
Moreover F1 adopts a static, exposed microarchitecture:
all components have fixed latencies, which are exposed to
the compiler. Static scheduling simplifies logic through-
out the chip. Compared with the acceleration scheme
(Lupascu 2019), F1 is more available because of its
programmability.

Kim et al. (2022) (BTS) are optimized for the boot-
strapping of CKKS. In view of the problem that different
selections of homomorphic parameters will affect the
performance of FHE in many ways, they study the time
required by different combinations of homomorphic
parameters for each slot in the bootstrapping process on
the premise of ensuring security, so as to select the opti-
mal homomorphic parameters. As a result, BTS achieves
a balance between safety and performance. Besides, a
lot of time-consuming functions are analyzed, includ-
ing NTT, INTT, and BConv. On this basis, two kinds of
data parallelism modes are explored, which are residue-
polynomial level parallelism (rPLP) and coefficient-level
parallelism (CLP). And finally, the CLP method is used
to accelerate the parallel algorithm. Based on the CLP,
the corresponding parallel execution microarchitecture
is designed. At the same time, based on the different
types of memory and the data access frequency related
to the algorithm, the data storage strategy is optimized to
achieve further acceleration of bootstrapping of CKKS.
Compared with F1, BTS improves the throughput of
bootstrapping.

Kim et al. (2022) (ARK) analyze the memory bottle-
neck for CKKS bootstrapping hardware acceleration
process and design the corresponding solution, which
solves the problem of on-chip memory limitation for
hardware platforms such as CPU, GPU, and FPGA.
On one hand, they design the on-the-fly limb exten-
sion, which can pre-calculate the data required for
PMult and PAdd operation, so as to reduce the num-
ber of times they access data to the on-chip memory.
On the other hand, they also design specialized FUs for

Page 17 of 23Gong et al. Cybersecurity (2024) 7:5

operations for BConv, thus realizing the acceleration of
BConv. In addition, a data distribution strategy is set
based on access patterns for BConv to speed up data
access. The ARK greatly reduces the number of accesses
to the memory under the chip, thus greatly speeding up
the implementation of the algorithm. However, the cor-
responding hardware resource consumption also has
increased.

Based on ASIC, Samardzic et al. (2022) (CraterLake)
study the acceleration scheme for the application of FHE
combined with DNN. CraterLake mainly focuses on
solving the huge computing overhead of key-switching
and uses boosted key-switching. The key innovation in
boosted key-switching is to expand the input polyno-
mial to use wider coefficients. It reduces a large auxil-
iary operand for key-switching hint (KSH). CraterLake
also designs the CRB unit and the KSHGen unit. The
CRB unit exploits the high internal reuse to allow much
higher throughput than independent multipliers and
adders communicating through the register file. KSHGen
implements an optimization approach primarily through
hardware, which has been previously implemented in
software (Halevi and Shoup 2020). In addition, they have
optimized scalar modular multipliers and pipeline each
multiplier to its energy-optimal point. Compared with
F1, CraterLake can support unlimited depth of multipli-
cation. At the same time, compared with HEAX, (Mert
and Öztürk 2020), HEAWS, etc., CraterLake can execute
the entire application based on FHE.

Geelen et al. (2022) (BASALISC) explore ASIC to
accelerate bootstrapping. BASALISC is a three-abstrac-
tion-layer RISC architecture. In the process of designing
PEs for NTT, BASALISC avoids memory access conflicts
in order to accelerate the realization of NTT. Meanwhile,
for the twiddle factor, BASALISC designs a twiddle fac-
tor factory to reduce the number of twiddles needed to
be stored. In addition, the multiply-accumulate unit is
designed to accelerate the key-switching process of BGV.
The result shows that BASALISC achieves a good balance
between performance and resource consumption, and a
good acceleration effect. Compared with F1, BASALISC
provides better security. And compared with HEAX,
BASALISC can adapt homomorphic parameters more in
line with realistic requirements.

Jiang et al. (2022) (MATCHA) accelerate TFHE based
on ASIC. They first identify the possibility to use approx-
imate integer FFTs and IFFTs to accelerate TFHE without
decryption errors. The depth-first iterative conjugate-
pair FFT algorithm (Bécoulet and Verguet 2021) also is
adopted to decrease the computing overhead of a single
FFT or IFFT kernel. Moreover, they propose a pipeline
flow for MATCHA to support aggressive bootstrapping
key unrolling (Bourse et al. 2018; Zhou et al. 2018), which

can reduce the number of HAdd, thus achieving further
acceleration. In this paper, the acceleration design for
TFHE is relatively novel and can achieve better accelera-
tion effect.

Mert et al. (2022) (Medha) accelerate the homomor-
phic evaluation for CKKS based on ASIC. Medha is
able to flexibly support several homomorphic encryp-
tion parameter sets by using a technique, which is called
divide-and-conquer. In addition, the corresponding FUs
are designed after sufficiently exploring the parallelism
of the algorithm implementation. Further, during the
design process, the communication efficiency of each
unit is taken into account. And a memory-conservative
approach is designed to get rid of any off-chip memory
access during homomorphic evaluations.

Due to the significant acceleration effect of ASIC-based
FHE acceleration solutions, some researchers (Reagen
et al. 2021; Samardzic et al. 2022) have been studying
how to efficiently apply them to DNN to meet practical
needs, and have achieved good results. Table 8 shows the
comparison of acceleration schemes based on ASIC. It
can be seen that all schemes for FHE acceleration based
on ASIC will optimize data storage policy. which has to
do with the accelerated customization flexibility ASIC
can provide.

