
Modern Analysis

Problem sheet one.

(1) Prove that the series
∞∑

n=1

sin(nx)

n2
is uniformly convergent on R.

(2) Let {fn}∞n=1 be a sequence of functions on X ⊆ R. How may we
use the WeierstrassM test to prove that the sequence converges
uninformly?

(3) Prove Riemann’s Criterion for the existence of the Riemann in-
tegral.

(4) Prove that if f and g are Riemann integrable on [a, b], then
∫ b

a

|f(x)g(x)|dx ≤
(∫ b

a

|f(x)|2dx
)1/2(∫ b

a

|g(x)|2dx
)1/2

.

(5) Prove Theorem 2.2 in the lecture notes.

(6) From the definition of the Riemann-Stieltjes integral, prove that

RS
∫ 1

0
xd(x2) = R

∫ 1

0
2x2dx.

(7) Calculate RS
∫ 1

−1
x2d(x|x|), RS

∫ 1

−1
x2d(x2) and RS

∫ 1

0
cosxd(sin x).

(8) Prove that if f is continuous and monotone increasing, then

RS

∫ b

a

f(x)d(f(x)) =
1

2
(f(b)2 − f(a))2.

(9) Use the Euler-Maclaurin formula to estimate the following quan-
tities for large N .

(i)
N∑

n=1

sin(
√
n)

n

(ii) γN =
N∑

n=1

1

n
− lnN.

(10) Use the Euler-Maclaurin formula to prove the integral test for
series convergence: If f is a continuous function on R, then∑∞

n=1 f(n) converges if and only if R
∫∞
1
f(x)dx <∞.

(11) Calculate the sums
∑n

k=1 k
2, and

∑n
k=1 k

3.

(12) Find limn→∞RS
∫ π

2
0
(1− x

n
)nd(cosx).



Modern Analysis

Problem sheet two.

(1) Prove Theorem 3.11 in the lecture notes.

(2) Prove that

m((0, 1]) =
∞∑

k=1

m

((
1

k + 1
,
1

k

])
.

(3) Prove that any countable set is measurable and has measure
zero.

(4) What is the measure of the irrational numbers in [0, 1]?

(5) Prove that if m∗(A) = 0 then A is measurable.

(6) Prove Theorem 3.13 in the lecture notes.

(7) Let A ⊂ R be a measurable set. For h ∈ R, define

A+ h = {x+ h|x ∈ A}.
Prove that A+ h is measurable and m(A+ h) = m(A).

(8) Let E, F be measurable and assume E ⊂ F , with m(F ) < ∞.
Prove that m(F − E) = m(F )−m(E).

(9) Show that for any two sets A,B with A ∪B = [0, 1],

m∗(A) ≥ 1−m∗(B).

(10) Let

A = {x ∈ [0, 1] : no 5s occur in the decimal expansion of x}.
Find m∗(A).

(11) Suppose that A is a bounded set and m∗(A ∩ I) ≤ 1
2
m∗(I) for

every interval I. Prove that m∗(A) = 0.

(12) (Hard) Prove that intervals are measurable by verifying that
the Caratheodory condition is satisfied.



Problem sheet three.

(1) Show that if A1, A2 are measurable then

m(A1) +m(A2) = m(A1 ∪ A2) +m(A1 ∩ A2).

(2) Let X be a nonempty set, and let f : X → [0,∞) be a func-
tion. Let P (X) be the collection of all subsets of X . Define
µ : P (X) → [0,∞) by µ(A) =

∑
x∈A f(x) if A is a nonempty,

countable set, µ(A) = ∞ is A is uncountable and µ(∅) = 0.
Show that µ is a measure.

(3) Consider the Cantor set. This is formed by taking the interval
C1 = [0, 1] and removing the middle third (0, 1). So C2 =
[0, 1/3] ∪ [2/3, 1]. Then remove the middle third from each of
these intervals. So C3 = [0, 1/9]∪[2/9, 1/3]∪[2/3, 5/9]∪[8/9, 1].
Continue this process indefinitely. The Cantor set is defined to
be

C = ∩∞
n=1Cn.

Prove that the Cantor set is nonempty, with infinitely many
points and thatm(C) = 0. In fact the Cantor set is uncountable.
So it provides an example of an uncountable set of Lebesgue
measure zero.

(4) Show that a countable union of sets of measure zero has mea-
sure zero.

(5) If m∗ is Lebesgue outer measure on R and A is a null set (one
with outer measure zero), then

m∗(B) = m∗(A ∪B) = m∗(B \ A)
holds for every subset B of R.

(6) Let m∗ be outer measure on R. If a sequence of subsets {An}
of R satisfies

∑∞
n=1m

∗(An) <∞, then the set

E = {x ∈ X : x ∈ An for infinitely many n},
is a null set.

(7) Prove that χA is measurable if and only if A is measurable.

(8) Suppose that f : R → R is continuous and g : R → R is mea-
surable. Prove that the composition f ◦ g is also measurable.

(9) Let f : R → R be a differentiable function. Show that the
derivative f ′ is Lebesgue measurable.



Problem sheet four.

(1) Consider a sequence of functions (fn), where each fn : R → R
is measurable. Let f be a measurable function. The sequence
(fn) is said to converge in measure to f if, for any ǫ > 0,

lim
n→∞

m[{x : |fn(x)− f(x)| ≥ ǫ}] = 0.

Prove that if fn → f uniformly, then (fn) converges in measure
to f.

(2) Let (fn) and (gn) be sequences of almost everywhere real, mea-
surable functions, that converge in measure to f and g respec-
tively. Let a, b be real numbers. Prove the following.

(i) (afn + bgn) converges in measure to af + bg.

(ii) (|fn|) converges in measure to |f |.

(iii) (fngn) converges in measure to (fg), on X with m(X) <
∞.

(iv) (fng) converges in measure to (fg), on X with m(X) <∞.

(3) Prove that if k ≤ f ≤ K a.e. on a measurable set E, then

km(E) ≤
∫

E

f ≤ Km(E).

(4) Let f be an integrable function that is positive everywhere on
a measurable set E. If

∫
E
f = 0 prove that m(E) = 0.

(5) Prove that
∫∞
0

sin(x2)dx is not Lebesgue integrable, but exists
as an improper Riemann integral.

(6) Let f : [0, 1] → R be Lebesgue integrable. Assume that f is
differentiable at x = 0 and f(0) = 0. Show that the function

defined by g(x) = x−
3
2 f(x) for all x ∈ (0, 1] and g(0) = 0 is

Lebesgue integrable.
(7) Find the Lebesgue integral over [0, 1] of the function

f(x) =

{
x3 + 5x, x ∈ [0, 1]−Q

2x2, x ∈ [0, 1] ∩Q.



Problem sheet five.

(1) Prove that if ϕ(x) is a continuous nondecreasing function in
[a, b], then ϕ′(x) is Lebesgue integrable and

∫ b

a

ϕ′(x)dx ≤ ϕ(b)− ϕ(a).

(2) Show that

lim
n→∞

∫ n

0

(
1 +

x

n

)n
e−2xdx = 1.

(3) Show that for t ≥ 0
∫ ∞

0

e−xt sin x

x
dx =

π

2
− tan−1 t.

(4) Prove that if f is continuously differentiable, then

lim
n→∞

∫ π

−π

f(x) sin(nx)dx = 0

and

lim
n→∞

∫ π

−π

f(x) cos(nx)dx = 0.

(5) Assume that f : [a,∞) → R is Riemann integrable on every
closed subinterval of [a,∞). Prove that

∫∞
a
f(x)dx exists as an

improper Riemann integral, if and only if for every ǫ > 0 there

exists an M such that
∣∣∣
∫ t

s
f(x)dx

∣∣∣ < ǫ for all s, t > M.

The previous result is useful because of the following the-
orem which you may assume. Let f : [a,∞) → R be Rie-
mann integrable on every closed subinterval of [a,∞). Then
f is Lebesgue integrable if and only if the improper Riemann
integral

∫∞
a

|f(x)|dx exists. In this case

L

∫
fdm = R

∫ ∞

a

f(x)dx.

(6) Show that ∫ ∞

0

sin2 x

x2
dx =

π

2
.

(Integrate by parts and use the convergence theorems).



(7) Let f : [a, b] → R be a differentiable function with the left
and right limits of the derivatives defined at the end points. If
the derivative f ′ is bounded on [a, b], prove that f ′ is Lebesgue
integrable and ∫

[a,b]

f ′dm = f(b)− f(a).

(8) Show that f(x) = lnx
x2 is Lebesgue integrable over [1,∞) and

that
∫
fdm = 1.

(9) Let f : [0,∞) → R be a continuous function such that
limx→∞ f(x) = δ. Show that

lim
n→∞

∫ a

0

f(nx)dx = aδ

for each a > 0.



37438 Problem sheet six.

(1) Calculate

∫ ∞

0

e−ax − e−bx

x
dx.

(2) Calculate

∫ 1

0

x− 1

ln x
dx. Hint, look at

∫ 1

0
xp−1
lnx

dx.

(3) Evaluate

∫ ∞

0

e−α2x2−β2/x2

dx.

(4) Show that if d(x, y) is a metric on a space X , then

ρ(x, y) =
d(x, y)

1 + d(x, y)

is also a metric on X .

(5) Assume that two vectors x, y ∈ X where X is a normed linear
space satisfy the relation ‖x + y‖ = ‖x‖ + ‖y‖. Show that for
all non negative scalars α, β we have

‖αx+ βy‖ = α‖x‖+ β‖y‖.
(6) It is true that every norm defines a metric by d(x, y) = ‖x−y‖.

Show by example that not every metric defines a norm.

(7) Let f : X → R.

‖f‖∞ = inf{M : |f(x)| ≤M holds for almost all x}.
Prove the following.
(i) If f = g a.e., then ‖f‖∞ = ‖g‖∞.

(ii) ‖f‖∞ ≥ 0 for each function f , and ‖f‖∞ = 0 if and only if
f = 0 a.e.

(iii) ‖af‖ = |a|‖f‖∞ for all scales a.

(iv) ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞

(v) If |f | ≤ |g| then ‖f‖∞ ≤ ‖g‖∞.

(8) Two norms ‖x‖1 and ‖x‖2 on a vector space X are said to be
equivalent if there exist constants K > 0 and M > 0 such that

K‖x‖1 ≤ ‖x‖2 ≤ M‖x‖1.
Prove that on a finite dimensional vector space all norms are
equivalent.



(9) Let C1[0, 1] be the vector space of all real valued functions on
[0, 1] with continuous first derivative. Show that ‖f‖ = |f(0)|+
‖f ′‖∞ is a norm and that it is equivalent to the norm

‖f‖A = ‖f‖∞ + ‖f ′‖∞.
Hint: f(x) = f(0) +

∫ x

0
f ′(t)dt.

(10) let X , Y be normed linear spaces. An operator T : X → Y is
said to be bounded if there exists K > 0 such that

‖T (x)‖Y ≤ K‖x‖E .
Consider C[a, b] with the norm defined in question 4. Let K :
[a, b]× [a, b] → R be a continuous function. Show that

T (f)(x) =

∫ b

a

K(x, y)f(y)dy

is a bounded linear operator. i.e There exists M > 0 such that
‖Tf‖∞ ≤M‖f‖∞ for all f ∈ C[a, b].

(11) Let D : C1[0, 1] → C1[0, 1] be given by Df = f ′. Use the
norm of question 4 and show that with respect to this norm,
differentiation is an unbounded linear operator. (Hint. Find an
example of a function whose norm grows with derivatives).

(12) Let f : R → R be n times differentiable and assume that f (n)

is integrable for all n. Prove that

f̂ (n)(y) = (iy)nf̂(y).

(13) Let f : R → R be such that xf(x) is Lebesgue integrable. Prove
that

x̂f(x)(y) = i
d

dy
f̂(y).

(14) Solve the differential equation

u′(x) + xu(x) = 0, u(0) =
√
2π.

Now take the Fourier transform of this equation and hence show
that ∫ ∞

−∞
e−

x2

2 e−iyxdx =
√
2πe−

y2

2 .



37438 Problem sheet seven.

(1) Show that in a real inner product space (x, y) = 0 holds if and
only if ‖x+ y‖2 = ‖x‖2 + ‖y‖2. Does the same result hold if we
allow the inner product to be complex valued?

