Modern Analysis
Problem sheet one.

sin(nx
y is uniformly convergent on R.

oo

(1) Prove that the series Z

n=1

(2) Let {f,}52, be a sequence of functions on X C R. How may we

use the Weierstrass M test to prove that the sequence converges
uninformly?

n2

(3) Prove Riemann’s Criterion for the existence of the Riemann in-
tegral.

) Prove that if f and g are Riemann mtegrable on [a, b] then
/’u o< ([ o) ([ uwra)
) Prove Theorem 2.2 in the lecture notes.

(6) From the definition of the Riemann-Stieltjes integral, prove that
RS fol xd(x?) = Rfol 22%dx.

(7) Calculate RS [* = L2 (x|z]), RS [! x  2%d(x*) and RS fol cos zd(sin ).

(8) Prove that if f is continuous and monotone increasing, then

RS [ f@)d(f(@) = 570 = F(@)"

(9) Use the Euler-Maclaurin formula to estimate the following quan-
tities for large N.

n=1 n
Noq
i = E — —In N.
(ii) v~ 2.y n

(10) Use the Euler-Maclaurin formula to prove the integral test for
series convergence: If f is a continuous function on R, then
>, f(n) converges if and only if R [ f(z)dz < cc.

(11) Calculate the sums >, k%, and >_)_, k*.

(12) Find lim,,,~ RS fog(l — Z)"d(cos x).



Modern Analysis
Problem sheet two.

(1) Prove Theorem 3.11 in the lecture notes.

(2) Prove that

[e.e]

- $n (1)

k=1

(3) Prove that any countable set is measurable and has measure
Z€ero.

(4) What is the measure of the irrational numbers in [0, 1]?
(5) Prove that if m*(A) = 0 then A is measurable.
(6) Prove Theorem 3.13 in the lecture notes.

(7) Let A C R be a measurable set. For h € R, define
A+ h={x+h|lz e A}
Prove that A + h is measurable and m(A + h) = m(A).

(8) Let E, F' be measurable and assume E C F, with m(F) < oc.
Prove that m(F — E) = m(F) — m(E).

(9) Show that for any two sets A, B with AU B = [0, 1],

m*(A) > 1—m"(B).
(10) Let

A ={z €10,1] : no 5s occur in the decimal expansion of z}.
Find m*(A).

(11) Suppose that A is a bounded set and m*(AN1I) < im*(I) for
every interval . Prove that m*(A) = 0.

(12) (Hard) Prove that intervals are measurable by verifying that
the Caratheodory condition is satisfied.



Problem sheet three.

(1) Show that if A;, As are measurable then
m(Al) -+ m(Ag) = m(A1 U Ag) -+ m(A1 N Az)

(2) Let X be a nonempty set, and let f : X — [0,00) be a func-
tion. Let P(X) be the collection of all subsets of X. Define
p: P(X) = [0,00) by u(A) = .4 f(x) if Ais a nonempty,
countable set, u(A) = oo is A is uncountable and (@) = 0.
Show that p is a measure.

(3) Consider the Cantor set. This is formed by taking the interval
Cy; = [0,1] and removing the middle third (0,1). So Cy =
[0,1/3] U [2/3,1]. Then remove the middle third from each of
these intervals. So C3 = [0,1/9]U[2/9,1/3]U[2/3,5/9]U[8/9, 1].
Continue this process indefinitely. The Cantor set is defined to
be

C=n>,Ch.
Prove that the Cantor set is nonempty, with infinitely many
points and that m(C') = 0. In fact the Cantor set is uncountable.
So it provides an example of an uncountable set of Lebesgue
measure Zzero.

(4) Show that a countable union of sets of measure zero has mea-
sure zero.

(5) If m* is Lebesgue outer measure on R and A is a null set (one
with outer measure zero), then

m*(B) =m*(AUB) =m"(B\ A)
holds for every subset B of R.

(6) Let m* be outer measure on R. If a sequence of subsets {4,,}
of R satisfies )~ m*(A,) < oo, then the set

E={z € X :z € A, for infinitely many n},

is a null set.
(7) Prove that x4 is measurable if and only if A is measurable.

(8) Suppose that f : R — R is continuous and g : R — R is mea-
surable. Prove that the composition f o g is also measurable.

(9) Let f : R — R be a differentiable function. Show that the
derivative f’ is Lebesgue measurable.



Problem sheet four.

(1) Consider a sequence of functions (f,), where each f, : R - R
is measurable. Let f be a measurable function. The sequence
(fn) is said to converge in measure to f if, for any € > 0,

Tim mi{e : [fu(a) = f@)] = &}] = 0.
Prove that if f,, — f uniformly, then (f,) converges in measure

to f.