Other acceleration schemes
Compared to the hardware mentioned above, a few
works have been focused on leveraging other hardware
for FHE acceleration, such as processing in memory
(PiM). PiM, which is also called computing-in-memory
or storage and computing fusions, is different from all the
above hardware. Its biggest feature is that it can be calcu-
lated directly in memory. Therefore, the time consump-
tion of data transmission is greatly reduced. Based on
this, the algorithm can be accelerated. As a new hardware
platform, the design of FHE acceleration scheme based
on PiM is more at the theoretical level, and it is also dif-
ficult to put into production and application. Table 9
shows the comparison of acceleration schemes based on
other hardware.

Reis et al. (2020) are the first to support the execution
of all essential evaluation operations of the BFV scheme
within a PiM framework and propose a mapping of poly-
nomial primitives to the underlying PiM hardware, with
support to polynomial ring operations. They also use
complementary metal sxide semiconductor-based cus-
tom memory peripherals to support different operations.
As a result, the acceleration scheme achieve a good accel-
eration result.

Based on the PiM, Gupta et al. (2021) accelerate the
key homomorphic operations, including bootstrapping,
HAdd, homomorphic subtraction, HMult, polynomial

Page 18 of 23Gong et al. Cybersecurity (2024) 7:5

addition, polynomial multiplication, and NTT. The big-
gest contribution of PiM is avoiding frequent movement
of data and speeding up data access. Then the time con-
sumption of data-intensive computing tasks is reduced.
Later, they in Gupta and Cammarota (2022) accelerate
GSW and design the pipeline structure based on PiM, so
as to accelerate the implementation of the algorithm.

In (Chielle et al. 2022), the analog–digital implementa-
tion and circuit implementation of FHE is converted, so
that more homomorphic operations can be supported.
At the same time, the algorithm implementation is
accelerated.

Hardware acceleration summary
Compared with acceleration based on algorithm optimi-
zation, scholars pay more attention to hardware-based
FHE acceleration. Specifically, a lot of researchers focus
on it based on FPGA. This is because, on the one hand,
FPGA can provide parallelism similar to GPU, while at
the same time, they can provide customization similar
to ASIC. Therefore, FPGA has the greatest practicabil-
ity, which can realize the ideal acceleration effect and
facilitate more extensive applications. Compared with
FPGA, GPU-based acceleration schemes are easier to use
and still have good acceleration effects. Moreover, the
acceleration of FHE based on GPU is gradually mature,
forming some GPU acceleration libraries that can be
directly called. There are two main types of hardware-
based acceleration. One is to make full use of the parallel
computing resources of the hardware platform, by fully
exploring the parallelism of the algorithm, especially for
NTT, and then design the pipeline structure. This kind
of optimization method can fully combine the paral-
lel computing resources of hardware with the parallel
execution of the algorithm, so as to accelerate FHE. The
other is that, based on hardware memory characteris-
tics and algorithmic data access patterns, different data
generation and storage strategies are designed, such as
data precomputation, data runtime generation, data pre-
placement, and other operations. This kind of optimi-
zation method can speed up the data access speed and
thus accelerate the implementation of the algorithm.
The advantage of a hardware-based acceleration solution
is that it can achieve a better acceleration effect, while
it requires hardware support and is difficult to develop,
especially for hardware platforms such as FPGA and
ASIC.

Challenges and future research directions
In this paper, we review FHE acceleration from two
aspects: algorithm-based acceleration and hardware-
based acceleration. Owing to the considerable poten-
tial for privacy protection provided by FHE while the

bottleneck lies in its performance, a rapid development
is witnessed in accelerating FHE. The chosen of hard-
ware used for acceleration is from the common CPU
to the complex ASIC, which is more suitable for FHE
acceleration, with more and more algorithmic optimiza-
tions applied. Despite the progress made in accelerating
FHE, there remain several open problems, and the per-
formance of FHE is yet to mature to meet the demands
of real-time services. To inspire the following research of
it, here we list several future directions worthy of further
investigation.

Homomorphic parameters selection The selection of
homomorphic parameters also needs further research
while a few studies on it. The homomorphic parameters
selection not only decides the security of FHE, but also
a reasonable selection of it can further improve the per-
formance of FHE. It is quite a complex process, while
each scheme has specifically selected parameters, all of
which are interlinked. And these parameters are usually
selected based on current possible lattice-based attacks
and their existing limits. An example of a weakness in
this approach to parameter selection was exploited in an
attack by Lee (Moon Sung Lee 2011), where the parame-
ter selection in the scheme (Gentry and Halevi 2011) was
not conservative enough to prevent a lattice-based attack
exploiting the sparse subset sum problem. In addition,
according to different application requirements, there are
usually different optimal homomorphic parameters. For
example, when FHE is applied to DNN, the correspond-
ing optimal parameter can be selected for each layer of
the network. Therefore, more efforts into parameter
selection are needed, which must ensure the most suit-
able parameters are chosen to guarantee both efficiency
and security.