(2) Assume that the sequence {xn} in an inner product space sat-
isfies (xn, x) → ‖x‖2 and ‖xn‖ → ‖x‖. Show that xn → x.

(3) A sequence {xn} in a Hilbert space H is said to converge weakly
to x in H if (xn, y) → (x, y) for all y ∈ H.
(i) Show that if a sequence is convergent it is also weakly con-

vergent.

(ii) Show that if a sequence is weakly convergent, then the limit
is unique.

(iii) Show by an example that a sequence may be weakly con-
vergent, but not convergent.

(4) Let H be a Hilbert space with inner product (·, ·) : H×H → C.
Prove that for all x, y ∈ H

(x, y) =
1

4

(
[‖x+ y‖2 − ‖x− y‖2] + i[‖x+ iy‖2 − ‖x− iy‖2]

)
.

This is known as the polarisation identity and it used to recover
the inner product from the norm.

(5) Given an example of a function f such that f ∈ L2(R) but
f 6∈ L1(R). Then find an example of a function such that
f ∈ L1(R), but f 6∈ L2(R).

(6) Let [a, b] be a closed, bounded interval. Define the spaces
Lp([a, b]) in the obvious way. If f ∈ L1([a, b]) does it follow
that f ∈ L2([a, b])? What about the converse?

(7) Let p > 1, p 6= 2 and suppose that 1
p
+ 1

q
= 1. Suppose that

f ∈ Lp(R) and f ∈ Lq(R). Prove that f ∈ L2(R).

(8) Let f ∈ L2([0, 1]) satisfy ‖f‖2 = 1 and
∫ 1

0
f(x)dx ≥ α > 0. For

each β ∈ R, define Eβ = {x ∈ [0, 1] : f(x) ≥ β}. If 0 < β < α
show that m(Eβ) ≥ (β−α)2. (Hint: This uses Hölder’s inequal-
ity. Note that f − β ≤ (f − β)χEβ

≤ fχEβ
.)

(9) Suppose that {φn} is an orthonormal set in the Hilbert space
L2([−1, 1]). Show that the sequence {ψn} defined by

ψn(x) =

(
2

b− a

)1/2

φn

(
2

b− a

(
x− b+ a

2

))



is an orthonormal set in L2([a, b]).
(10) Let 1 ≤ p < ∞ and suppose f ∈ Lp([a, b]), where a < b,

a, b ∈ R∗ and let ǫ > 0. Show that

m∗({x ∈ [a, b] : |f(x)| ≥ ǫ}) ≤ ǫ−p

∫ b

a

|f(x)|pdx.

where m∗ is Lebesgue outer measure.
(11) Let 1 ≤ p < ∞ and suppose {fn} is a sequence in Lp([a, b]),

where a < b, a, b ∈ R∗. Prove that if ‖fn − f‖p → 0 as n→ ∞,
then fn → f in measure.



37438 Modern Analysis

37438 Problem sheet eight.

(1) Solve the PDE

ut = uxx + h(x), h ∈ L1(R), x ∈ R

subject to the initial condition u(x, 0) = f(x) and the assump-
tion that u(x, t), ux(x, t) → 0 as |x| → ∞.

(2) Solve the Poisson equation

uxx + uyy = h(x), h ∈ L1(R) x ∈ R, y ≥ 0

subject to the condition u(x, 0) = f(x) and the assumption that
u(x, y), ux(x, y) → 0 as |x| → ∞.

(3) Solve the integral equation

u(x) = h(x) +

∫ ∞

−∞
k(x− y)u(y)dy,

where h and k and their Fourier transforms are integrable.

(4) Use Parseval’s identity to evaluate the integrals
(a)

∫∞
−∞

dx
(1+x2)2

(b)
∫∞
−∞

sin2 x
x2 dx.

(5) Define the function hλ by

hλ(x) =

∫ ∞

−∞
e−λ|y|eiyxdy.

Prove that

(a) hλ(x) =
2λ

λ2 + x2
,

(b)

∫ ∞

−∞
hλ(x)dx = 2π.

(c) hλ(x) =
1

λ
h1

(x
λ

)
.

The convolution of two functions f and g is defined by

f ∗ g(x) =
∫ ∞

−∞
f(y)g(x− y)dy.

(d) Prove that if f is integrable, then for every λ > 0

f ∗ hλ(x) =
∫ ∞

−∞
e−λ|y|f̂(y)eixydy.



(e) Prove that for all f ∈ L1(R), limλ→0 f ∗ hλ = 2πf. Deduce
from this the Fourier inversion Theorem. (Hint: Consider
f ∗ hλ − 2πf ).

The function hλ is known as an approximation of the identity.

(6) Suppose that f ∈ L1(R) and that both f ′, f ′′ exist and are
continuous and integrable. Prove that the Fourier transform

f̂ ∈ L1(R).

(7) Suppose that f, fn ∈ L1([−π, π]) and that fn → f. Prove that

the Fourier coefficients satisfy f̂n → f̂ .

(8) Prove theWeierstrass approximation theorem: If f ∈ C([−π, π]),
then, given any ǫ > 0, there is a polynomial p(x) such that

sup
x∈[−π,π]

|f(x)− p(x)| < ǫ.

(Hint: Use a Fourier series).

(9) Let f be 2π periodic and integrable on [−π, π]. Let f̂(n) =
1
2π

∫ π

−π
f(x)e−ixndx.

(a) Show that f̂(n) = − 1

2π

∫ π

−π

f
(
x+

π

n

)
e−inxdx.

(b) Use the result of (a) and the DCT to prove that if f is

continuous, then f̂(n) → 0 as n → ∞. (Hint: Find an ex-

pression for 2f̂(n)).

(c) Prove that if for all x there is a C > 0 and 0 < α ≤ 1,

such that |f(x+h)−f(x)| ≤ C|h|α, then f̂(n) = O(1/|n|α).

(10) Let the Theta function be defined by

Θ(t) =

∞∑

n=−∞
e−tπk2 .

Prove that Θ(t) =
1√
t
Θ(

1

t
).
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Problem sheet nine.

(1) Prove that the product measure of two measures µ and ν is a
measure. That is, prove that (µ× ν)(A×B) ≥ 0 and

(µ× ν)(∪∞
i=1(Ai ×Bi) =

∞∑

i=1

(µ× ν)(Ai ×Bi).

(2) Let f(x, y) = (x2 − y2)/(x2 + y2)2 with f(0, 0) = 0. Evaluate

∫ 1

0

∫ 1

0

f(x, y)dxdy and

∫ 1

0

∫ 1

0

f(x, y)dydx.

Explain your answer.

(3) If λ, µ and ν are finite measures such that λ << ν and ν << µ,
show that

dλ

dµ
=
dλ

dν

dν

dµ
.

(4) Suppose that µ and ν are finite measures and that µ << ν and
ν << µ. Prove that

dµ

dν

dν

dµ
= 1.

(5) Calculate the moment generating function of a normal random
variable.

(6) Let λ be Lebesgue measure. Suppose that µ(E) =
∫
E
fdλ and

that the measure µ satisfies µ(aE) = µ(E) for all a > 0 and
each measurable subset E of (0,∞). The aim of this question
is to compute the Radon-Nikodym derivative f .
(i) Let E = [1, x]. What is aE?

(ii) Show that f satisfies
∫ x

1
f(t)dt =

∫ ax

a
f(t)dt

(iii) Show that f(x) = c/x for some constant c.

(7) Let X be a Banach space. Show that if L is a linear func-
tional on X and L is continuous at a ∈ X , then L is uniformly
continuous on the whole of X .



(8) Let (Ω,F , P ) be a probability space and let {An} be a sequence
of subsets of Ω. Define

lim
n→∞

An =

∞⋂

m=1

⋃

n≥m

An

= {ω : ω ∈ Anfor infinitely many n}.
Now suppose that each An is measurable. Prove the Borel-
Cantelli Lemma:

∞∑

n=1

P (An) <∞ ⇒ P (limn→∞An) = 0.

Conversely, if the An are P independent sets: P (An ∩ Am) =
P (An)P (Am); then

∞∑

n=1

P (An) = ∞ ⇒ P (limn→∞An) = 1.

(9) IfX and Y are independent prove that V ar(X+Y ) = V ar(X)+
V ar(Y ).

(10) If Xn are independent random variables on (Ω,F , P ), with
E(Xn) = µ, V ar(Xn) ≤ K < ∞ prove the weak law of large
numbers: 1

n

∑n
k=1Xk → µ in L2.

(11) Show that if X and Y are random variables on a probability

space, then d(X, Y ) = E
(

|X−Y |
1+|X−Y |

)
is a metric and that con-

vergence in d is equivalent to convergence in the probability
measure P .



37438 Modern Analysis

Problem sheet one solutions.

Question 1.
We use the Weierstrass M test. We let fn(x) = 1

n2 sin(nx) and we
have the inequality |fn(x)| ≤ 1

n2 . Since
∑∞

n=1
1
n2 < ∞ it follows that∑∞

n=1 fn(x) converges uniformly.

Question 2.
The Weierstrass test is for series. So we need a series whose nth

term is fn. Thus we need a telescoping series. So we let g1 = f1 and
gn = fn − fn−1 for n ≥ 2. Then

n∑

k=1

gn = f1 + f2 − f1 + f3 − f2 + · · ·+ fn−1 + fn − fn−1 = fn.

The Weierstrass M test tells us that if |gn(x)| ≤Mn for all x ∈ X and∑∞
n=1Mn <∞, then the series converges uniformly on X with limit f .

So if |fn(x)− fn−1(x)| ≤Mn then {fn}∞n=1 is uniformly convergent. So
if would be sufficient to establish (as an example) that for all x ∈ X

|fn(x)− fn−1(x)| ≤
1

na
, a > 1

in order to guarantee that fn → f uniformly.

Question 3.
Suppose that f is Riemann integrable. Then the lower integral

∫ b

a

f =

∫ b

a

f.

Consequently, given ǫ > 0 there exists a partition P1 of [a, b] such

that L(f, P1) ≥
∫ b

a
f − ǫ/2. Similarly there is a partition P2 such that

U(f, P2) =
∫ b

a
f + ǫ/2. Here

∫ b

a
f denotes the upper integral. Thus if

P = P1 ∪ P2 then

U(f, P )− L(f, P ) ≤ U(f, P2)− L(f, P1)

<

∫ b

a

f + ǫ/2−
(∫ b

a

f − ǫ/2

)

< ǫ,

as the upper and lower integrals are equal. Conversely, let ǫ > 0 and
suppose that there is a partition P such that

∫ b

a

f ≤ U(f, P ) < L(f, P ) + ǫ ≤
∫ b

a

f + ǫ. (0.3)



Then ∣∣∣∣∣

∫ b

a

f −
∫ b

a

f

∣∣∣∣∣ < ǫ. (0.4)

So f is Riemann integrable.

Question 4.
Let f, g be Riemann integrable on [a, b] and observe that

∫ b

a

(x|f(t)|+ |g(t)|)2 dt = x2
∫ b

a

|f(t)|2dt+ 2x

∫ b

a

|f(t)g(t)|dt

+

∫ b

a

|g(t)|2dt = Ax2 + 2Bx+ C ≥ 0.

Since Ax2 + 2Bx+ C ≥ 0 it follows that B2 ≤ AC. Which gives
(∫ b

a

|f(t)g(t)|dt
)2

≤
∫ b

a

|f(t)|2dt
∫ b

a

|g(t)|2dt.

Now take the square root of both sides.

Question 5.
Assume that f is continuous on [a, b] and let

φ(x) =





β1 a ≤ x < x̂

β x = x̂

β2 x̂ < x ≤ b.

Then φ is a step function with one jump at x̂, for a < x̂ < b/. Let P
be a partition of [a, b]. If x̂ is a partition point, x̂ = xK for 0 < K < n,
then xK−1 ≤ ck ≤ x̂ = xK ≤ cK+1 ≤ xK+1 and

∑

P

f∆φ = [f(cK)− f(x̂)](β − β1) + [f(cK+1)− f(x̂)](β2 − β)

+ f(x̂)(β2 − β1).