(2) Let (f.) and (gn) be sequences of almost everywhere real, mea-
surable functions, that converge in measure to f and g respec-
tively. Let a,b be real numbers. Prove the following.

(i) (afn + bg,) converges in measure to af + bg.
(i) (| fn]) converges in measure to |f].

(iii) (fngn) converges in measure to (fg), on X with m(X) <
0.

(iv) (fng) converges in measure to (fg), on X with m(X) < oc.
(3) Prove that if £ < f < K a.e. on a measurable set F, then

km(E) < / f < Km(E).

(4) Let f be an integrable function that is positive everywhere on
a measurable set E. If [ f = 0 prove that m(E) = 0.

(5) Prove that [ sin(2?)dx is not Lebesgue integrable, but exists
as an improper Riemann integral.

(6) Let f :]0,1] — R be Lebesgue integrable. Assume that f is
differentiable at x = 0 and f(0) = 0. Show that the function
defined by g(z) = 272 f(z) for all z € (0,1] and g(0) = 0 is
Lebesgue integrable.

(7) Find the Lebesgue integral over [0, 1] of the function

)+ 52, 2€0,1]-Q
J(@) = {2952, z e 0,1]NQ.



Problem sheet five.

(1) Prove that if p(x) is a continuous nondecreasing function in
[a,b], then /() is Lebesgue integrable and

b
/ J(2)dr < (b) — p(a).

(2) Show that

lim (1 + E)n e dr = 1.
0

n—oo n

(3) Show that for ¢t > 0

oo .
_.sinx T B
e "dr = = —tan"'t.
0 T 2

(4) Prove that if f is continuously differentiable, then
lim f(z)sin(nz)dxr =0
n—oo J_
and i
lim f(z) cos(nz)dx = 0.
(5) Assume that f : [a,00) — R is Riemann integrable on every
closed subinterval of [a, c0). Prove that [ f(x)dx exists as an

improper Riemann integral, if and only if for every € > 0 there
fstf(x)dx’ < e forall s,t > M.

exists an M such that

The previous result is useful because of the following the-
orem which you may assume. Let f : [a,00) — R be Rie-
mann integrable on every closed subinterval of [a,00). Then
f is Lebesgue integrable if and only if the improper Riemann
integral [ |f(z)|dx exists. In this case

L/fdm:R/aoo f(z)dz.

 sin? T
5 de = —.
0 x 2

(Integrate by parts and use the convergence theorems).

(6) Show that




(7) Let f : [a,b] — R be a differentiable function with the left
and right limits of the derivatives defined at the end points. If
the derivative f’ is bounded on [a, b], prove that f’ is Lebesgue
integrable and

f'dm = f(b) — f(a).

[a,b]

(8) Show that f(z) = % is Lebesgue integrable over [1,00) and
that [ fdm = 1.

(9) Let f:[0,00) — R be a continuous function such that
lim, , f(z) = 6. Show that

a

lim f(nx)dx = ad

n—o0 0

for each a > 0.



37438 Problem sheet six.

) Calculate / dx.
) Calculate / dx Hint, look at fo “”i L.
) Evaluate / —ate?=p%/a? g,
(4) Show that if d(z,y) is a metric on a space X, then
d(z,y)
plo.y) = 1+d(x,y)

is also a metric on X.

(5) Assume that two vectors z,y € X where X is a normed linear
space satisfy the relation ||z + y|| = ||z|| + |ly||. Show that for
all non negative scalars «, § we have

loz + Byl = allz] + Bllyl-

(6) It is true that every norm defines a metric by d(z,y) = ||z —y||.
Show by example that not every metric defines a norm.

(7) Let f: X — R
|| flleo = inf{M : |f(z)| < M holds for almost all z}.

Prove the following.

(i) If f = g a.e., then [| flloc = [|gloc-

(ii) || f]le > 0 for each function f, and || f||o = 0 if and only if
f=0ae.

(iii) ||laf]] = |a|||f]lco for all scales a.
(V) 1 + glloe < [1flloo + 119l

(v) TE[f] < [g| then [|f]lsc < [|glloe-

(8) Two norms ||z||; and ||z||2 on a vector space X are said to be
equivalent if there exist constants K > 0 and M > 0 such that

Kllzlly < flefly < Mzl

Prove that on a finite dimensional vector space all norms are
equivalent.



(9) Let C[0,1] be the vector space of all real valued functions on
0, 1] with continuous first derivative. Show that || f|| = |f(0)|+
| f'lls is @ norm and that it is equivalent to the norm

1 1La = 1 lloe + 11/ lloo-
Hint: f(z) = f(0) + [; f/(t)dt.
(10) let X, Y be normed linear spaces. An operator 7' : X — Y is
said to be bounded if there exists K > 0 such that
IT(@)lly < Kllz|&.