Memory management Memory storage is another
major bottleneck in the implementation of practical FHE.
It involves the use of large parameter sizes and very large
ciphertext sizes, which can consume significant amounts
of memory. As a result, memory management becomes
crucial in FHE implementations. Different FHE schemes,
different execution stages of the same FHE scheme, will
have different data access patterns. At the same time, dif-
ferent hardware has corresponding memory structures.
Existing work explores the data access pattern and data
dependency, and designs memory management strate-
gies, including data pregeneration, data preplacement,
and data reuse, which also take the characteristics of
hardware into account. For example, some methods
optimize the utilization of highly accessed data by plac-
ing it in the fastest accessible memory in the hardware.
However, the current research on memory management
strategy is still not enough. Taking GPU as an example,
the programming flexibility it provides limits the design

Page 19 of 23Gong et al. Cybersecurity (2024) 7:5

of optimal memory management strategies. In addition,
most of the research on memory management focuses
on NTT and bootstrapping. Therefore, the research on
the design of better memory management strategies
based on hardware that can provide more flexible mem-
ory management needs to be further developed. How
to combine hardware characteristics with specific algo-
rithms to minimize storage overhead is important. Espe-
cially for special devices, good memory management is
extremely important. At the same time, it is necessary to
further explore the data dependency and data access pat-
tern of other FHE primitive operations.

More suitable hardware At present, the GPU, FPGA,
and ASIC are the major hardware used for FHE accel-
eration. Among them, the research on GPU has been
relatively mature and there are some GPU-based FHE
acceleration libraries, including cuHE, cuFHE (CUDA-
accelerated Fully Homomorphic Encryption Library
2018). In practice, however, the GPU is not suitable for
FHE acceleration because of its bandwidth bottleneck.
This is because when GPU performs a computing task,
data must be transferred from CPU to GPU and then
sent back to CPU after the task execution. The large
amount of data that FHE generates results in a large
memory bandwidth requirement. FPGA and ASIC also
have the problem of memory limitation. In addition,
due to the specificity of AISC itself, which means that
manufacturing ASIC is costly and difficult for research-
ers to manufacture ASIC, the acceleration scheme based
on it only stays in emulation. And it is difficult to directly
evaluate and apply, although acceleration schemes based
on it have the best acceleration results. Therefore, it is
necessary for further research to use new hardware to
accelerate FHE. For example, Gupta et al. (Gupta and
Cammarota 2022) try to use PiM to accelerate FHE. At
one end of the spectrum, it is still of great research value
to design better FHE acceleration schemes based on
existing hardware.

Application convenience and flexibility There are
many acceleration schemes for FHE, but a few of them
are easy to use. The construction theory of FHE is much
more complex than the basic symmetric and asymmet-
ric encryption algorithms, such as AES, DES, and RSA,
which undoubtedly makes it more difficult for non-pro-
fessionals to use it. Moreover, since almost all existing
acceleration schemes rely on hardware, extra hardware
knowledge hinders the use of FHE acceleration schemes
even for cryptography professionals. Therefore, the con-
venience of the accelerated program needs to be further
improved. At the same time, different application sce-
narios have different application requirements for FHE.
Therefore, a general acceleration framework also requires

further investigation, with the ability to meet different
application requirements.

Algorithm optimization At present, most research
works on using algorithm optimization to accelerate FHE
focus on just applying existing algorithms. Unfortunately,
this does not address the inherent performance bottle-
neck of the FHE itself. Especially for the bootstrapping
process, due to its huge computing resources and storage
overhead, FHE is often applied in the practical applica-
tion process in the way of leveled FHE. Therefore, if we
want to significantly improve the performance of FHE,
we need to make a theoretical breakthrough in FHE itself,
and this is a very worthy direction for further research,
although it is extremely difficult. Still, further research
is needed to explore existing algorithms and techniques
that are more suitable for FHE acceleration. For example,
batching techniques proposed for FHE schemes could
greatly improve the performance of any implementation
and should also be investigated further.

In summary, while theoretical innovations in FHE hold
promise for greatly improving performance, it may take
a significant amount of time to realize these improve-
ments. In the short term, the hardware-based accel-
eration of FHE is bringing us closer to practical FHE. In
addition, how to effectively combine various optimization

[70]

[64]

[65]

[68]
Bootstrapping

[69]

[67]

[72]

Helib

[66]

Lattigo

SEAL

2015 High-speed polynomial
multiplication architecture for ring-

LWE and SHE cryptosystems

cuFHE[71]

TFHE

Fig. 3 Reference relationship for comparison of acceleration effects
of ASIC-based FHE acceleration schemes

[29] [28]

[27]

NFlib NTL

Helib[26]
Bootstrapping

[25]
Bootstrapping

[24]
Bootstrapping

Fig. 4 Reference relationship for comparison of acceleration effects
of CPU-based FHE acceleration schemes

Page 20 of 23Gong et al. Cybersecurity (2024) 7:5

methods to achieve fine-grained FHE acceleration is also
an issue that researchers need to consider. Figures 3, 4,
5 and 6 respectively shows the reference relationship for

comparison of acceleration effects of FHE acceleration
schemes based on different hardware. The articles in blue
represent themselves discussed in this paper, which are
related to FHE acceleration and published between 2019
and 2022. The articles in orange are related to FHE accel-
eration but were published earlier than 2019. The black
node represents the FHE implementation library. In the
process of drawing them, we found that there is no good
baseline when comparing the acceleration effect of FHE
acceleration schemes. Therefore, how to create a reason-
able baseline is also a valuable research direction, which
can promote the development of FHE accelerated resea
rch.