As we let |P | → 0, by continuity the first two terms vanish and so we
have

RS

∫ b

a

fdφ = f(x̂)(β2 − β1)

= f(x̂)(φ(x̂+)− φ(x̂−)).

If x̂ is not a partition point, then we have xK−1 < x̂ < xK and xK−1 ≤
cK ≤ xK for some K. So that

∑

P

f∆φ = [f(cK)− f(x̂)](β1 − β2) + f(x̂)(β2 − β1)



and again continuity shows that as |P | → 0, the first term disappears
and again

RS

∫ b

a

fdφ = f(x̂)(φ(x̂+)− φ(x̂−)).

Finally we extend to the case when φ has n jump points x̂1, ..., x̂n by
using the fact that if a1 < a2 < · · · an, then

RS

∫ an

a1

= RS

∫ a2

a1

+ · · ·+RS

∫ an

an−1

.

Question 6.
Recall that if f is Riemann integrable on [a, b] and P = {x1, ..., xn}

is a partition of [a, b], then the Riemann sum
∑n

k=1 f(x
∗
k)(xk−xk−1) →∫ b

a
f(x)dx as the partition length |P | → 0.
We take f(x) = x, and choose a partition {x1, ..., xn} of [0, 1] and let

ck satisfy xk−1 ≤ ck ≤ xk for all k. The inequality
n∑

k=1

xk−1(x
2
k − x2k−1) ≤

n∑

k=1

ck(x
2
k − x2k−1) ≤

n∑

k=1

xk(x
2
k − x2k−1)

is obvious. Simple algebra gives
n∑

k=1

xk(x
2
k − x2k−1) =

n∑

k=1

x2k(xk − xk−1) +
n∑

k=1

xkxk−1(xk − xk−1).

Similarly for the first sum and so we have
n∑

k=1

x2k−1(xk − xk−1) +

n∑

k=1

xkxk−1(xk − xk−1) ≤
n∑

k=1

ck(x
2
k − x2k−1) ≤

n∑

k=1

x2k(xk − xk−1) +

n∑

k=1

xkxk−1(xk − xk−1).

It is also clear that
n∑

k=1

xkxk−1(xk − xk−1) <
n∑

k=1

x2k(xk − xk−1)

since xk > xk−1. We therefore have

2
n∑

k=1

x2k−1(xk − xk−1) ≤
n∑

k=1

ck(x
2
k − x2k−1) ≤ 2

n∑

k=1

x2k(xk − xk−1). (∗)

Now 2
∑n

k=1 x
2
k−1(xk−xk−1) is a Riemann sum for the integral 2

∫ 1

0
x2dx

as is 2
∑n

k=1 x
2
k(xk − xk−1). So that as |P | → 0

2
n∑

k=1

x2k−1(xk − xk−1) → 2

∫ 1

0

x2dx



and

2

n∑

k=1

x2k(xk − xk−1) → 2

∫ 1

0

x2dx.

Since
∑n

k=1 ck(x
2
k − x2k−1) → RS

∫ 1

0
xd(x2), the inequality (*) then al-

lows us to conclude that RS
∫ 1

0
xd(x2) = 2

∫ 1

0
x2dx.

Question 7.
Let g(x) = x|x|. then g′(x) = 2x2 if x > 0 and g′(x) = −2x2 if x < 0.

So that

RS

∫ 1

−1

xd(x|x|) =
∫ 1

0

2x3dx−
∫ 0

−1

2x3dx = 1.

The other parts of the question may be done the same way.

Question 8
Integration by parts gives

RS

∫ b

a

f(x)d(f(x)) = f(b)f(b)− f(a)f(a)− RS

∫ b

a

f(x)d(f(x)).

Rearranging this gives the result.

Question 9
The most efficient way to do this question is to evaluate the various

terms in the Euler-MacLaurin summation formula in Mathematica.
(i) For the first sum we have

N∑

k=1

sin(
√
k)

k
=

∫ N

1

sin(
√
x)√
x

dx+
1

2
(sin 1 +

1

N
sin(

√
N))

+
1

12
[f ′(N)− f ′(1)] + · · · ,

where f(x) = sin(
√
x)/

√
x. So that f ′(x) =

cos(
√
x)

2x
− sin(

√
x)

2x3/2 . We can
as many terms as we want in the Euler-MacLaurin formula, depending
on how much work we are prepared to do.

With N = 100 we get

100∑

k=1

f(k) ≈ 1.42453 + 0.418015 + 0.04 = 1.88802.

(ii) For γn =
n∑

k=1

1

k
− lnn. If f(x) = 1/x we have

γn = − lnn+

∫ n

1

f(x)dx+
1

2
(1 + 1/n) +

1

12
(−1/n2 + 1)

− 1

720
(−6/n4 + 6) + · · · .



If we take n = 1000 and a decent number of terms in the summation
formula we get γ1000 ≈ .577716. The limit γ = limn→∞ γn exists and
is known as Euler’s constant. It is the third most frequently occurring
constant in mathematics after e and π. It is not known if γ is rational
or irrational.

Question 10.
Suppose that

∑∞
k=1 f(k) < ∞. Then the Euler-MacLaurin formula

implies that
∫∞
1
f(x)dx <∞. This is obvious because if

∫ N

1
f(x)dx→

∞ as N → ∞, then
∑N

k=1 f(k) → ∞.
In general we let

∆N =

N∑

k=1

f(k)−
∫ N

1

f(x)dx =
1

2
(f(1) + f(N))

+

∫ N

1

(x− [x]− 1/2)f ′(x)dx.

Observe that if x ∈ (N,N+1) then [x] = N. Suppose that f is positive
and decreasing on [1,∞) and

∫∞
1
f(x)dx <∞. Since f is decreasing it

follows that

f(k + 1) ≤
∫ k+1

k

f(x)dx ≤ f(k).

And

∆N+1 −∆N =
1

2
(f(N + 1)− f(N)) +

∫ N+1

N

(x− [x]− 1/2)f ′(x)dx

=
1

2
(f(N + 1)− f(N)) +

∫ N+1

N

(x−N − 1/2)f ′(x)dx

=
1

2
(f(N + 1)− f(N)) + f(N + 1)(N + 1− (N + 1/2))

− f(N)(N − (N + 1/2))−
∫ N+1

N

f(x)dx

= f(N + 1)−
∫ N+1

N

f(x)dx ≤ f(N + 1)− f(N + 1) = 0.

So the sequence {∆N} is non-increasing. Hence it is convergent. Thus
the series

∑∞
k=1 f(k) is convergent.

Question 11.



Take f(k) = k2. Then f ′(k) = 2k, f ′′′(k) = 0. So by Euler-MacLaurin
summation

n∑

k=1

k2 =

∫ n

1

x2dx+
1

2
(f(1) + f(n)) +

1

12
(f ′(n)− f ′(1)) + · · ·

=
1

3
(n3 − 1) +

1

2
(1 + n2) +

1

12
(2n− 2)

=
n

6
(2n+ 1)(n+ 1).

Now we take f(k) = k3. Then f ′(k) = 3k2, f ′′(k) = 6k, f ′′′(k) = 6.
So we have

n∑

k=1

k3 =

∫ n

1

x3dx+
1

2
(n3 + 1) +

1

12
(3n2 − 3)− 1

720
(6− 6)

=
1

4
(n4 − 1) +

1

2
(n3 + 1) +

1

12
(3n2 − 3)

=
n2

4
(n+ 1)2.

Question 12

lim
n→∞

∫ π/2

0

(
1− x

n

)n
d(cosx) = −

∫ π/2

0

e−x sin xdx

=
1

2
(e−π/2 − 1).
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Problem sheet two solutions.

Question 1.
Let Bn =

⋃n
k=1Ak for 1 ≤ n ≤ N. By induction Bn is measurable.

Now assume that

m∗(E ∩ Bn) =

n∑

k=1

m∗(E ∩ Ak).

Then by the definition of measurability and the measurability of An

m∗(E ∩Bn+1) = m∗((E ∩ Bn+1) ∩ Ac
n+1) +m∗(E ∩ Bn+1 ∩ An+1)

= m∗(E ∩Bn) +m∗(E ∩ An+1)

=

n+1∑

k=1

m∗(E ∩ Ak).

As the result is true for n = 1, the general result follows by induction.

Question 2.
This follows from the telescoping series

∑∞
k=1(

1
k
− 1

k+1
) = 1.

Question 3.
If {xk} is a set containing a single point, then m({xk}) = 0. By

countable additivity, if A = ∪∞
k=1{xk}, then m(A) = 0.

Question 4
We know m(Q) = 0 since the rationals are countable. Let X =

[0, 1] ∩Q and U = [0, 1]−X. Then [0, 1] = X ∪ U. So that m([0, 1]) =
m(U) +m(X). But m(X) = 0, so M(U) = 1.

Question 5
We use m∗(E) ≤ m∗(E ∩ A) +m∗(E ∩ Ac). Now

m∗(E ∩A) ≤ m∗(A) = 0

and m∗(E ∩ Ac) ≤ m∗(E). So we have

m∗(E) ≤ m∗(E ∩A) +m∗(E ∩ Ac) ≤ m∗(E).

Thus m∗(E) = m∗(E ∩A) +m∗(E ∩Ac) and A is measurable.

Question 6
Suppose that (Bn) is any sequence of measurable set. Let A1 = B1,

A2 = B2 ∩ Bc
1,..., An = Bn ∩ (B1 ∪ B2 ∪ · · ·Bn−1)

c, etc. Then the Ai

are pairwise disjoint and
n⋃

k=1

Ak =

n⋃

k=1

Bk.

Each An is measurable as each Bk is measurable and intersections
and unions and compliments of measurable sets are measurable. So



∪∞
k=1Ak is measurable. For the intersection of the sets we use the

relation
∞⋂

n=1

Bn =

( ∞⋃

n=1

Bc
n

)c

.

Since each Bn is measurable and countable unions are measurable, the
measurability of the intersection follows.

Question 7.
We have A + h = {x + h|x ∈ A}. If A is covered by Ik then A + h

is covered by Ik + h and l(Ik + h) = l(Ik). It follows that m
∗(A+ h) =

m∗(A). To prove measurability we use the relations

E ∩ (A+ h) = ((E − h) ∩ A) + h,

and

E ∩ (A+ h)c = ((E − h) ∩ Ac) + h.

Let us illustrate the first relation using intervals. Let E = [a, c] and
A = [b, d] where a < b < c < d. Then A + h = [b + h, d + h] and
E ∩ (A+ h) = [b+ h, c]. Now E − h = [a− h, c− h] and A∩ (E − h) =
[b, c − h]. So that h + (A ∩ (E − h)) = [b + h, c] = E ∩ (A + h). The
second relation can be demonstrated similarly.

Then by the measurability of A

m∗(E) = m∗(E − h)

= m∗((E − h) ∩ A) +m∗((E − h) ∩ Ac)

= m∗((E − h) ∩ A) + h) +m∗((E − h) ∩Ac) + h)

= m∗(E ∩ (A+ h)) +m∗(E ∩ (A+ h)c)

and so A + h is measurable.

Question 8
Clearly F = E ∪ (F −E). So m(F ) = m(E) +m(F − E)

Question 9
As A ∪B = [0, 1] we have

[0, 1] = (A− (A ∩ B)) ∪ (B − (A ∩ B)).

Now m∗([0, 1]) = 1 and

m∗(A) +m∗(B) = m∗(A− (A ∩ B)) +m∗(B − (A ∩B)) +m∗(A ∩ B)

≥ 1.

So m∗(A) ≥ 1−m∗(B).

Question 10
The key is to remove sets which contain a 5 at some place in their

decimal expansion. These sets make up intervals whose measures are
easily computed. Let the set of numbers in [0, 1] with no 5 in their
decimal expansions be A. So we let



A1
0 = {x ∈ [0, 1], x = 0.0a2a3...}

A1
1 = {x ∈ [0, 1], x = 0.1a2a3...}
...

Q1
5 = {x ∈ [0, 1], x = 0.5a2a3...}
...

A1
9 = {x ∈ [0, 1], x = 0.0a2a3...}

and [0, 1] = ∪9
i=0A

1
i . Each of these is an interval of length 1/10. We

remove the set A1
5 because it contains a 5 in the first place of the

decimal expansion.
Next we look at the sets

A2
00 = {x ∈ [0, 1], x = 0.00a3a4 · · · },

A2
01 = {x ∈ [0, 1], x = 0.01a3a4 · · · },
...