Consider C|[a, b] with the norm defined in question 4. Let K :
[a,b] x [a,b] — R be a continuous function. Show that

T(f)(x) = / K (2. 9) (y)dy

is a bounded linear operator. i.e There exists M > 0 such that
1T flloc < M||f]loc for all f € Cla,b].

(11) Let D : C'0,1] — C'0,1] be given by Df = f'. Use the
norm of question 4 and show that with respect to this norm,
differentiation is an unbounded linear operator. (Hint. Find an
example of a function whose norm grows with derivatives).

(12) Let f : R — R be n times differentiable and assume that f
is integrable for all n. Prove that

£ () = (iy)" Fy).

(13) Let f : R — R be such that z f(x) is Lebesgue integrable. Prove
that

— d -~

zf(z)(y) = Zd—yf(y)

(14) Solve the differential equation
u'(z) + zu(z) =0, u(0) = V2.
Now take the Fourier transform of this equation and hence show

that
o 22 ) 2
/ e 2e Ydr =V2me 7.

[e.e]



37438 Problem sheet seven.

(1) Show that in a real inner product space (z,y) = 0 holds if and
only if ||z 4+ y||* = ||=[|*> + ||y]|>. Does the same result hold if we
allow the inner product to be complex valued?

(2) Assume that the sequence {z,} in an inner product space sat-
isfies (z,,7) — ||z]|? and ||z,|| — ||z||. Show that z,, — .

(3) A sequence {z,} in a Hilbert space H is said to converge weakly
to xz in H if (x,,y) — (x,y) for all y € H.
(i) Show that if a sequence is convergent it is also weakly con-
vergent.

(ii) Show that if a sequence is weakly convergent, then the limit
is unique.
(iii) Show by an example that a sequence may be weakly con-
vergent, but not convergent.
(4) Let H be a Hilbert space with inner product (-,-) : H x H — C.
Prove that for all x,y € H

(%y%=imm+yW—Hx—MW+%Wx+ww—Hw—WWD-

This is known as the polarisation identity and it used to recover
the inner product from the norm.

(5) Given an example of a function f such that f € L?*(R) but
f & LYR). Then find an example of a function such that
f e LYR), but f & L*(R).

(6) Let [a,b] be a closed, bounded interval. Define the spaces
L*([a,b]) in the obvious way. If f € L'([a,b]) does it follow
that f € L*([a,b])? What about the converse?

(7) Let p > 1, p # 2 and suppose that % + % = 1. Suppose that
f € LP(R) and f € LYR). Prove that f € L*(R).

(8) Let f € L*([0,1]) satisfy || f||lo = 1 and [, f(z)dz > o > 0. For
each f € R, define Eg = {x € [0,1] : f(z) > B} f0< B < a
show that m(Eg) > (8—a)?. (Hint: This uses Holder’s inequal-
ity. Note that f — 38 < (f — B)xe, < fX&s-)

(9) Suppose that {¢,} is an orthonormal set in the Hilbert space
L*([—1,1]). Show that the sequence {¢,} defined by

Vn(T) = (,ﬁa)m% (% (x_ b;a»




is an orthonormal set in L?([a, b]).
(10) Let 1 < p < oo and suppose f € LP([a,b]), where a < b,
a,b € R* and let € > 0. Show that

m*({x € [a,b] : |f(z)| = €}) < 6”/ |f () [Pd.

where m* is Lebesgue outer measure.

(11) Let 1 < p < oo and suppose {f,} is a sequence in LP([a,b]),
where a < b, a,b € R*. Prove that if || f,, — f]|, = 0 as n — o0,
then f,, — f in measure.



37438 Modern Analysis
37438 Problem sheet eight.

(1) Solve the PDE
Uy = Uyy + h(x), heL'R), v€R

subject to the initial condition u(z,0) = f(z) and the assump-
tion that u(z,t), u,(z,t) — 0 as |z| — oo.

(2) Solve the Poisson equation
Uy + Uy, = h(z), heL'(R) ze€R, y>0

subject to the condition u(x,0) = f(x) and the assumption that
u(z,y), us(z,y) = 0 as |z| — oo.

(3) Solve the integral equation

[e.e]

u(x) = hz) + / k(r — y)uly)dy,

—00

where h and k and their Fourier transforms are integrable.

(4) Use Parseval’s identity to evaluate the integrals
(a) 72 iy
(b) [0 02y,

—co  x?