Conclusion
By conducting a thorough analysis and comparison of
various methods for accelerating fully homomorphic
encryption (FHE), we comprehensively explored the
future research directions of homomorphic encryp-
tion acceleration from multiple perspectives. The pri-
mary objective of this article is to provide researchers
in the field of homomorphic encryption acceleration
with a clear, comprehensive, and in-depth perspective,
in order to facilitate a better understanding and applica-
tion of homomorphic encryption technology, and to offer
valuable guidance and support for the development of
homomorphic encryption in practical applications and
theoretical research. It is our belief that the novel ideas
and solutions presented in this article will have a posi-
tive impact and drive the research and application of
homomorphic encryption acceleration, and promote the
advancement and dissemination of FHE.

Abbreviations
HE Homomorphic encryption
PHE Partially homomorphic encryption
FHE Fully homomorphic encryption
SWHE Somewhat homomorphic encryption
HAdd Homomorphic addition
HMult Homomorphic multiplication
CUDA Compute unified device architecture
FU Functional unit
PE Processing element
CPU Central processing unit
GPU Graphics processing unit
FPGA Field programmable gate array
ASIC Application specific integrated circuit
PiM Processing in memory
RNS Residue number system
DSP Digital signal processor
NTT Number theoretic transforms
INTT Inverse number theoretic transforms
CRT Chinese remainder theorem
DGT Discrete galois transform
SIMD Single instruction multiple data
PRNG Pseudo-random number generator

cuHE

[47]

[44]

[35]

[42]

[37]

[39]

[46]
NTT

2018 Faster number theoretic
transform on graphics

processors for ring learning
with errors based cryptography

[40]
NTT

[45]
NTT

SEAL

[43]
Bootstrapping

2018High-performance fv
somewhat homomorphic
encryption on gpus: An

implementation using cuda

[31]

[32]

[33]

[34]

[38]

[36]

2017 Designing an
FPGAaccelerated

homomorphic
encryption co-

processor

[41]

cuFHE

NuFHE

Cingulata

[30]
Encoding

Fig. 5 Reference relationship for comparison of acceleration effects
of GPU-based FHE acceleration schemes

[61]

[62]

2018 Data flow
oriented hardware

design of RNS-based
polynomial

multiplication for SHE
acceleration

[49]
NTT

[48]
NTT [63]

cuFHE[54]

[58]

[59]

[60]

[50]
NTT

[53]

[55]

[57]

[56]
Bootstrapping

SEAL

[51]

[52]
NTT

Palisade

2015 High-speed
polynomial

multiplication
architecture for ring-

LWE and SHE
cryptosystems

2018 Hardware/software
co-design of an accelerator

for FV homomorphic
encryption scheme using

Karatsuba algorithm

2018 HEPCloud: An
FPGA-based multicore

processor for FV somewhat
homomorphic function

evaluation

Concrete
cuFHE

Fig. 6 Reference relationship for comparison of acceleration effects
of FPGA-based FHE acceleration schemes

Page 21 of 23Gong et al. Cybersecurity (2024) 7:5

Author contributions
Drafting the manuscript: YG, JW and HZ. Revising the manuscript critically
for important intellectual content: XC, JM and VBM. All authors read and
approved the final manuscript.

Funding
The work was supported in part by National Natural Science Foundation of
China under Grant No.62272028 and 6230203.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
No potential conflict of interest was reported by the authors.

Received: 17 May 2023 Accepted: 30 August 2023

References
https:// devel oper. nvidia. com/ cufft
Acar A, Hidayet Aksu A, Uluagac S, Conti M (2018) A survey on homomorphic

encryption schemes: theory and implementation. ACM Comput Surv
51(4):79:1-79:35

Agrawal R, de Castro L, Yang G, Juvekar C, Yazicigil RT, Chandrakasan AP,
Vaikuntanathan V, Joshi A (2022) FAB: an FPGA-based accelerator for
bootstrappable fully homomorphic encryption. CoRR abs/2207.11872

Alaya B, Laouamer L, Msilini N (2020) Homomorphic encryption systems state-
ment: trends and challenges. Comput Sci Rev 36:100235

Alves PGMR, Ortiz JN, Aranha DF (2021) Faster homomorphic encryption over
GPGPUs via hierarchical DGT. Financial Cryptography (2), pp 520–540

Badawi AA, Hoang L, Mun CF, Laine K, Aung KMM (2020) PrivFT: private and
fast text classification with homomorphic encryption. IEEE Access
8:226544–226556

Badawi AA, Polyakov Y, Aung KMM, Veeravalli B, Rohloff K (2019) Implementa-
tion and performance evaluation of RNS variants of the BFV homomor-
phic encryption scheme. IEEE Trans Emerg Topics Comput 9(2):941–956

Badawi AA, Veeravalli B, Lin J, Xiao N, Kazuaki M, Mi AKM (2021) Multi-GPU
design and performance evaluation of homomorphic encryption on
GPU clusters. IEEE Trans Parallel Distrib Syst 32(2):379–391

Bajard JC, Eynard J, Anwar Hasan M, Zucca V (2016) A full RNS variant of FV like
somewhat homomorphic encryption schemes. SAC, pp 423–442