A2
05 = {x ∈ [0, 1], x = 0.05a3a4 · · · },
...

We need to remove one interval of this form from each of A1
0, ..., A

1
9,

but not A1
5. Each of these subintervals are of length 1/100 and there

are 9 of them. Continuing this process we have to remove 92 intervals
of length 1/1000 from the A2

ij etc. In this way we remove every number
with a 5 somewhere in its decimal expansion. The total length removed
is

1

10
+

9

100
+

92

1000
+ · · · = 1/10

1− 9/10
= 1. (0.5)

It follows then that m∗(A) = m[0, 1]− 1 = 0. So A has outer measure
zero, which also implies that it is measurable.

Question 11
Suppose that A is covered by intervals I1, ..., In. Then by question

one

m∗(A) ≤ m∗ (A ∩ ∪n
k=1Ik) =

n∑

k=1

m∗(A ∩ Ik) ≤
1

2

n∑

k=1

l(Ik).

Taking the inf over both sides gives

0 ≤ m∗(A) ≤ 1

2
m∗(A).

This is only possible if m∗(A) = 0.

Question 12



Suppose that A is an interval and E ⊂ R. We cover E with open
intervals I1, I2, ..... We want to check that the Caratheodory condition
is satisfied. Observe that A∩ Ik is an interval and Ac∩ Ik is an interval
or the union of two intervals. So there is an open interval J1k such that
A ∩ Ik ⊂ J1k and open intervals J2k, J3k such that Ac ∩ Ik ⊂ J1k ∪ J2k
and

l(J1k) + l(J2k) + l(J3k) ≤ l(Ik).

Therefore A ∩ E ⊂ ∪kJ1k and A ∩ Ac ∪k (J2k ∪ J3k). We now have

m∗(E) ≥
∞∑

k=1

l(Ik)

≥
∞∑

k=1

(l(J1k) + l(J2k) + l(J3k))

≥ m∗(A ∩ E) +m∗(Ac ∩ E).
Since the opposite inequality holds, A is measurable.
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Problem sheet three solutions.

Question 1.
We observe that A1 ∪ A2 = (A1 − (A1 ∩ A2)) ∪ A2 and these are

disjoint. So

m(A1 ∪ A2) = m(A1 − (A1 ∩A2)) +m(A2).

Next A1 = (A1 − (A1 ∩A2)) ∪ (A1 ∩ A2). So

m((A1 − (A1 ∩ A2)) = m(A1)−m(A1 ∩ A2).

Combining gives

m(A1 ∪ A2) = m(A1)−m(A1 ∩ A2) +m(A2).

Rearranging gives

m(A1 ∪ A2) +m(A1 ∩ A2) = m(A1) +m(A2).

Question 2
We only need to check countable additivity since the other properties

hold by construction. So let {An} be a pairwise disjoint sequence of
subsets of X . Let = ∪∞

n=1An. If some An is uncountable, then A is also
uncountable, so trivially we have

µ(A) =
∞∑

n=1

µ(An) = ∞.

If however, each An is countable, then A is countable and hence

µ(A) =
∑

x∈A
f(x) =

∞∑

n=1

[∑

x∈An

f(x)

]
=

∞∑

n=1

µ(An)

and countable additivity holds.

Question 3
The length of all the subintervals removed to form the Cantor set

is 1/3 + 2/9 + 4/27 + · · · = 1. So the Cantor set has outer measure
zero. It is thus measurable and has measure zero. To prove that C
is uncountable, we let x = 0.b1b2b3 · · · be the binary expansion of a
number in [0, 1). Each bn is either a zero or one. Let f(x) = 0.t1t2t3...
where tn = 2bn. This is the ternary expansion of a number. (Expansion
in base 3). Each tn is either 0 or 2, so f(x) is not in [1/3, 2/3), nor
is it in [1/9, 2/9) etc. So f(x) is in the Cantor set for every x. This
shows that the Cantor set is non-empty. As f is one to one and [0, 1)
is uncountable, then C is uncountable, since f : [0, 1) → C.

Question 4. We use the inequality. m (∪∞
i=1Ai) ≤ ∑∞

i=1m(Ai). The
result easily follows from this.



Question 5
We have

m∗(B) ≤ m∗(B ∪ A) = m∗((B −A) ∪A)
≤ m∗(B − A) +m∗(A)

= m∗(B − A) ≤ m∗(B).

So m∗(B) = m∗(B − A) = m∗(B ∪ A).
Question 6

Suppose that
∑∞

n=1m
∗(An) <∞. This is only possible if
∞∑

i=n

m∗(Ai) → 0 (∗)

as n → ∞. Now let En = ∪n
i=1Ai. Then E ⊆ En for all n. We then

have the inequality

0 ≤ m∗(E) ≤ m∗(En) ≤
∞∑

n=1

m∗(An).

By (*) it follows that m∗(E) = 0.

Question 7
If A is not measurable then χ−1

A ({1}) = A is not measurable, so χA

is not measurable. Conversely, if A is measurable, then

{χA > a} =





A 0 < a < 1

R a ≤ 0

∅ a ≥ 1.

These sets are measurable, so χA is measurable.

Question 8
Since f is continuous, it follows that f−1(A) is open, whenever A is

open. Now (f ◦ g)−1(A) = g−1(f−1(A)). So if A is open, B = f−1(A)
is open, and hence g−1(B) is measurable because B is open and g is a
measurable function. Thus f ◦ g is measurable. It is worth noting that
the converse of this result is false.

Question 9
We know that if fn → f pointwise and each fn is measurable, then

f is measurable. Now

f ′(x) = lim
n→∞

f(x+ 1/n)− f(x)

1/n
.

Since f(x+1/n)−f(x)
1/n

is measurable, then f ′ is measurable.
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Problem sheet four solutions.

Question 1.
Suppose that fn → f uniformly on X ⊆ R. Then given ǫ > 0 we

can find an N ∈ N such that for n ≥ N

sup
x∈X

|fn(x)− f(x)| < ǫ.

Then for n ≥ N

m[{x : |fn(x)− f(x)| ≥ ǫ}] = 0.

Thus fn → f in measure.

Question 2
This is an exercise in comparing the measure of sets.

(i) Suppose that a, b are nonzero and fn → f and gn → g in
measure. The case a = b = 0 is trivial. If for all ǫ > 0,
m[{x : |fn(x)− f(x)| ≥ ǫ}] → 0 as n→ ∞, then

m[{x : |a||fn(x)− f(x)| ≥ ǫ}] = m[{x : |fn(x)− f(x)| ≥ ǫ/|a|}] → 0.

So afn → af in measure.
Now by the triangle inequality

|afn(x) + bgn(x)− af(x)− bg(x)| ≤ |a||fn(x)− f(x)|
+ |b||gn(x)− g(x)|.

Thus if

x ∈ An = {x : |afn(x) + bgn(x)− af(x)− bg(x)| ≥ ǫ},
then certainly

x ∈ Bn = {x : |a||fn(x)− f(x)|+ |b||gn(x)− g(x)| ≥ ǫ}.
So An ⊆ Bn and m(An) ≤ m(Bn). Now

Bn ⊆ {x : |a||fn(x)− f(x)| ≥ ǫ/2} ∪ {x : |b||gn(x)− g(x)| ≥ ǫ/2}
So it follows that

m(An) ≤ m(Bn) ≤ m[{x : |a||fn(x)− f(x)| ≥ ǫ/2}]
+m[{x : |b||gn(x)− g(x)| ≥ ǫ/2}] → 0.

Hence afn + bgn → af + bg in measure.

(ii) We have ||fn| − |f || ≤ |fn − f |. So that if ||fn(x)| − |f(x)|| ≥ ǫ,
then |fn(x)− f(x)| ≥ ǫ. Thus

m[{x : ||fn(x)| − |f(x)|| ≥ ǫ}] ≤ m[{x : |fn(x)− f(x)| ≥ ǫ}].
so if fn → f in measure, then |fn| → |f | in measure.



(iii) First we show that if fn → f in measure on a set X then there
is a subsequence {fnk

} which converges to f a.e. It is easy to
see that given n > 0 we can find a kn such that

m[{x ∈ X : |fk(x)− f(x)| ≥ 1/n}] < 2−n

for all k > kn. Set En = {x ∈ X : |fkn(x) − f(x)| ≥ 1/n} for
each n. Let E = ∩∞

n=1 ∪∞
k=1 Ek. Then

m(E) ≤ m (∪∞
k=n) ≤

∞∑

k=n

m(Ek) ≤ 21−n.

This holds for all n so m(E) = 0. In addition, if x 6∈ E, then
there is an n such that x 6∈ ∩∞

k=nEk, so |fkn(x) − f(x)| ≤ 1/m
holds for each m ≥ n. Therefore fkn(x) → f(x) for each x ∈ Ec,
so fkn converges to f a.e. From this it follows that there is a
subsequence fkngkn of fngn which converges a.e. to fg.

Now we show that if fn → f a.e. onX , withm(X) <∞, then
fn → f in measure. To this end let ǫ > 0 and set En = {x ∈
X : |fn(x)−f(x)| ≥ ǫ}. Since m(X) <∞ we can use Eogoroff’s
Theorem and given δ > 0 there exists a measurable set A such
that m(A) < δ and fn → f uniformly to f on Ac. So fn → f in
measure on Ac. Now choose k such that |fn(x)−f(x)| < ǫ holds
for all x ∈ Ac and all n ≥ k. Then En ⊆ A holds for all n ≥ k.
So m(En) ≤ m(A) < δ for all n ≥ k. So limn→∞m(En) = 0.
And the proof is finished.

Consequently, fkngkn converges to fg in measure.
To finish the proof suppose that fngn does not converge in

measure to fg. Then given ǫ > 0 we can find δ > 0 such that
for all n.

m[{x : |fn(x)gn(x)− f(x)g(x)| ≥ ǫ}] ≥ δ

But we know that the subsequence fkngkn converges in measure
to fg. This is a contradiction. So fngn to fg in measure. Note
this result is only true if m(X) <∞. If m(X) = ∞, then there
are sequences of functions for which the result is false.

(iv) The proof of this is now trivial. We simply apply the result of
(iv) with gn = g all n.

Question 3
We have

∫
E
f =

∫
fχE. Now suppose that k ≤ f ≤ K. Then
∫

|fχE| ≤ K

∫
χE = Km(E).

Similarly for the other inequality.

Question 4



If f > 0 then there exists δ > 0 such that for all x we have f(x) > δ..
Now

∫
E
f = 0 and

∫
E
f ≥ δm(E) by the previous question. So we have

0 =

∫

E

f ≥ δm(E).

Hence m(E) = 0.

Question 5
To show that

∫∞
0

sin x2dx does not exist as a Lebesgue integral, we
use the substitution y = x2 to obtain

∫ ∞

0

sin x2dx =
1

2

∫ ∞

0

sin y√
y
dy

Now y−1/2 is integrable near zero, so we are concerned with what hap-
pens as the upper limit of integration increases to infinity. Recall that
the Lebesgue integral of f only exists if

∫
|f | <∞. So we note that

∫ ∞

0

| sin y|√
y
dy >

∫ ∞

π

| sin y|√
y
dy

=
∞∑

k=2

∫ kπ

(k−1)π

| sin y|√
y
dy

≥
∞∑

k=2

π√
kπ

= ∞.

So the Lebesgue integral diverges.
Now we evaluate the improper Riemann integral. To do this we

notice that∫ ∞

0

∫ r

0

e−xy2 sin xdxdy =

∫ r

0

∫ ∞

0

e−xy2 sin xdydx

and
∫ ∞

0

e−xy2 sin xdy =

√
π sin x

2
√
x

.

Now integration by parts gives
∫ r

0

e−xy2 sin xdx =
1− e−ry2(cos r + y2 sin r)

1 + y4
.

So
∫ r

0

sin x

2
√
x
dx =

1√
π

∫ r

0

1− e−ry2(cos r + y2 sin r)

1 + y4
dy,

Hence

lim
r→∞

∫ r

0

sin x

2
√
x
dx =

1√
π

∫ ∞

0

dy

1 + y4
.