(5) Define the function h, by

hA(x):/ e Al gy

Prove that o)
(a) ha(z) = N1 g2
(b) / h(2)dz = 27

T

1
(©) (@) = T (A) .
The convolution of two functions f and ¢ is defined by
Fra@ = [ 1w -y

(d) Prove that if f is integrable, then for every A > 0

F o ha(a) = / W f(y)eivdy,

[e.9]



(e) Prove that for all f € LY(R), limy o f * hy = 27 f. Deduce
from this the Fourier inversion Theorem. (Hint: Consider

Fahy—2mf).

The function h, is known as an approximation of the identity.

(6) Suppose that f € L'(R) and that both f’ f” exist and are
continuous and integrable. Prove that the Fourier transform

fe LY(R).

(7) Suppose that f, f, € L'([-n,n]) and that f, — f. Prove that
the Fourier coefficients satisfy f, — f.

(8) Prove the Weierstrass approximation theorem: If f € C([—m, 7)),
then, given any € > 0, there is a polynomial p(z) such that
sup | f(2) — p(a)] < e

z€[—m,m]
(Hint: Use a Fourier series).

-~

(9) Let f be 27 periodic and integrable on [—,7]. Let f(n) =
o [T f(z)e " da.

(a) Show that f(n) = —% /ﬂ f (x + %) oI

(b) Use the result of (a) and the DCT to prove that if f is

~

continuous, then f(n) — 0 as n — oo. (Hint: Find an ex-

~

pression for 2f(n)).

(c) Prove that if for all x there isa C' > 0 and 0 < a < 1,

~

such that |f(z+h)— f(x)] < Clh|%, then f(n) = O(1/|n|*).
(10) Let the Theta function be defined by

o) = > e’

Prove that O(t) = %@(%)



37438 Modern Analysis
Problem sheet nine.

(1) Prove that the product measure of two measures p and v is a
measure. That is, prove that (u x v)(A x B) > 0 and

o0

(e X V)(UZ, (A X Bi) = ) (X v)(Ai x By).

=1

(2) Let f(z,y) = (2* — y?)/(2* + y*)?* with f(0,0) = 0. Evaluate

/Ol/olf(x,y)dxdy and /01 /Olf(x,y)dyd:c.

Explain your answer.

(3) If A,  and v are finite measures such that A << v and v << p,
show that

d\  d\dv
dp  dvdp’
(4) Suppose that p and v are finite measures and that y << v and
v << u. Prove that

dudv _
dvdp

(5) Calculate the moment generating function of a normal random
variable.

(6) Let A be Lebesgue measure. Suppose that u(E) = [, fd\ and
that the measure p satisfies p(aF) = p(F) for all a > 0 and
each measurable subset E of (0,00). The aim of this question

is to compute the Radon-Nikodym derivative f.
(i) Let E = [1,z]. What is aE?

(ii) Show that f satisfies [" f(t)dt = [ f(t)dt
(iii) Show that f(z) = ¢/x for some constant c.
(7) Let X be a Banach space. Show that if L is a linear func-

tional on X and L is continuous at a € X, then L is uniformly
continuous on the whole of X.



(8) Let (£2, F, P) be a probability space and let {A,} be a sequence
of subsets of 2. Define
A= U,
m=1n>m
= {w: w € A,for infinitely many n}.

Now suppose that each A, is measurable. Prove the Borel-
Cantelli Lemma:

Y P(A,) < 00 = P(lim, 00 A,) = 0.
n=1

Conversely, if the A,, are P independent sets: P(A, N A,,) =
P(A,)P(A,,); then

> P(A,) = 00 = P(lim,00d,) = 1.
n=1

(9) If X and Y are independent prove that Var(X+Y') = Var(X)+
Var(Y).

(10) If X,, are independent random variables on (€, F, P), with
E(X,) = pun, Var(X,) < K < oo prove the weak law of large
numbers: =3 X — pin L2

(11) Show that if X and Y are random variables on a probability

space, then d(X,Y) = E (%) is a metric and that con-

vergence in d is equivalent to convergence in the probability
measure P.



37438 Modern Analysis

Problem sheet one solutions.

Question 1.

We use the Weierstrass M test We let f,(z) = =5 sin(nz) and we
have the inequality |f,(z)] < =5. Since Y07, &5 < oo it follows that
Yoo, fu(x) converges umformly

Question 2.