Barrett P (1986) Implementing the rivest shamir and adleman public key
encryption algorithm on a standard digital signal processor. CRYPTO,
pp 311–323

Boemer F, Kim S, Seifu G, de Souza FDM, Gopal V (2021) Intel HEXL: accelerat-
ing homomorphic encryption with intel AVX512-IFMA52. WAHC@CCS,
pp 57–62

Boneh D, Goh EJ, Nissim K (2005) Evaluating 2-DNF formulas on ciphertexts.
TCC, pp 325–341

Bos JW, Lauter KE, Naehrig M (2014) Private predictive analysis on encrypted
medical data. J Biomed Informatics 50:234–243

Bossuat JP, Troncoso-Pastoriza JR, Hubaux JP (2022) Bootstrapping for approxi-
mate homomorphic encryption with negligible failure-probability by
using sparse-secret encapsulation. ACNS, pp 521–541

Bossuat JP, Mouchet C, Troncoso-Pastoriza JR, Hubaux JP (2021) Efficient boot-
strapping for approximate homomorphic encryption with non-sparse
keys. EUROCRYPT (1), pp 587–61

Bourse F, Minelli M, Minihold M, Paillier P (2018) Fast homomorphic evaluation
of deep discretized neural networks. CRYPTO (3), pp 483–512

Brakerski Z, Gentry C, Vaikuntanathan V (2014) (Leveled) Fully homomor-
phic encryption without bootstrapping. ACM Trans Comput Theory
6(3):131–1336

Bécoulet A, Verguet A (2021) A depth-first iterative algorithm for the conjugate
pair fast fourier transform. IEEE Trans Signal Process 69:1537–1547

CUDA-accelerated fully homomorphic encryption library. https:// github. com/
verna mlab/ cuFHE (2018)

Chen H, Chillotti I, Song Y (2019) Improved bootstrapping for approximate
homomorphic encryption. EUROCRYPT (2), pp 34–54

Chen H, Dai W, Kim M, Song Y (2021) Efficient homomorphic conversion
between (Ring) LWE ciphertexts. ACNS (1), pp 460–479

Cheon JH, Kim A, Kim M, Song Y (2017) Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi T, Peyrin T (eds) ASIACRYPT 1.
Springer, Cham, pp 409–437

Chi-Chih Yao A (1982) Protocols for secure computations (Extended Abstract).
FOCS, pp 160–164

Chielle E, Mazonka O, Gamil H, Maniatakos M (2022) Accelerating fully homo-
morphic encryption by bridging modular and bit-level arithmetic.
ICCAD 100(1–100):9

Chillotti I, Gama N, Georgieva M, Izabachène M (2017) Faster packed homo-
morphic operations and efficient circuit bootstrapping for TFHE.
ASIACRYPT (1), pp 377–408

Coron JS, Mandal A, Naccache D, Tibouchi M (2011) Fully homomorphic
encryption over the integers with shorter public keys. In: Rogaway P
(ed) CRYPTO 2011. Springer, Berlin, Heidelberg, pp 487–504

Crandall RE (1999) Integer convolution via split-radix fast Galois transform.
Center for Advanced Computation Reed College

Dai W, Sunar B (2015) cuHE: a homomorphic encryption accelerator library.
BalkanCryptSec, pp 169–186

David HB (1989) FFTs in external of hierarchical memory. SC, pp 234–24
Deviani R, Nazhifah SA, Aziz AS (2022) Fully homomorphic encryption for

cloud based e-government data. Cyberspace J Pendidik Teknol Inf
6:105–118

de Castro L, Agrawal R, Yazicigil RT, Chandrakasan AP, Vaikuntanathan V,
Juvekar C, Joshi A (2021) Does fully homomorphic encryption need
compute acceleration? CoRR abs/2112.06396

Fadhli H, Syafalni I, Sutisna N, Mulyawan R, Iqbal Arsyad M, Adiono T (2021)
Accelerating homomorphic encryption using systolic arrays with poly-
nomial optimization. In: 2021 International Symposium on Electronics
and Smart Devices (ISESD). IEEE, pp 1–6

Fan J, Vercauteren F (2012) Somewhat practical fully homomorphic encryp-
tion. IACR Cryptol Eprint Arch 2012:144

El Gamal T (1985) A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans Inf Theory 31(4):469–472

Geelen R, Van Beirendonck M, Pereira HVL, Huffman B, McAuley T, Selfridge B,
Wagner D, Dimou G, Verbauwhede I, Vercauteren F, Archer DW (2022)
BASALISC: programmable asynchronous hardware accelerator for BGV
fully homomorphic encryption. Cryptology ePrint Archive

Gentry C, Sahai A, Waters B (2013) Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti R, Garay JA (eds) Advances in cryptology–CRYPTO 2013.
Springer, Berlin, pp 75–92

Gentry C (2009) A fully homomorphic encryption scheme[M]. Stanford
university

Gentry C, Halevi S (2011) Implementing gentry’s fully-homomorphic encryp-
tion scheme. EUROCRYPT, pp 129–148

Gentry C, Halevi S, Smart NP (2012) Homomorphic evaluation of the AES
circuit. CRYPTO, pp 850–867

Goey J-Z, Lee W-K, Goi B-M, Yap W-S (2021) Accelerating number theoretic
transform in GPU platform for fully homomorphic encryption. J Super-
comput 77(2):1455–1474