Now 1+ y4 = (1+
√
2y+ y2)(1−

√
2y+ y2). Partial fractions now gives

1

1 + y4
=

√
2− y

2
√
2
(
y2 −

√
2y + 1

) + y +
√
2

2
√
2
(
y2 +

√
2y + 1

) .

So that
∫

dy

1 + y4
=

1

4
√
2

[
ln

(
1 +

√
2y + y2

1−
√
2y + y2

)
+ 2 tan−1

√
2y

1− y2

]
.

The Fundamental Theorem of Calculus then gives
∫ ∞

0

dy

1 + y4
=

√
π

2
√
2
.

Which gives the improper Riemann integral

∫ ∞

0

sin(x2)dx =

√
π

2
√
2
.

Question 6
We know that f : [0, 1] → R, f ′(0) exists and f(0) = 0. So by

continuity and differentiability there exists M > 0 and 0 < δ < 1 such
that for 0 ≤ x ≤ δ |f(x)| ≤Mx. Since for 0 ≤ x ≤ 1, we have x−3/2 ≤
δ−3/2. We may assume that M > δ−3/2. Now g(x) = x−3/2f(x). So

|g(x)| = |x−3/2f(x)|

≤M

{
x−1/2, 0 < x < δ

|f(x)|, δ ≤ x ≤ 1

Now h(x) = x−1/2 is Lebesgue integrable on [0, δ] and we have
∫ 1

0

|g| =
∫ δ

0

|g|+
∫ 1

δ

|g|

≤ M

∫ δ

0

h+M

∫ 1

δ

f <∞.

So g is Lebesgue integrable.
Question 7. Recall that if A,B are disjoint, then

∫
A∪B h =

∫
A
h+

∫
B
h.

Let A = [0, 1]−Q and B = [0, 1] ∩Q. Obviously [0, 1] = A ∪B and A
and B are disjoint. Further, λ(B) = 0, where λ is Lebesgue measure.
Let f(x) = x3 + 5x and g(x) = 2x2. Set h(x) = f(x) for x ∈ A and

h(x) = g(x) for x ∈ B. Therefore
∫ 1

0
h(x)dx =

∫
A
f+
∫
B
g =

∫
A
f , since

the integral over B is zero. Now
∫ 1

0

f(x)dx =

∫

A

f +

∫

B

f. (0.6)



But again
∫
B
f = 0. So
∫ 1

0

h(x)dx =

∫

A

f =

∫ 1

0

(x3 + 5x)dx =
11

4
. (0.7)
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Problem sheet five solutions.

Question 1.
Define ϕ(x) = ϕ(b) if x > b and ϕ(x) = ϕ(a) if x < a. Since

ϕ(x+ h)− ϕ(x)

h
≥ 0,

and
ϕ(x+ h)− ϕ(x)

h
→ ϕ′(x),

as h→ 0, then Fatou’s Lemma gives the inequality
∫ b

a

ϕ′(x)dx ≤ lim
h→0

∫ b

a

ϕ(x+ h)− ϕ(x)

h
dx.

Now
∫ b

a

ϕ(x+ h)− ϕ(x)

h
dx =

1

h

∫ b

a

ϕ(x+ h)dx− 1

h

∫ b

a

ϕ(x)dx

=
1

h

∫ b+h

a+h

ϕ(x)dx− 1

h

(∫ a+h

a

+

∫ b

a+h

)
ϕ(x)dx

=
1

h

(∫ b

a+h

+

∫ b+h

b

−
∫ a+h

a

+

∫ b

a+h

)
ϕ(x)dx

=
1

h

∫ b+h

b

ϕ(x)dx− 1

h

∫ a+h

a

ϕ(x)dx

→ ϕ(b)− ϕ(a)

by the Fundamental Theorem of Calculus. Hence
∫ b

a

ϕ′(x)dx ≤ lim
h→0

∫ b

a

ϕ(x+ h)− ϕ(x)

h
dx

= ϕ(b)− ϕ(a).

Question 2.
We know that (1 + x

n
)n → ex as n→ ∞. So that

(1 +
x

n
)ne−2x → e−x.

We want to show that (1+ x
n
)ne−2x ≤ e−x. This is equivalent to showing

that (1 + x
n
)n ≤ ex. Since the logarithm is increasing we want

n ln(1 +
x

n
) ≤ x, (0.8)

which is true at x = 0. Now if h(x) = n ln(1 + x
n
)− x, then

h′(x) =
n

n+ x
− 1 < 0, x > 0



so h is decreasing. Hence (??) holds and (1+ x
n
)n ≤ ex. Now g(x) = e−x

is integrable, so by the Dominated Convergence Theorem

lim
n→∞

∫ ∞

0

(1 +
x

n
)ne−2xdx =

∫ ∞

0

e−xdx = 1.

Question 3
If t = 0 we have the improper Riemann integral

∫∞
0

sinx
x
dx = π

2
. Now

let

F (t) =

∫ ∞

0

e−xt sin x

x
dx.

Then | sinx
x
| ≤ 1 and so

∣∣e−xt sinx
x

∣∣ ≤ e−xt. Since e−xt is integrable,

we may apply the dominated convergence series, and d
dt

(
e−xt sinx

x

)
=

−e−xt sin x is integrable, so we differentiate under the integral sign to
obtain

F ′(t) = −
∫ ∞

0

e−xt sin xdx

= − 1

1 + t2
.

Integrating with respect to t gives

F (t) = C − tan−1 t.

The DCT gives limt→∞ F (t) = C − π/2 = 0 and so

F (t) =
π

2
− tan−1 t.

Question 4.
We only do one. The second is similar. Integration by parts gives

∫ π

−π

f(x) sin(nx)dx =

[
−f(x)cos(nx)

n

]π

−π

+
1

n

∫ π

−π

f ′(x)
cos(nx)

n
dx

By continuity we have the inequality
∣∣∣∣
∫ π

−π

f(x) sin(nx)dx

∣∣∣∣ ≤ C/n

for some constant C depending on f . Taking limits as n → ∞ gives
the result.

Question 5.
Assume that I =

∫∞
a
f(x)dx exists. Choose M > 0 such that
∣∣∣∣I −

∫ r

a

f(x)dx

∣∣∣∣ <
ǫ

2



holds for all r ≥M. If s, t ≥M then∣∣∣∣
∫ t

s

f(x)dx

∣∣∣∣ =
∣∣∣∣
∫ t

a

f(x)dx−
∫ s

a

f(x)dx

∣∣∣∣

≤
∣∣∣∣I −

∫ t

a

f(x)dx

∣∣∣∣+
∣∣∣∣I −

∫ s

a

f(x)dx

∣∣∣∣
< ǫ.

Conversely, assume that the condition is satisfied. If {an} is a se-
quence in [,∞) such that an → ∞ , then

{∫ an
a
f(x)dx

}∞
n=1

is a Cauchy

sequence. Thus A = limn→∞
∫ an
a
f(x)dx exists. Now let {bn}∞n=1 be an-

other sequence in [a,∞) with bn → ∞. Then letB = limn→∞
∫ bn
a
f(x)dx.

Now

|A− B| ≤
∣∣∣∣A−

∫ an

a

f(x)dx

∣∣∣∣+
∣∣∣∣
∫ bn

an

f(x)dx

∣∣∣∣+
∣∣∣∣B −

∫ bn

a

f(x)dx

∣∣∣∣
→ 0.

as n→ ∞. So A = B. Hence
∫∞
a
f(x)dx exists.

Question 7
The function

f(x) =





1 x = 0(
sinx
x

)2
0 < x ≤ 1

1
x2 , x > 1,

is Lebesgue integrable over [0,∞). Now 0 ≤
(
sinx
x

)2 ≤ f(x) , so
(
sinx
x

)2
is Lebesgue integrable on [0,∞). Now for each r, ǫ > 0 we have

∫ r

ǫ

(
sin x

x

)2

dx =
sin2 ǫ

ǫ
− sin2 r

r
+

∫ r

ǫ

2 sin x cosx

x
dx.

The limit as ǫ→ 0 and r → ∞ on the left side exists, since the function
is Lebesgue integrable. Now

∫ r

ǫ

2 sin x cosx

x
dx =

∫ 2r

2ǫ

sin x

x
dx,

since 2 sin x cosx = sin(2x). Taking limits we see that the Lebesgue
integral is equal to the improper Riemann integral obtained by taking
limits on the right. That is

L

∫ ∞

0

(
sin x

x

)2

dx = IR

∫ ∞

0

sin x

x
dx =

π

2
.

Question 8.
Let f : R → R be differentiable and such that for some M > 0

we have |f ′(x)| ≤ M for all x ∈ [a, b]. This is reasonable since f is
continuous and continuous functions are bounded. Now for x < a
we can set f(x) = f(x) + f ′(a)(x − a) and for x > b we set f(x) =



f(b)+f ′(b)(x−b) and so we can extend f to be a differentiable function
on R.

Next we consider the sequence

fn(x) = n[f(x+ 1/n)− f(x)] =
f(x+ 1/n)− f(x)

1/n
.

Then fn(x) → f ′(x) for each x ∈ R. By the Mean Value Theorem
|fn(x)| ≤ |f ′(x)| ≤ M . Consequently by the DCT, f ′ is Lebesgue
integrable over [a, b] and

∫ b

a

f ′(x)dx = lim
n→∞

∫ b

a

fn(x)dx.

Now

∫ b

a

fn(x)dx = n

[∫ b

a

f(x+ 1/n)dx−
∫ b

a

f(x)dx

]

= n

[∫ b+1/n

a+1/n

f(x)dx−
∫ b

a

f(x)dx

]

= n

[∫ b+1/n

b

f(x)dx−
∫ a+1/n

a

f(x)dx

]

=

∫ b+1/n

b
f(x)dx

1/n
−
∫ a+1/n

a
f(x)dx

1/n

→ f(b)− f(a),

by the Fundamental Theorem of Calculus, since the limits return the
derivatives of the integrals. That is, if F (x) =

∫ x

x0
f(x)dx, then

F
(
b+ 1

n

)
− F (b)

1
n

=

∫ b+ 1
n

b
f(x)dx
1
n

→ F ′(b) = f(b),

as n→ ∞. Similarly for the second integral.

Question 9.

Obviously f(x) =
ln x

x2
≥ 0 holds for each x ≥ 1. If r > 1 then

integration by parts gives

∫ r

1

ln x

x2
dx = − ln x

x

∣∣∣∣
r

1

+

∫ r

1

dx

x2

= 1− 1

r
− ln r

r
.

So ∫ ∞

1

f(x)dx = lim
r→∞

(
1− 1

r
− ln r

r

)
= 1.



Question 10
Fix a > 0 and define fn(x) = f(nx). Clearly limn→∞ fn(x) = δ for all

x ∈ [0, a]. Since f is continuous the sequence {fn(x)}∞n=1 is bounded. As
f → δ, there is anM > 0 such that for x > M |f(x)| < 1+ |δ|. That is,
|f(x)| is eventually smaller than 1+ |δ|. By continuity f is bounded on
[0,M ]. So f is bounded on [0,M ] and [M,∞). Thus there is a constant
C such that |f(x)| ≤ C for all x. Hence |fn(x)| = |f(nx)| ≤ C and so
by the DCT

lim
n→∞

∫ a

0

f(nx)dx = lim
n→∞

∫ a

0

fn(x)dx =

∫ a

0

δdx = aδ.
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Problem sheet six solutions.

Question 1.
We will actually give a more general result, due to Frullani. Let f be

differentiable and suppose we can differentiate under the integral sign.
Further suppose that limx→∞ f(x) = 0. Let

F (a, b) =

∫ ∞

0

f(ax)− f(bx)

x
dx

and suppose that the integral exists. Then

∂F

∂a
=

∫ ∞

0

f ′(ax)dx.

Put ax = t so that ∂F
∂a

= 1/a
∫∞
0
f ′(t)dt = −f(0)/a. Integration with

respect to a gives
F (a) = −f(0) ln a+ C(b).

Likewise differentiation of F with respect to b gives

∂F

∂b
=

1

b
f(0) = C ′(b).