The Weierstrass test is for series. So we need a series whose nth
term is f,. Thus we need a telescoping series. So we let g; = f; and
Jn = fn — fn_1 for n > 2. Then

D gn=fitfo—fitfs— ot F far+ fo— faor = fuo
k=1

The Weierstrass M test tells us that if |g,(z)| < M, for all z € X and
Y2 | M,, < oo, then the series converges uniformly on X with limit f.
So if |fu(z) — fuo1(x)| < M, then {f,}52, is uniformly convergent. So
if would be sufficient to establish (as an example) that for all z € X

@) = fas(2)] < ni 01

in order to guarantee that f, — f uniformly.

Question 3.
Suppose that f is Riemann integrable. Then the lower integral

/Lbfz/abf.

Consequently, given e > 0 there exists a partition P; of [a,b] such
that L(f, P,) > fabf — €/2. Similarly there is a partition P, such that

U(f, P) = f_ff + ¢/2. Here f_:f denotes the upper integral. Thus if
P= Pl U P2 then

U(f7 ) (f7 )S PQ)_L(f7P1>

/ rej2- (/Lbf—e/z)

as the upper and lower integrals are equal. Conversely, let ¢ > 0 and
suppose that there is a partition P such that

/ U(f,P) < L(f, P +e</f+e (0.3)



Then

So f is Riemann integrable.

Question 4.
Let f, g be Riemann integrable on [a, b] and observe that

[ s+ lgn?a=a* [P 2o gt

b
+/ lg(t)|’dt = Az® + 2Bz + C > 0.

Since Axz? + 2Bx + C > 0 it follows that B? < AC. Which gives

(/ab|f(1t)g(1t)ldt>2 < /ab|f(t)|2dt/ab|g(t)|2dt'

Now take the square root of both sides.

Question 5.
Assume that f is continuous on [a, b] and let

B a<x<7T
px) =96 x=7

Bg jI'\<ZL‘§b

Then ¢ is a step function with one jump at z, for a < = < b/. Let P
be a partition of [a, b]. If Z is a partition point, Z = xk for 0 < K < n,
then xp_1 < ¢, < T =xx < cxp1 < Trypq and

D fAG =[f(cx) = F@](B = B1) + [f(cxs1) = F(@)] (B2 — B)
+ f(@)(B2 — B1).

As we let |P| — 0, by continuity the first two terms vanish and so we
have

RS / fdo = F(3)(Bs — B)
= f(@) (@) — o(z7)).

If Z is not a partition point, then we have rx_; < T < 2 and xx_1 <
cx < xp for some K. So that

D FAG = [f(ex) = F@)](Br — Bo) + F()(B2 — B)



and again continuity shows that as |P| — 0, the first term disappears
and again

b
RS / fdé = [@)(BE) — dF ).

Finally we extend to the case when ¢ has n jump points 7y, ..., T, by
using the fact that if ay < as < ---a,, then

an az an
RS/ :RS/ +---+RS/ .
Question 6.

Recall that if f is Riemann integrable on [a,b] and P = {zy,...,x,}
is a partition of [a, b], then the Riemann sum  ,_, f(z})(zk —zp—1) —
fab f(z)dx as the partition length |P| — 0.

We take f(z) = z, and choose a partition {z1, ..., z,} of [0, 1] and let
Ck, satisfy T < ¢ < xp for all k. The inequality

is obvious. Simple algebra gives

n n n
Z wp(zy — 27 ) = Z o3 (T — Tp1) + Zxkxk_l(xk — Tp_1)-
k=1 k=1 k=1

Similarly for the first sum and so we have

3

n n
Z oy (o — ) + Z wpg1(r — 1) < el —ap ) <
- k=1 k=1

n n
Z T (T — Tpe1) + Z TpTp—1 (T — Tp—1).
k=1 k=1

It is also clear that

n

Z$k$k g —xp) < k(ﬁk — Tp—1)
k=1

since x; > Tr_1. We therefore have
n n n
2) af (e —w1) <) enley —2f,) <2 ai( — ). (¥)
k=1 k=1 k=1

Now 237 a7 (xp—x)_1) is a Riemann sum for the integral 2 fol rdx
asis 2 ,_, w3 (xp — 2%—1). So that as |[P| = 0

n 1
2 Z i (Tp — 281) — 2/ 2?dx
k=1 0



and
n 1
2 in(xk — Tp_1) — 2/ ridx.
k=1 0
Since >, _, cp(zi — x7_4) — RS fol xd(x?), the inequality (*) then al-
lows us to conclude that RS fol xd(z?) =2 fol ridr.

Question 7.
Let g(x) = x|z|. then ¢'(x) = 222 if x > 0 and ¢'(x) = =222 if x < 0.

So that
1 1 0
RS/ xd(:p|x|):/ 2x3d:p—/ 22°%dx = 1.
-1 0 -1

The other parts of the question may be done the same way.