Gupta S, Cammarota R, Rosing TŠ (2022) MemFHE: end-to-end computing
with fully homomorphic encryption in memory. ACM Trans Embed
Comput Syst. https:// doi. org/ 10. 1145/ 35699 55

Gupta S, Rosing TS (2021) Invited: accelerating fully homomorphic encryption
with processing in memory. DAC, pp 1335–1338

Halevi S, Shoup V (2020) Design and implementation of HElib: a homomorphic
encryption library. IACR Cryptol Eprint Arch 2020:1481

Halevi S, Shoup V (2021) Bootstrapping for HElib. J Cryptol 34(1):7

https://developer.nvidia.com/cufft
https://github.com/vernamlab/cuFHE
https://github.com/vernamlab/cuFHE
https://doi.org/10.1145/3569955

Page 22 of 23Gong et al. Cybersecurity (2024) 7:5

Halevi S, Shoup V (2018) Faster homomorphic linear transformations in HElib.
CRYPTO (1), pp 93–120

Halevi S, Shoup V (2014) Algorithms in HElib. CRYPTO (1), pp 554-571
Han K, Ki D (2020) Better bootstrapping for approximate homomorphic

encryption. CT-RSA, pp 364–390
Han M, Zhu Y, Lou Q, Zhou Z, Guo S, Ju L (2022) coxHE: a software-hardware

co-design framework for FPGA acceleration of homomorphic compu-
tation. DATE, pp 1353–1358

Hanafizadeh P, Ravasan AZ (2020) A systematic literature review on IT
outsourcing decision and future research directions. J Glob Inf Manag
28(2):160–201

Inoue K, Suzuki T, Yamana H (2022) Acceleration of homomorphic unrolled
trace-type function using AVX512 instructions. WAHC@CCS, pp 47–52

Ishimaki Y, Yamana H (2021) Faster homomorphic trace-type function evalu-
ation. IEEE Access 9:53061–53077

Jiang L, Lou Q, Joshi N (2022) MATCHA: a fast and energy-efficient accel-
erator for fully homomorphic encryption over the torus. DAC, pp
235–240

Jiayi H, Jiahui D, Wenqing W, Jiawei Q (2020) Multi-party secure computing
financial shared platform based on lightweight privacy protection
under FHE. In: 2020 international conference on artificial intelligence
and computer engineering. IEEE, pp 245–249

Jin C, Badawi AA, Unnikrishnan B, Lin J, Mun CF, Brown JM, Campbell JP,
Chiang M, Kalpathy-Cramer J, Chandrasekhar VR, Krishnaswamy P,
Aung KMM (2019) CareNets: efficient homomorphic CNN for high
resolution images. NeurIPS Workshop on Privacy in Machine Learning
(PriML)

Jung W, Kim S, Ahn JH, Cheon JH, Lee Y (2021) Over 100x faster bootstrapping
in fully homomorphic encryption through memory-centric optimiza-
tion with GPUs. IACR Trans Cryptogr Hardw Embed Syst 4:114–148

Jung W, Lee E, Kim S, Kim J, Kim N, Lee K, Min C, Cheon JH, Ahn JH (2021)
Accelerating fully homomorphic encryption through architecture-
centric analysis and optimization. IEEE Access 9:98772–98789

Karatsuba AA, Ofman YP (1962) Multiplication of many-digital numbers
by automatic computers. Doklady Akademii Nauk Rus Acad Sci
145(2):293–294

Kim S, Jung W, Park J, Ahn JH (2020) Accelerating number theoretic transfor-
mations for bootstrappable homomorphic encryption on GPUs. IISWC,
pp 264–275

Kim S, Kim J, Kim MJ, Jung W, Kim J, Rhu M, Ahn JH (2022) BTS: an accelerator
for bootstrappable fully homomorphic encryption. ISCA, pp 711–725

Kim S, Lee K, Cho W, Nam Y, Cheon JH, Rutenbar RA (2020) Hardware architec-
ture of a number theoretic transform for a bootstrappable RNS-based
homomorphic encryption scheme. FCCM, pp 56–64

Kim J, Lee G, Kim S, Sohn G, Rhu M, Kim J, Ahn JH (2022) ARK: fully homomor-
phic encryption accelerator with runtime data generation and inter-
operation key reuse. MICRO, pp 1237–1254

Lee MS (2011) On the sparse subset sum problem from Gentry-Halevi’s
implementation of fully homomorphic encryption. IACR Cryptol ePrint
Arch 2011:567

Lei X, Guo R, Zhang F, Wang L, Xu R, Qu G (2019) Accelerating homomorphic
full adder based on FHEW using multicore CPU and GPUs. HPCC/Smart-
City/DSS, pp 2508–2513

Li J, Ye H, Li T, Wang W, Wenjing Lou Y, Hou T, Liu J, Rongxing L (2022) Efficient
and Secure Outsourcing of Differentially Private Data Publishing With
Multiple Evaluators. IEEE Trans Dependable Secur Comput 19(1):67–76

Lupascu C (2019) Mihai Togan. Acceleration Techniques for Fully-Homomor-
phic Encryption Schemes. CSCS, Victor Valeriu Patriciu, pp 118–122

Marcolla C, Sucasas V, Manzano M, Bassoli R, Fitzek FHP, Aaraj N (2022) Survey
on fully homomorphic encryption, theory, and applications. Proc IEEE
110(10):1572–1609