This gives F (a, b) = f(0) ln(b/a) + K, where K is a constant. Now
a = b implies F = 0, so that K = 0. Hence

F (a, b) = f(0) ln(b/a).

Taking f(x) = e−x gives the result of the question on the sheet. It is
possible to give precise technical conditions on f needed to make this
work, but we will not do so here.

Question 2. For each p ≥ 0, define

k(x) =
xp − 1

ln x
, x ∈ (0, 1).

Notice that limx→1 k(x) = p and limx→0+ k(x) = 0. So we can define
k(1) = p and k(0) = 0 and the resulting function is continuous and

hence integrable on [0, 1]. Let F (p) =

∫ 1

0

xp − 1

ln x
dx. Clearly F (p) exists

for all p ≥ 0. We want F (1).

Now xp = ep lnx so that
d

dp
xp = xp ln x. Hence d

dp
xp−1
lnx

= xp which is

integrable. Observe that k is continuously differentiable on [0, 1]. So
for h suitably small so by Taylor’s Theorem we have

xp+h − xp

h lnx
= xp + L(x, h),

where L(x, h) → 0 as h→ 0, for each x. L must be integrable for p > 0
(why?) and so xp + L(x, h) is integrable on [0, 1]. Thus we may apply
the dominated convergence theorem and deduce that



lim
h→0

F (p+ h)− F (p)

h
= lim

h→0

∫ 1

0

xp+h − xp

h ln x
dx

= lim
h→0

∫ 1

0

xp
xh − 1

h ln x
dx

=

∫ 1

0

lim
h→0

xp
xh − 1

h ln x
dx

=

∫ 1

0

xpdx.

Thus

F ′(p) =
1

p+ 1
.

So F (p) = ln(p + 1) +K. Taking p = 0 gives F (0) = 0 = ln 1 +K. So
K = 0. Hence F (1) = ln 2.

Question 3. Differentiation under the integral sign is easy to establish
here because of the rapid decay of the integrand.

So let α, β > 0. If we put y = αx, p = αβ, then
∫ ∞

0

e−α2x2−β2/x2

dx =
1

α

∫ ∞

0

e−y2−p2/y2dy.

Let

J(p) =

∫ ∞

0

e−y2−p2/y2dy

so that

J ′(p) = −2

∫ ∞

0

p

y2
e−y2−p2/y2dy.

We put z = p/y, so that dz = −p/y2 and

J ′(p) = −2

∫ ∞

0

e−z2−p2/z2dz = −2J(p).

Solving the ODE gives J(p) = J(0)e−2p. But J(0) =
∫∞
0
e−y2dy = 1

2

√
π.

So we have shown that∫ ∞

0

e−α2x2−β2/x2

dx =

√
π

2α
e−2p.

Question 4.

Let ρ(x, y) =
d(x, y)

1 + d(x, y)
. It is obvious that ρ(x, x) = 0, ρ(x, y) > 0

and ρ(x, y) = ρ(y, x) as d is a metric. For the triangle inequality we
use the fact that if 0 ≤ x ≤ y, we have

x

1 + x
≤ y

1 + y
,



which follows from the fact that f(x) = x/(1+x) is increasing on [0,∞)
since f ′(x) = 1/(1 + x)2 > 0. We will show that

x+ y

1 + x+ y
≤ x

1 + x
+

y

1 + y
, x, y > 0.

We have

(x+ y)(1 + x)(1 + y) = x(1 + x)(1 + y) + y(1 + x)(1 + y)

≤ x(1 + x)(1 + y) + xy(1 + y) + (x+ 1)y(1 + y)

+ xy(1 + x)

= x(1 + y)(1 + x+ y) + y(1 + x)(1 + x+ y)

Now divide through both sides by (1 + x)(1 + y)(1 + x + y). We can
therefore conclude that

ρ(x, y) =
d(x, y)

1 + d(x, y)
≤ d(x, z) + d(z, y)

1 + d(x, z) + d(z, y)

≤ d(x, z)

1 + d(x, z)
+

d(y, z)

1 + d(z, y)

= ρ(x, z) + ρ(z, y).

Question 5.
Suppose that α ≥ β ≥ 0. We know that ‖x + y‖ = ‖x‖ + ‖y‖ for

some x, y. Now

‖αx+ βy‖ ≤ |α|‖x‖+ |β|‖y‖ = α‖x‖+ β‖y‖
as α, β > 0. For the reverse inequality we observe that

‖αx+ βy‖ = ‖α(x+ y) + (β − α)y‖
≥ ‖α(x+ y)‖ − ‖(β − α)y‖
= α‖x+ y‖ − (α− β)‖y‖
= α(‖x‖+ ‖y‖)− α‖y‖+ β‖y‖
= α‖x‖+ β‖y‖.

So we conclude that ‖αx+ βy‖ = α‖x‖+ β‖y‖.
Question 6.

Given a metric d we would seek to define a norm by setting d(x, 0) =
‖x‖. This does not in general give a norm. To see why let d be defined
by d(x, x) = 0 and d(x, y) = 1. Then d(λx, 0) = 1 6= |λ|d(x, 0). So
‖λx‖ 6= |λ|‖x‖. Thus this metric does not define a norm.

Question 7.
Let f : X → R. Set ‖f‖∞ = inf{M : |f(x)| ≤M, almost all x}.
(i) If f = g a.e. then |f(x)| ≤ M a.e. implies |g(x)| ≤ M a.e. So

‖f‖∞ = ‖g‖∞.



(ii) This is obvious.

(iii) If |f(x)| ≤M then |af(x)| ≤ aM. So |af(x)| = |a||f(x)|.

(iv) If |f(x)| ≤M1 a.e. and |g(x)| ≤M2 a.e. then

|f(x) + g(x)| ≤M1 +M2 a.e.

So that ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞.

(v) It is clear that if |f(x)| ≤ |g(x)| then if |g(x)| ≤ M a.e then
|f(x)| ≤M a.e. so that ‖f‖∞ ≤ ‖g‖∞.

Question 8.
All finite dimensional vector spaces are isomorphic to Rn, so that

without loss of generality we can prove the result on Rn. Let ‖ · ‖2
denote the usual Euclidean norm given by ‖x‖2 =

√
x21 + · · ·+ x2n. If

‖ · ‖ is another norm on Rn we prove that this is equivalent to the
Euclidean norm. If all norms are equivalent ‖ · ‖2 then we are done.

Let e1, ..., en be the standard basis for Rn and let x =
∑n

k=1 xkek.
Then the triangle inequality gives

‖x‖ =

∥∥∥∥∥
n∑

k=1

xkek

∥∥∥∥∥ ≤
n∑

k=1

|xk|‖ek‖

≤
(

n∑

k=1

‖ek‖
)
‖x‖2 =M‖x‖2.

The last step essentially following from Cauchy-Schwartz. So with
M =

∑n
k=1 ‖ek‖ we have ‖x‖ ≤ M‖x‖2 holds for all x ∈ Rn. This is

the first part.
Now |‖x‖ − ‖y‖| ≤ ‖x − y‖ ≤ M‖x − y‖2, so the map x → ‖x‖ is

a continuous function on Rn. Since continuous functions attain their
maximum values on compact sets, we let x0 be the point on the unit
sphere Sn−1 = {x ∈ Rn : ‖x‖2 = 1} where ‖x‖ has its maximum. So
‖x‖ ≥ ‖x0‖ all x ∈ Sn−1.

Let K = ‖x0‖. Now ‖x0‖2 = 1, so x0 6= 0 and hence K = ‖x0‖ > 0.

Now if x ∈ Rn is nonzero, then

∥∥∥∥
x

‖x‖2

∥∥∥∥ ≥ K. Hence

K‖x‖2 ≤ ‖x‖
as required. So all norms on Rn are equivalent to the Euclidean norm
and hence each other. Since there is a one to one correspondence be-
tween finite dimensional vector spaces, the result holds for an arbitrary
finite dimensional vector space.

Question 9.



Since ‖ · ‖∞ is a norm, then clearly

‖f + g‖ = |f(0) + g(0)|+ ‖f ′ + g′‖∞ ≤ |f(0)|+ ‖f ′‖∞ + |g(0)|+ ‖g′‖∞
so the triangle inequality is satisfied. Similarly, if ‖f‖ = 0, then
|f(0)| = ‖f ′‖∞ = 0. Hence f ′ = 0 so f is constant, but f(0) = 0,
so f = 0. Finally ‖af‖ = |a||f(0)| + |a|‖f ′‖∞ = |a|‖f‖. So this is a
norm.

The Fundamental Theorem of Calculus gives

f(x) = f(0) +

∫ x

0

f ′(t)dt.

So |f(x)| ≤ |f(0)| + ‖f ′‖∞ for each x ∈ [0, 1]. Taking the supremum
gives

‖f‖ ≤ |f(0)|+ ‖f ′‖∞.
Now

‖f‖∞ + ‖f ′‖∞ ≤ |f(0)|+ 2‖f ′‖∞
≤ 2(|f(0)|+ ‖f ′‖∞)

= 2‖f‖A ≤ 2(‖f‖∞ + ‖f ′‖∞).

Question 10.

The operator is given by Tf(x) =

∫ b

a

f(y)K(x, y)dy. So that

|T (f)| ≤
∫ b

a

|f(y)||K(x, y)|dy

≤M sup
a≤x≤b

|f(y)| =M‖f‖∞,

where M = supa≤x≤b

∫ b

a
|K(x, y)|dy, which is finite since K is continu-

ous and hence bounded. So ‖Tf‖∞ ≤M‖f‖∞.
Question 11.

Take fn(x) = xn. Then ‖fn‖∞ = 1 on [0, 1], but

‖Dfn‖∞ = sup{nxn−1; x ∈ [0, 1]} = n

for each n. Thus there is no constant K for which ‖Df‖∞ ≤ K‖f‖∞
for every K. Hence D is unbounded.

Question 12.
We have∫ ∞

−∞
f ′(x)e−ixydx = iy

∫ ∞

−∞
f(x)e−ixydx = iyf̂(y)

where we used integration by parts and assumed that

lim
x→±∞

f(x) = 0.

Question 13.



∫ ∞

−∞
xf(x)e−ixydx = i

d

dy

∫ ∞

−∞
f(x)e−ixydx

= i
d

dy
f̂(y).

Question 14.
Taking the Fourier transform in x in the given DE gives iyû+iûy = 0.

Cancelling the is gives yû + ûy = 0. Thus the Fourier transformed
equation is the same as the original equation. Thus u and û satisfy the
same equation and so by uniqueness of solutions they must be the same
up to a constant. Solving the original equation gives u(x) =

√
2πe−x2/2.

Now the only solution of the equation for û is û(y) = Ce−y2/2. This
must be the Fourier transform of u so that∫ ∞

−∞
e−x2/2−ixydx =

C√
2π
e−y2/2.

This holds for all y, so taking y = 0 gives∫ ∞

−∞
e−x2/2dx =

C√
2π

=
√
2π.

So that C = 2π and∫ ∞

−∞
e−x2/2−ixydx =

√
2πe−y2/2.
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Question 1.
Let x, y be vectors in a real inner product space. If x ⊥ y then

‖x+ y‖2 = (x+ y, x+ y) = (x, x) + (x, y) + (y, x) + (y, y)

= (x, x) + (y, y) = ‖x‖2 + ‖y‖2.
Conversely suppose that ‖x+ y‖2 = ‖x‖2 + ‖y‖2, then since the vector
space is real, (x, y) = (y, x) and

‖x+ y‖2 = (x+ y, x+ y) = (x, x) + (x, y) + (y, x) + (y, y)

= ‖x‖2 + 2(x, y) + ‖y‖2

so that (x, y) = 0.
This is false in a complex inner product space. Take x 6= 0 and

y = ix. Then (y, y) = ‖y‖2 = īi(x, x) = ‖x‖2 and (x, y) 6= 0. But

‖x+ y‖2 = (x+ ix, x+ ix)

= (x, x) + (x, ix) + (ix, x) + (ix, ix)

= ‖x‖2 − i(x, x) + i(x, x) + ‖x‖2 = 2‖x‖2.