Question 8
Integration by parts gives

b b
RS/ f(x)d(f(x)) = f(0)f(b) — fla)f(a) — RS/ f(x)d(f(x)).
Rearranging this gives the result.

Question 9

The most efficient way to do this question is to evaluate the various
terms in the Euler-MacLaurin summation formula in Mathematica.
(i) For the first sum we have

Al sin(vk) [V sin(v7) 1, . 1 .
Z —/1 dx—l—a(sml—l——sm(\/ﬁ))

—~ k Ve N
Pl —
where f(z) = sin(y/z)/y/z. So that f'(z) = Cosgf) — M;ng) We can

as many terms as we want in the Euler-MacLaurin formula, depending
on how much work we are prepared to do.
With N =100 we get

100

> f(k) & 1.42453 + 0.418015 + 0.04 = 1.88802.
k=1

1
(ii) For v, = Z . Inn. If f(x) =1/x we have

k=1

Y = —lnn+/1nf(x)dx+ %(1 +1/n)+ %(—1/712 +1)

1 4



If we take n = 1000 and a decent number of terms in the summation
formula we get 1900 &= .577716. The limit v = lim,, ., ¥, exists and
is known as Euler’s constant. It is the third most frequently occurring
constant in mathematics after e and 7. It is not known if v is rational
or irrational.

Question 10.
Suppose that Zk | f(k) < oco. Then the Euler-MacLaurin formula

implies that fl x)dx < oo. This is obvious because if fl (x)dx —

oo as N — oo, then Zk:lf( ) — 0.
In general we let

AN_§jf /(f L)+ F()
+/1 (o — [2] — 1/2)f'(2)da.

Observe that if z € (N, N+1) then [z] = N. Suppose that f is positive
and decreasing on [1,00) and [ f(z)dz < oo. Since f is decreasing it
follows that

k+1

fl+1) < f(x)de < f(k).

k

And

ZMH—ANzgﬂN+D—ﬂND+AI(mﬁﬂ—ﬂﬁﬂww

— U A = f) + [ @ N =12 ()

2 N

= SOV 4 1) = F(N) + F(N + DV +1— (N +1/2)

N+1

—ﬂMMhﬂWHﬂ»jA f(2)d
N+1

— S = [ @) < FOV 1) = (N 1) =0

N

So the sequence {Ay} is non-increasing. Hence it is convergent. Thus
the series > 7~ | f(k) is convergent.

Question 11.



Take f(k) = k% Then f'(k) = 2k, f"”(k) = 0. So by Euler-MacLaurin
summation

S = [ U+ ) 50 )+

_ %(m 1)+ %(1 +n?) + 1—12(2n 9
- %(Qn—i- 1)(n+1).

Now we take f(k) = k*. Then f'(k) = 3k*, f"(k) = 6k, f"(k) = 6.

So we have

- n 1 1 1
kf3: 3d (a3 1 e 2 - .
?:1: /13; v 4 1)+ (307 = 3) — (6 6)

1 1

49 “(nd a1 - 2
(n )+2(n+)+12(3n 3)
2

(n+1)%

P,;|3 =~ =

Question 12

/2 T\ " /2
lim <1 - —) d(cosz) = —/ e “sinxdx
0 0

n—oo
1

= 5(677‘72 — 1)
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Problem sheet two solutions.

Question 1.
Let B, = UZ:l Ay for 1 < n < N. By induction B, is measurable.
Now assume that

“(ENB,) Zm (E N Ay).

Then by the definition of measurablhty and the measurability of A,
m*(E N Bn+1) = m*((E N Bn+1) N A;:H—l) + m*(E N Bn+1 N An+1)

=m"(ENB,)+m"(EN A1)
n+1

=> m'(ENAy).
k=1

As the result is true for n = 1, the general result follows by induction.

Question 2.

This follows from the telescoping series Y oo (+ — =) = 1.

il
Question 3.

If {x} is a set containing a single point, then m({zy}) = 0. By
countable additivity, if A = U2, {zx}, then m(A) = 0.
Question 4

We know m(Q) = 0 since the rationals are countable. Let X =
[0,1]NQ and U = [0,1] — X. Then [0, 1] = X U U. So that m([0, 1]) =
m(U) +m(X). But m(X) =0, so M(U) = 1.
Question 5

We use m*(E) < m*(ENA)+m*(EN A°). Now

m* (ENA) <m*(A4) =0

and m*(EN A°) < m*(E). So we have
m*(E )§ (ENA)+m"(ENnA°) <m"(E).
Thus m*(E) = m*(ENA) +m*(E N A°) and A is measurable.