Marten van D, Ari J (2010) On the impossibility of cryptography alone for
privacy-preserving cloud computing. hotsec

Mert AC, Kwon AS, Shin Y, Yoo D, Lee Y, Roy SS (2023) Medha: microcoded
hardware accelerator for computing on encrypted data. IACR Trans
Cryptogr Hardw Embed Syst 1:463–500

Mert AC, Öztürk E, Savas E (2020) Design and implementation of encryption/
decryption architectures for BFV homomorphic encryption scheme.
IEEE Trans Very Large Scale Integr Syst 28(2):353–362

Moore C, O’Neill M, O’Sullivan E, Doröz Y, Sunar B (2014) Practical homomor-
phic encryption: a survey. ISCAS, pp 2792–2795

Morshed T, Aziz MMA, Mohammed N (2020) CPU and GPU accelerated fully
homomorphic encryption. HOST, pp 142–153

Paillier P (1999) Public-key cryptosystems based on composite degree residu-
osity classes. EUROCRYPT, pp 223–238

Özerk Ö, Elgezen C, Mert AC, Öztürk E, Savaş E (2022) Efficient number
theoretic transform implementation on GPU for homomorphic
encryption. J Supercomput 78(2):2840–2872. https:// doi. org/ 10. 1007/
s11227- 021- 03980-5

Passas G, Katevenis M, Pnevmatikatos DN (2012) Crossbar NoCs Are Scalable
Beyond 100 Nodes. IEEE Trans Comput Aided Des Integr Circuits Syst
31(4):573–585

Rashmi SA, Bu L, Kinsy MA (2020) Fast Arithmetic Hardware Library For RLWE-
Based Homomorphic Encryption. FCCM, p 206

Reagen B, Choi W, Ko Y, Lee VT, Lee HS, Wei GY, Brooks D (2021) Cheetah:
optimizing and accelerating homomorphic encryption for private infer-
ence. HPCA, pp 26–39

Reis D, Takeshita J, Jung T, Niemier MT, Hu XS (2020) Computing-in-memory
for performance and energy-efficient homomorphic encryption. IEEE
Trans Very Large Scale Integr Syst 28(11):2300–2313

Riazi SM, Laine K, Pelton B, Dai W (2020) HEAX: an architecture for computing
on encrypted data. ASPLOS, pp 1295–1309

Rivest RL, Adleman L, Dertouzos ML (1978) On data banks and privacy homo-
morphisms. Found Secure Comput 4(11):169–180

Roy SS, Vercauteren F, Mentens N, Chen DD, Verbauwhede I (2014) Compact
ring-LWE cryptoprocessor. CHES, pp 371–391

Roy SS, Turan F, Järvinen K, Vercauteren F, Verbauwhede I (2019) FPGA-based
high-performance parallel architecture for homomorphic computing
on encrypted data. HPCA, pp 387–398

Samardzic N, Feldmann A, Krastev A, Devadas S, Dreslinski RG, Peikert C,
Sánchez D (2021) F1: a fast and programmable accelerator for fully
homomorphic encryption. MICRO, pp 238–252

Samardzic N, Feldmann A, Krastev A, Manohar N, Genise N, Devadas S, Elde-
frawy K, Peikert C, Sánchez D (2022) CraterLake: a hardware accelerator
for efficient unbounded computation on encrypted data. ISCA, pp
173–187

Sander T, Young AL, Yung M (1999) Non-interactive cryptocomputing for NC1.
FOCS, pp 554–567

Schönhage A, Strassen V (1971) Schnelle Multiplikation großer Zahlen. Com-
puting 7(3–4):281–292

Seiler G (2018) Faster AVX2 optimized NTT multiplication for Ring-LWE lattice
cryptography. IACR Cryptol Eprint Arch 2018:39

Serhan G, Parker N, Daniel T, Silas R, Lemieux, Guy, Philip B (2021) An fpga-
based programmable vector engine for fast fully homomorphic
encryption over the torus. SPSL: Secure and Private Systems for
Machine Learning (ISCA Workshop)

Shen S, Hao Yang Y, Liu ZL, Zhao Y (2022) CARM: CUDA-accelerated RNS multi-
plication in word-wise homomorphic encryption schemes for internet
of things. IEEE Trans Comput. https:// doi. org/ 10. 1109/ TC. 2022. 32278 74

Shivdikar K, Jonatan G, Mora E, Livesay N, Agrawal R, Joshi A, Abellán JL, Kim J,
Kaeli DR (2022) Accelerating polynomial multiplication for homomor-
phic encryption on GPUs. SEED, pp 61–72

Syafalni I, Jonatan G, Sutisna N, Mulyawan R, Adiono T (2022) Efficient homo-
morphic encryption accelerator with integrated PRNG using low-cost
FPGA. IEEE Access 10:7753–7771

Tan W, Case BM, Gengran Hu, Gao S, Lao Y (2021) An ultra-highly parallel poly-
nomial multiplier for the bootstrapping algorithm in a fully homomor-
phic encryption scheme. J Signal Process Syst 93(6):643–656

Torres WAA, Bhattacharjee N, Srinivasan B (2014) Effectiveness of fully homo-
morphic encryption to preserve the privacy of biometric data. iiWAS,
pp 152–158

Turan F, Roy SS, Verbauwhede I (2020) HEAWS: an accelerator for homo-
morphic encryption on the amazon AWS FPGA. IEEE Trans Comput
69(8):1185–1196