Question 2.
We know (xx, x) → ‖x‖2 and ‖xn‖2 → ‖x‖2. So that (x, xn) =

(xn, x) → ‖x‖2 = ‖x‖2. Then
‖xn − x‖2 = (xn − x, xn − x)

= ‖xn‖2 − (xn, x)− (xn, x) + ‖x‖2

→ ‖x‖2 − 2‖x‖2 + ‖x‖2 = 0.

Hence ‖xn − x‖ → 0 so that xn → x.

Question 3.
For (i) we note that {xn} is convergent if ‖xn − x‖ → 0. That is

(xn − x, xn − x) → 0. By the Cauchy-Schwartz inequality

|(xn, y)− (x, y)| = |(xn − x, y)| ≤ ‖xn − x‖‖y‖ → 0.

For part (ii) observe that if xn → x and xn → z weakly, then (x, y) =
(z, y) for all y ∈ H. Thus (x− z, y) = 0 for all y ∈ H. Take y = x− z.
We have (x− z, x− z) = ‖x− z‖2 = 0. Which implies that x = z since
‖w‖ = 0 only when w = 0.

For part (iii) Consider fk(x) = 1√
π
sin(kx) which is in L2([−π, π]).

Let g ∈ L2([−π, π]). Then ĝ(k) = (fk, g), the kth Fourier coefficient of
g. By the Riemann-Lebesgue Lemma (which we have seen in lectures
and will prove later) ĝ(k) → 0 as k → ∞. Thus fk converges weakly to
zero in L2([−π, π]). But fk does not converge in the strong sense.



Question 4.
Just expand both sides. All terms on right cancel except (x, y).

Question 5.

Let f(x) =
1√

1 + x2
. Then f ∈ L2(R), but f 6∈ L1(R). Conversely,

let g(x) =
1√
x
χ[0,1]. Then g ∈ L1(R) but g 6∈ L2(R).

Question 6.
f ∈ L1([a, b]) does not imply that f ∈ L2([a, b]) as the previous

question shows. However if f ∈ L2([a, b]) and a, b are finite, then by
Hölder’s inequality

∫ b

a

|f(x)|dx =

∫ b

a

|1f(x)|dx

≤ ‖1‖2‖f‖2
=
√

(b− a)‖f‖2 <∞.

So f ∈ L1([a, b]).

Question 7.
This is again Hölder’s inequality

∫ ∞

−∞
|f(x)|2dx ≤ ‖f‖p‖f‖q.

Question 8.
Let f ∈ L2([0, 1]) and 0 < β < α. Then f − β ≤ (f − β)χE ≤ fχEβ

.
So by Hölder’s inequality

0 < α− β ≤
∫ 1

0

f(x)dx− β

=

∫ 1

0

(f(x)− β)dx

≤
∫ 1

0

f(x)χEβ
(x)dx

≤ ‖f‖2[m(Eβ)]
1/2 = [m(Eβ)]

1/2.

So m(Eβ) ≥ (α− β)2.

Question 9.



We have

(ψn, ψm) =

∫ b

a

ψn(x)ψm(x)dx

=
2

b− a

∫ b

a

φn

(
2

b− a

(
x− b+ a

2

))
φn

(
2

b− a

(
x− b+ a

2

))
dx

Now let t =
2

b− a

(
x− b+ a

2

)
. Then (ψn, ψm) = δnm.

Question 10
Observe that the set

E = {x ∈ [a, b] : |f(x)| ≥ ǫ} = {x ∈ [a, b] : |f(x)|p ≥ ǫp}.
Now we have ∫ b

a

|f(x)|pdx ≥
∫
χE|f(x)|pdx

≥ ǫp
∫
χEdx

= m∗(E)ǫp.

The result follows.
Question 11

The previous question gives

m∗([x ∈ [a, b] : |fn(x)− f(x)| ≥ ǫ]) ≤ ǫ−p

∫ b

a

|fn(x)− f(x)|pdx.

Clearly if ‖fn − f‖p → 0, then fn → f in measure.
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Question 1.
We assume that f, h ∈ L1(R) and solve

ut = uxx + h(x), x ∈ R, t > 0,

u(x, 0) = f(x),

by taking the Fourier transform in x. This gives the first order ODE

ût + y2û = ĥ(y), where û(y, 0) = f̂(y). Here f̂ is the Fourier transform
of f. This is the same as

d

dt

(
ey

2tû
)
= ey

2tĥ(y),

where we multiplied the equation through by the integrating factor ey
2t.

This gives

û(y, t) = f̂(y)e−y2t +

∫ t

0

e−y2(t−s)ĥ(y)ds.

Taking the inverse Fourier transform gives

u(x, t) =
1

2π

∫ ∞

−∞
f̂(y)e−y2t+iyxdy +

1

2π

∫ ∞

−∞

∫ t

0

e−y2(t−s)+iyxĥ(y)dsdy.

As in the lecture notes

1

2π

∫ ∞

−∞
f̂(y)e−y2t+iyxdy =

∫ ∞

−∞
f(ξ)

1√
4πt

e−
(x−ξ)2

4t dξ.

Similarly

1

2π

∫ ∞

−∞

∫ t

0

e−y2(t−s)+iyxĥ(y)dtdy =

∫ t

0

∫ ∞

−∞

∫ ∞

−∞
h(ξ)e−y2(t−s)+iy(x−ξ)dydξds

=

∫ t

0

∫ ∞

−∞
h(ξ)

1√
4π(t− s)

e−
(x−ξ)2

4(t−s) dξds.

So

u(x, t) =

∫ ∞

−∞
f(ξ)

1√
4πt

e−
(x−ξ)2

4t dξ +

∫ t

0

∫ ∞

−∞
h(ξ)

1√
4π(t− s)

e
− (x−ξ)2

4(t−s) dξds.

Question 2.
To solve uxx + uyy = h(x), take the Fourier transform in x. This

gives ûyy − ξ2û = ĥ(ξ). Solving the ODE using variation of parameters
or undetermined coefficients gives

û(ξ, y) = A(ξ)e−y|ξ| +B(ξ)ey|ξ| − ĥ(ξ)

ξ2



We take B = 0, since we cannot invert the Fourier transform if B is
not zero, the corresponding integral being divergent. Using the initial
data we have

û(ξ, 0) = A(ξ)− ĥ(ξ)

ξ2
= f̂(ξ).

So

u(ξ, y) =

(
f̂(ξ) +

ĥ(ξ)

ξ2

)
e−|ξ|y − ĥ(ξ)

ξ2
.

Inverting this is not at all straightforward. It depends on the be-
haviour of h, especially at ξ = 0. If h does not have sufficient decay
at infinity, as well as the right behaviour at the origin, the inverse
transform will not exist.

This is the starting point for a major theme of Fourier analysis, the
theory of singular integrals. The origin of the problem of singular in-
tegrals lies in solving the Poisson equation ∆u = f on some domain
Ω ⊂ R. The fundamental solution of the Laplace equation for dimen-
sions strictly greater than 2 is K(x) = c‖x‖2−n, where c is a constant
depending on n. This is the Newton potential and notice that it is
singular at the origin. To solve the Poisson equation in principle we
have

u(x) = c

∫

Ω

f(y)

‖(x− y)‖n−2
dy.

But for which functions f does this make sense? This is the basic
problem of the theory of singular integrals. How do we make sense
of integrals where the kernel has a singularity? It is a major area of
research in Fourier analysis.

Question 3.
We take the Fourier transform and use the convolution theorem.

Then û = ĥ + k̂û. This gives

û =
ĥ

1− k̂
.

Given h we will often be able to invert this to obtain the value of u.

Question 4.

(a) We use the Parseval-Plancherel theorem ‖f̂‖22 = 2π‖f‖22. Notice
that

1

1 + x2
=

1

2

∫ ∞

−∞
e−|y|−iyxdy



Consequently
∫ ∞

−∞

dx

(1 + x2)2
= 2π

∫ ∞

−∞

(
1

2
e−|y|

)2

dy

=
π

2
.

(b) Take f(x) = χ[−1,1](x), so that

f̂(y) =

∫ 1

−1

e−iyxdx =
2 sin y

y
.

Hence by Plancherel

4

∫ ∞

−∞

sin2 y

y2
dy = 2π

∫ 1

−1

dx = 4π.

Question 5.
The purpose of this question is to prove a form of the Fourier inver-

sion theorem. The first few parts establish some useful identities.

(a)

hλ(x) =

∫ ∞

−∞
e−λ|y|+iyxdy

=

∫ 0

−∞
eλy+iyxdy +

∫ ∞

0

e−λy+iyxxdy

=
ey(y+ix)

y + ix

∣∣∣∣
0

−∞
+

e−y(λ−ix)

−(λ− ix)

∣∣∣∣
∞

0

=
2λ

λ2 + x2
.

(b)
∫ ∞

−∞
hλ(x)dx = 2 tan−1(x/λ)

∣∣∞
−∞

= 2π.

(c)

hλ(x) =
1

λ

2

1 + (x/λ)2
=

1

λ
h1

(x
λ

)
.



(d)

f ∗ hλ(x) =
∫ ∞

−∞
f(x− y)

∫ ∞

−∞
e−λ|ξ|+iyξdξdy

=

∫ ∞

−∞

∫ ∞

−∞
f(x− y)e−λ|ξ|+iyξdydξ

=

∫ ∞

−∞

∫ ∞

−∞
f(r)e−λ|ξ|+i(x−r)ξdrydξ

=

∫ ∞

−∞
f̂(ξ)e−λ|ξ|+ixξdξ

as required.

(e) We consider

f ∗ hλ(x)− 2πf(x) = f ∗ hλ(x)−
∫ ∞

−∞
hλ(y)f(x)dy

=

∫ ∞

−∞
(f(x− y)− f(x))hλ(y)dy

=

∫ ∞

−∞
(f(x− y)− f(x))

1

λ
h1(y/λ)dy

=

∫ ∞

−∞
(f(x− λz)− f(x)) h1(z)dz.

Now we apply the DCT to obtain

lim
λ→0

(f ∗ hλ(x)− 2πf(x)) = lim
λ→0

∫ ∞

−∞
(f(x− λz)− f(x))h1(z)dz

=

∫ ∞

−∞
lim
λ→0

(f(x− λz)− f(x))h1(z)dz

= 0.

So limλ→0 f ∗ hλ(x) = 2πf(x). Now if f, f̂ ∈ L1(R) then we can
apply the DCT to obtain

f(x) =
1

2π
lim
λ→0

∫ ∞

−∞
f̂(y)eixye−λ|y|dy

=
1

2π

∫ ∞

−∞
lim
λ→0

f̂(y)eixye−λ|y|dy

=
1

2π

∫ ∞

−∞
f̂(y)eiyxdy,

which is the Fourier inversion theorem.

Question 6.



Integration by parts gives
∫ ∞

−∞
f(x)e−iyxdx = −

∫ ∞

−∞

1

y2
f ′′(x)e−iyxdx.

Thus

|f̂(y)| ≤ 1

|y|2‖f
′′‖1.

Now

∫ ∞

−∞
|f̂(y)|dy =

∫ M

−M

|f̂(y)|dy +
∫

|y|>M

|f̂(y)|dy

≤ ‖f̂χ[−M,M ]‖1 + ‖f ′′‖1
∫

|y|>M

1

|y|2dy

= ‖f̂χ[−M,M ]‖1 + ‖f ′′‖1
2

M
<∞.

So f̂ ∈ L1(R).

Question 7.
We define

f̂(k) =
1

2π

∫ π

−π

f(x)e−kxdx,

and

f̂n(k) =
1

2π

∫ π

−π

fn(x)e
−kxdx.

Then

|f̂n(k)− f̂(k)| =
∣∣∣∣
1

2π

∫ π

−π

e−ikx(fn(x)− f(x))dx

∣∣∣∣

≤
∫ π

−π

|fn(x)− f(x)|dx→ 0

as n→ ∞ by the DCT. Since we are on a finite interval then |fn(x)−
f(x)| is bounded by a constant, so swapping limits and integrals is
allowed.

Question 8.
There is a proof of Weierstrass’s Theorem in the notes. We provide

here an alternative proof using Fourier series. Any interval [a, b] can
be mapped to the interval [−π, π] by a linear change of variables, so
it is enough to work on [−π, π] to prove the result. See the notes for
more on this.