Question 6

Suppose that (B,,) is any sequence of measurable set. Let A; = By,
A2 = BQ N Bf,..., An = Bn N (Bl U BQ U-- 'Bn_]_)c, etc. Then the Az
are pairwise disjoint and

Ja=Us
k=1 k=1

Each A,, is measurable as each Bj is measurable and intersections
and unions and compliments of measurable sets are measurable. So



U Ag is measurable. For the intersection of the sets we use the

relation .
(] B.= (U Bg) .
n=1 n=1

Since each B, is measurable and countable unions are measurable, the
measurability of the intersection follows.

Question 7.

We have A+ h = {x + h|lz € A}. If A is covered by I then A+ h
is covered by Iy + h and I(I; + h) = [(Ix). It follows that m*(A+ h) =
m*(A). To prove measurability we use the relations

En(A+h)=({(E—-h)NA)+h,
and
EN(A4+h)=((E—h)NA®) +h.

Let us illustrate the first relation using intervals. Let E = [a,c] and
A = [b,d] where a < b < ¢ < d. Then A+ h = [b+ h,d+ h] and
EN(A+h)=[b+h,c]. Now E—h=[a—h,c—h]and AN(E —h) =
[b,c — h]. So that h+ (AN (E —h)) =[b+ h,c] = EN(A+h). The
second relation can be demonstrated similarly.

Then by the measurability of A

m*(E) =m"(E —h)
=m"((E—h)NA) +m*"((F—h)N A
=m"(E—h)NA)+h)+m*(E—h)NA°)+h)
=m*"(EN(A+h)) +m"(EN(A+ h)°)
and so A + h is measurable.

Question 8
Clearly F = EU(F — E). So m(F) = m(E) +m(F — E)

Question 9
As AU B = [0, 1] we have
0,1]=(A—(ANB))U(B—-(ANB)).
Now m*([0,1]) =1 and
m*(A) +m*(B) =m*(A— (AN B))+m*(B— (AN B))+m*(AN B)
> 1.
So m*(A) > 1 —m*(B).

Question 10

The key is to remove sets which contain a 5 at some place in their
decimal expansion. These sets make up intervals whose measures are
easily computed. Let the set of numbers in [0, 1] with no 5 in their
decimal expansions be A. So we let



= {z € [0,1],z = 0.0asa3...}
= {z €[0,1],z = 0.1asas...}

= {z € [0,1],z = 0.5a0a3...}

= {z € [0,1],z = 0.0asa3...}

and [0,1] = U)_,Al. Each of these is an interval of length 1/10. We
remove the set A} because it contains a 5 in the first place of the
decimal expansion.

Next we look at the sets

Ay = {z €[0,1],2 = 0.00aza, - - - },
A5 ={z €[0,1],2 = 0.0laza, - - },

A% = {z €0,1],z = 0.05asas- - },

We need to remove one interval of this form from each of A}, ..., AJ,
but not Ai. Each of these subintervals are of length 1/100 and there
are 9 of them. Continuing this process we have to remove 92 intervals
of length 1/1000 from the A?j etc. In this way we remove every number
with a 5 somewhere in its decimal expansion. The total length removed
is

1+9+92+_1/10_

10 © 100 1000 S 1-9/10
It follows then that m*(A) = m[0,1] —1 = 0. So A has outer measure
zero, which also implies that it is measurable.

Question 11
Suppose that A is covered by intervals Iy, ..., I,. Then by question
one

(0.5)

m*(A) <m* (ANU;_,1 Zm (AN < lek
Taking the inf over both sides gives
1
0<m*(A) < ém*(A).

This is only possible if m*(A) = 0.
Question 12



Suppose that A is an interval and £ C R. We cover E with open
intervals Iy, I, ..... We want to check that the Caratheodory condition
is satisfied. Observe that AN} is an interval and AN I, is an interval
or the union of two intervals. So there is an open interval .J;; such that
AN I, C Ji; and open intervals Joy, J3;, such that AN I, C Jip U Jop
and

Therefore AN E C UgJyy and AN A° Uy, (Jox, U J3i). We now have

> Z (I(Jik) + 1(Jox) + ()

(AmE)+m (A°NE).

Since the opposite inequality holds, A is measurable.
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Problem sheet three solutions.

Question 1.
We observe that A; U Ay = (A; — (A1 N Ay)) U Ay and these are
disjoint. So
m(A1 U Az) = m(A1 — (Al N Az)) -+ m(Ag)
Next Al = (Al - (Al N AQ)) U (Al N Ag) So

m((A1 - (Al N AQ)) = m(Al) - m(A1 N Ag)
Combining gives
m(A; U Ay) = m(A;) —m(A; N Ay) + m(Ay).