Türkoglu EP, Özcan AS, Ayduman C, Mert AC, Öztürk E, Savas E (2022) An
accelerated GPU library for homomorphic encryption operations of BFV
scheme. ISCAS, pp 1155–1159

van Dijk M, Gentry C, Halevi S, Vaikuntanathan V (2010) Fully homomorphic
encryption over the integers. EUROCRYPT, pp 24–43

Wood A, Najarian K, Kahrobaei D (2021) Homomorphic encryption for
machine learning in medicine and bioinformatics. ACM Comput Surv
53(4):70:1-70:35

https://doi.org/10.1007/s11227-021-03980-5
https://doi.org/10.1007/s11227-021-03980-5
https://doi.org/10.1109/TC.2022.3227874

Page 23 of 23Gong et al. Cybersecurity (2024) 7:5

Xia J, Ma Z, Dai X (2019) Parallel computing mode in homomorphic encryp-
tion using GPUs acceleration in cloud. J Comput 14(7):451–469

Xin G, Zhao Y, Han J (2021) A multi-layer parallel hardware architecture for
homomorphic computation in machine learning. ISCAS, pp 1–5

Yang S, Bai-Long Y, Chen Y, Zepeng Y, Yi-Wei L (2022b) A highly unified recon-
figurable multicore architecture to speed up NTT/INTT for homomor-
phic polynomial multiplication. IEEE Trans Very Large Scale Integr Syst
30(8):993–1006

Yang Y, Kuppannagari SR, Kannan R, Prasanna VK (2022a) FPGA accelerator for
homomorphic encrypted sparse convolutional neural network infer-
ence. FCCM, pp 1–9

Ye T, Kannan R, Prasanna VK (2022) FPGA acceleration of fully homomorphic
encryption over the torus. HPEC, pp 1–7

Ye T, Kuppannagari SR, Kannan R, Prasanna VK (2021) Performance modeling
and FPGA acceleration of homomorphic encrypted convolution. FPL,
pp 115–121

Zhang J, Cheng X, Yang L, Hu J, Liu X, Chen K (2022) Fully homomorphic
encryption accelerators. arXiv preprint arXiv: 2212. 01713

Zhou T, Yang X, Liu L, Zhang W, Li N (2018) Faster bootstrapping with multiple
addends. IEEE Access 6:49868–49876

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Yanwei Gong is currently pursuing the Ph.D. Degree in Cyberspace
Security at Beijing Key Laboratory of Security and Privacy in Intelli-
gent Transportation, Beijing Jiaotong University, China. His interests
include identity authentication protocol related to MEC and fully
homomorphic encryption acceleration.

Xiaolin Chang is a professor at School of Computer and Informa-
tion Technology, Beijing Jiaotong University. Her current research
interests include Cloud-Edge computing, network security, secure
and dependable machine learning. She is a member of IEEE.

Jelena Mišić is Professor of Computer Science at Ryerson Univer-
sity in Toronto, Ontario, Canada. She has published over 120 papers in
archival journals and close to 200 papers at international conferences
in the areas of wireless networks, in particular wireless personal area
network and wireless sensor network protocols, performance evalua-
tion, and security. She serves on editorial boards of IEEE Transactions
on Vehicular Technology, Computer Networks, Ad hoc Networks,
Security and Communication Networks, Ad Hoc & Sensor Wireless
Networks, Int. Journal of Sensor Networks, and Int. Journal of Tel-
emedicine and Applications. She is a Fellow of IEEE and Member of
ACM.

Vojislav B. Mišić is Professor of Computer Science at Ryerson Uni-
versity in Toronto, Ontario, Canada. He received his PhD in Computer
Science from University of Belgrade, Serbia, in 1993. His research
interests include performance evaluation of wireless networks and
systems and software engineering. He has authored or co-authored
six books, 20 book chapters, and over 280 papers in archival jour-
nals and at prestigious international conferences. He serves on the
editorial boards of IEEE transactions on Cloud Computing, Ad hoc
Networks, Peer-to-Peer Networks and Applications, and International
Journal of Parallel, Emergent and Distributed Systems. He is a Senior
Member of IEEE and member of ACM.

Jianhua Wang received the B.S. and M.S. degrees in Software
engineering from the Taiyuan University of Technology in 2017 and
2020. He now pursues his Ph.D. Degree at Beijing Jiaotong University,
majoring in Cyberspace Security. His research interests include adver-
sarial machine learning and federated learning.

Haoran Zhu is currently a Ph.D. student in Cyberspace Security at
Beijing Key Laboratory of Security and Privacy in Intelligent Transpor-
tation, Beijing Jiaotong University, China. His interests include block-
chain security and data transmission security.

http://arxiv.org/abs/2212.01713

	Practical solutions in fully homomorphic encryption: a survey analyzing existing acceleration methods
	Abstract
	Introduction
	Preliminary
	Algorithms about FHE
	Hardware platforms about FHE

	Algorithm acceleration schemes
	NTT optimization
	Bootstrapping optimization
	Encoding optimization
	Algorithm acceleration summary

	Hardware acceleration schemes
	CPU-based
	GPU-based
	FPGA-based
	ASIC-based
	Other acceleration schemes
	Hardware acceleration summary

	Challenges and future research directions
	Conclusion
	References