Let f ∈ C([−π, π]). Let f̂(n) =
1

2π

∫ π

−π

f(x)e−inxdx. Then define

SNf(x) =
∑N

n=−N f̂(n)e
inx. By Fejer’s Theorem

σMf =
1

M

M−1∑

N=0

SNf → f

uniformly. Thus for ǫ > 0 we can find M ′ large enough so that for
M > M ′

sup
x∈[−π,π]

|σMf(x)− f(x)| < ǫ.

Now σMf =
∑M

n=−M ane
inx for some numbers {an}. Let M be such

that
∣∣∣∣∣f(x)−

M∑

n=−M

ane
inx

∣∣∣∣∣ <
ǫ

2

for all x ∈ [−π, π]. Now eixn =

∞∑

k=0

1

k!
(ixn)k and the convergence is

uniform on any interval [−R,R]. So we can find M(n) such that
∣∣∣∣∣∣

M(n)∑

k=0

(ixn)k

k!
− eikx

∣∣∣∣∣∣
<

ǫ

(1 + 4M(n)|an|)

all |x| ≤ π. Now let P (x) =
M∑

n=−M

an

M(n)∑

k=0

(ixn)k

k!
. Clearly P is a poly-

nomial and by the triangle inequality

|P (x)− f(x)| ≤ sup
x∈[−π,π]

(∣∣∣∣∣P (x)−
M∑

n=−M

ane
inx

∣∣∣∣∣ +
∣∣∣∣∣f(x)−

M∑

n=−M

ane
inx

∣∣∣∣∣

)

<

M∑

n=−M

|an|

∣∣∣∣∣∣

M(n)∑

k=0

(ixn)k

k!
− eikx

∣∣∣∣∣∣
+
ǫ

2

< ǫ
M∑

n=−M

1

4M + 2
+
ǫ

2

=
2Mǫ

4M + 2
+
ǫ

2
< ǫ.

Thus P uniformly approximates f and we are done.

Question 9.



(a) We have

f̂(n) =
1

2π

∫ π

−π

f(x)e−ixndx

= − 1

2π

∫ π

−π

f
(
x+

π

n

)
e−ixndx.

So

f̂(n) =
1

4π

∫ π

−π

(
f(x)− f(x+

π

n
)
)
e−ixndx.

(b) By the previous part

|f̂(n)| ≤ 1

4π

∫ π

−π

|f(x)− f
(
x+

π

n

)
|dx→ 0

as n→ ∞ by the DCT. (Bound the integrand by a constant).

(c) If |f(x+ h)− f(x)| ≤ C|h|α then

|f̂(n)| ≤ 1

4π

∫ π

−π

Cπ

|n|αdx

=
Cπ

2|n|α .

So
f̂(n) = O

(
|n|−α

)
.

Question 10.
To simplify we use the Fourier transform in the form

f̂(y) =

∫ ∞

−∞
f(x)e−2πixydx.

Then the Poisson summation formula takes the form
∞∑

n=−∞
f̂(n) =

∞∑

n=−∞
f(n).

Let f(x) = e−πtx2
. Then f̂(y) = 1√

t
e−πy2/t. So

θ(t) =
∞∑

n=−∞
e−πtn2

=
1√
t

∞∑

n=−∞
e−

πn2

t

=
1√
t
θ

(
1

t

)
.
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Question 1.
It is obvious that µ × ν(∅) = 0. Positivity is also obvious. We need

to establish that the product measure is countably additive. To this
end, let A × B ∈ S × Σ and suppose that An × Bn is a collection of
mutually disjoint sets, such that A × B = ∪∞

n=1An × Bn. We want to
prove that

µ(A)ν(B) =
∞∑

n=1

µ(An)ν(Bn) (∗).

If either A or B has measure zero, then (∗) holds trivially, so we assume
this is not the case.

Using the relation χA×B =
∑∞

n=1 χAn×Bn we have

χA(x)χB(y) =

∞∑

n=1

χAn(x)χBn(y),

for all x, y. Fix y ∈ B and notice that χBn(y) is either 1 or 0, so that
χA(x) =

∑
i∈K χAi

(x), where K = {i ∈ N; y ∈ Bi}. The collection
Ai : i ∈ K is disjoint and so µ(A) =

∑
i∈K µ(Ai) holds. Therefore

µ(A)χB(y) =

∞∑

n=1

µ(An)χBn(y) (∗∗),

for all y ∈ Y. Since a term with µ(An) = 0 does not alter the sum in
(*) or (**), we can assume µ(An) = 0 for all n.

If both A and B have finite measure, then we integrate term by term
and (*) holds. If either A or B has infinite measure, then

∞∑

n=1

µ(An)ν(Bn) = ∞,

and equality holds.

Question 2.
We have

∫ 1

0

∫ 1

0

f(x, y)dxdy =

∫ 1

0

[(
− x

x2 + y2

)]x=1

x=0

dy

= −
∫ 1

0

dy

1 + y2
= − tan−1 y|y=1

y=0 = −π
4
.



Conversely
∫ 1

0

∫ 1

0

f(x, y)dydx =

∫ 1

0

[(
y

x2 + y2

)]y=1

y=0

dx

=

∫ 1

0

dx

1 + x2
= tan−1 x|y=1

y=0 =
π

4
.

This does not contradict Fubini’s Theorem since the integrand is not
integrable. That is the integral of |f(x, y)| is not finite.
Question 3.

Put f =
dλ

dν
, g =

dν

dµ
, so that

λ(A) =

∫

A

fdν =

∫
fχAdν

=

∫
fgχAdµ

=

∫

A

fgdµ µ a.e.

So by the Radon-Nikodym Theorem

dλ

dµ
= fg =

dλ

dν

dν

dµ
.

Question 4.
This is obvious from the previous question.

Question 5.

Let α = µ/σ2 − s. With f(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
we have

∫ ∞

−∞
f(x)e−xsdx =

∫ ∞

−∞

1√
2πσ

exp

(
−(x− µ)2

2σ2

)
e−xsdx

=

∫ ∞

−∞

1√
2πσ

exp

(
− x2

2σ2
+ x(

µ

σ2
− s)− µ2

2σ2

)
dx

=
1√
2πσ

exp

(
−(µ2 − σ4α2)

2σ2

)∫ ∞

−∞
exp

(
−(x− σ2α2)2

2σ2

)
dx

=
1√
2πσ

exp

(
−(µ2 − σ4α2)

2σ2

)∫ ∞

−∞
exp

(
− z2

2σ2

)
dz

=
1√
2πσ

exp

(
−(µ2 − σ4α2)

2σ2

)√
2πσ2

= exp

(
1

2
σ2s2 − µs

)
.

Question 6.



Clearly aE = [a, ax]. It follows that

µ(E) =

∫ x

1

f(t)dt = µ(aE) (0.9)

and

µ(aE) =

∫

aE

fdλ =

∫ ax

a

f(t)dt. (0.10)

Hence the Radon-Nikodym derivative must satisfy
∫ x

1

f(t)dt =

∫ ax

a

f(t)dt. (0.11)

Differentiating both sides gives

d

dx

∫ x

1

f(t)dt =
d

dx

∫ ax

a

f(t)dt. (0.12)

Thus f(x) = af(ax). Taking x = 1 gives f(a) = f(1)
a
. Hence f(x) = c/x

for some constant c.
Question 7.

A linear functional L is continuous at a ∈ X if for every sequence
{an} in X with an → x we have L(an) → L(a). This is equivalent to
saying that if ǫ > 0 then there exists δ > 0 such that ‖a−y‖ < δ implies
|L(a)− L(y)| < ǫ. Let y = a+ h. Then we have |L(a + h)− L(a)| < ǫ
whenever ‖h‖ < δ. But since L is linear, this gives

|L(a+ h)− L(a)| = |L(h)| < ǫ.

Now suppose ‖x−y‖ < δ for any x, y ∈ X. Write y = x+h for some
h ∈ X. Then

|L(x)− L(y)| = |L(x+ h)− L(h)| = |L(h)| < ǫ,

whenever ‖h‖ < δ. Hence L is uniformly continuous.
Question 8.

P
(
limn→∞An

)
= lim

m→∞
P

(⋃

n≥m

An

)

≤ lim
m→∞

∑

n≥m

P (An) = 0,

if
∑∞

n=1 P (An) <∞.

Next P
(
limn→∞An

)
= 1 if and only if

lim
m→∞

P

(⋂

n≥m

Ac
n

)
= P

( ∞⋃

m=1

⋂

n≥m

Ac
n

)

= P
((

limn→∞An

)c)
= 0.



But by countable additivity, for given m ≥ 1 we have

P

( ∞⋂

n=m

Ac
n

)
= lim

N→∞

∞∏

n=m

(1− P (An))

≤ lim
N→∞

exp

(
−

N∑

n=m

P (An)

)
= 0

if
∑∞

n=1 P (An) = ∞. Here we used the inequality 1− t ≤ e−t for t ≥ 0.

Question 9.
Let X, Y be independent random variables. Then

V ar(X + Y ) = E(((X + Y )− E(X + Y ))2)

= E(X + Y )2 − (E(X) + E(Y ))2

= E(X2) + 2E(XY ) + E(Y 2)− (E(X))2

− 2E(X)E(Y )− (E(Y ))2

= E(X2)− (E(X))2 + E(Y 2)− (E(Y ))2

+ 2[E(XY )− E(X)E(Y )]

= V ar(X) + V ar(Y ),

since by independence E(XY ) = E(X)E(Y ). By induction we can
establish the more general result that if Xi, i = 1, ..., n are independent
random variables, then V ar(

∑n
i=1Xi) =

∑n
i=1 V ar(Xi).

Question 10.
Let Sn =

∑n
k=1Xk. Then E(Sn) =

∑n
k=1E(Xk). So that we have

E

(
Sn

n

)
= µ. Thus

E

((
Sn

n
− µ

)2
)

= V ar

(
Sn

n

)

=
1

n2
V ar(Sn)

=
1

n2

n∑

k=1

V ar(Xk)

≤ K

n
→ 0

as n → ∞. Thus E
((

Sn

n
− µ

)2)→ 0 as n → ∞. Hence 1/nSn → µ in

the L2 sense.

Question 11.
The fact that d(X, Y ) = d(Y,X) is obvious. If d(X, Y ) = 0 then

E(|X − Y |) = 0 so X = Y in L1. The triangle inequality follows from



the same inequality for the metric

d(x, y) =
|x− y|

1 + |x− y|
which was established in an earlier tutorial.

Now suppose that Xn → X in the probability measure P . Let ǫ > 0.
Then

d(Xn, X) =

∫

|Xn−X|<ǫ/2

|Xn −X|
1 + |Xn −X|dP +

∫

|Xn−X|>ǫ/2

|Xn −X|
1 + |Xn −X|dP

≤
∫

|Xn−X|<ǫ/2

dP+ ≤
∫

|Xn−X|>ǫ/2

dP

≤ ǫ

2
+ P (|Xn −X| ≥ ǫ/2).

Since we assumed that P (|Xn −X| ≥ ǫ/2) → 0 then d(Xn, X) → 0 as
n→ ∞.

Conversely, let Eǫ,n = {x : |Xn(x) − X(x)| > ǫ} and suppose that
0 < ǫ < 1. Let An = {x : |Xn(x)−X(x)| < 1}. Then write

d(Xn, X) =

∫

An

|Xn −X|
1 + |Xn −X|dP +

∫

Ac
n

|Xn −X|
1 + |Xn −X|dP.

We estimate from below these terms.∫

An

|Xn −X|
1 + |Xn −X|dP ≥

∫

An∩Eǫ,n

|Xn −X|
1 + |Xn −X|dP

≥ 1

2

∫

An∩Eǫ,n

ǫdP

=
ǫ

2
P (An ∩ Eǫ,n),

since
a

1 + a
>
a

2
if a < 1. For the second integral

∫

Ac
n

|Xn −X|
1 + |Xn −X|dP ≥

∫

Ac
n

1

2
dP +

∫

Ac
n∩Eǫ,n

1

2
dP

≥ ǫ

2
P (An ∩ Eǫ,n)

since ǫ < 1. Hence d(Xn, X) ≥ ǫ
2
P (Eǫ,n) → 0 as n → ∞. So Xn

converges to X in the measure P.