Rearranging gives

Question 2

We only need to check countable additivity since the other properties
hold by construction. So let {A4,} be a pairwise disjoint sequence of
subsets of X. Let = U2, A,,. If some A,, is uncountable, then A is also
uncountable, so trivially we have

If however, each A,, is countable, then A is countable and hence

pA) = fla)=>) [Z f(x)] = n(A)

T€A n=1 Lz€A,
and countable additivity holds.

Question 3

The length of all the subintervals removed to form the Cantor set
is 1/342/9+4/27+ --- = 1. So the Cantor set has outer measure
zero. It is thus measurable and has measure zero. To prove that C
is uncountable, we let x = 0.b1b203 - -- be the binary expansion of a
number in [0, 1). Each b, is either a zero or one. Let f(z) = 0.t1tats...
where ¢,, = 2b,,. This is the ternary expansion of a number. (Expansion
in base 3). Each t, is either 0 or 2, so f(z) is not in [1/3,2/3), nor
is it in [1/9,2/9) etc. So f(z) is in the Cantor set for every z. This
shows that the Cantor set is non-empty. As f is one to one and [0, 1)
is uncountable, then C' is uncountable, since f:[0,1) — C.

Question 4. We use the inequality. m (U2, 4;) < >0 m(A;). The
result easily follows from this.



Question 5

We have
m*(B) <m*(BUA)=m"((B—-A)UA)
<m*(B—A)+m*(A)
=m"(B—-A) <m*(B).
Som*(B) =m*(B—A) =m*(BUA).
Question 6

Suppose that > > m*(A,) < oo. This is only possible if
> omr(A) =0 (%)

as n — oo. Now let E,, = U ;A;. Then E C E, for all n. We then
have the inequality

0<m"(E) <m*(E,) < im*(An).

By (*) it follows that m*(E) = 0.

Question 7
If A is not measurable then x ;' ({1}) = A is not measurable, so x4
is not measurable. Conversely, if A is measurable, then

A 0O<ax<l1
{xa>a}=<R a<0
0 a>1.

These sets are measurable, so y 4 is measurable.

Question 8

Since f is continuous, it follows that f~1(A) is open, whenever A is
open. Now (fog) ' (A) = g '(f~'(A)). So if A is open, B = f~1(A)
is open, and hence g~!(B) is measurable because B is open and g is a
measurable function. Thus f o g is measurable. It is worth noting that
the converse of this result is false.

Question 9
We know that if f,, — f pointwise and each f, is measurable, then
f is measurable. Now

o) — i T =)

is measurable, then f’ is measurable.

: f(z+1/n)—f(x)
Since 1/7”
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Problem sheet four solutions.

Question 1.
Suppose that f, — f uniformly on X C R. Then given € > 0 we
can find an N € N such that for n > N

sup | fu(2) — f(2)] <€
zeX

Then for n > N
m{{z : |fu(z) — f(z)] = €}] = 0.
Thus f, — f in measure.

Question 2
This is an exercise in comparing the measure of sets.

(i) Suppose that a,b are nonzero and f, — f and g, — ¢ in
measure. The case a = b = 0 is trivial. If for all ¢ > 0,
m[{z: |f.(z) — f(x)| > €}] = 0 as n — oo, then

ml{z :lal|fu(z) = f(2)] = €}] = m{{z : [fu(2) = ()] = €/la[}] = 0.

So af, — af in measure.
Now by the triangle inequality

|afu(z) + bgn(x) — af (x) — bg(x)| < |al[fu(z) — f ()]
+ [bllgn(z) — g(2)|.
Thus if
v € Ay ={x: |afu(z) + bgn(2) — af (x) — bg(2)| = €},
then certainly
v € By = {x: al|fu(z) — f(2)] + [bllgn(2) — g(2)] = €}
So A, C B, and m(A,) < m(B,). Now
B, C {o: [allfule) — f(2)] > /2} U{a : [bllgn(e) — 9(x)| > ¢/2)
So it follows that
m(An) <m(Bn) <ml{x:|al|fu(z) — f(2)] = €/2}]
+m{{z : |bllgn(z) — g(z)| = €/2}] = 0.
Hence af,, + bg, — af + bg in measure.

(if) We have || fo] = [ f]| < [fn = f]. So that if || fu(z)| = |f(z)[| = €,
then |f,(z) — f(x)| > €. Thus

ml{z [ fu(@)] = |f(@)]] = e}] < ml{z: [fulz) = f(2)] = €}].

so if f, = f in measure, then |f,| — |f| in measure.



(iii) First we show that if f, — f in measure on a set X then there
is a subsequence {f,,} which converges to f a.e. It is easy to
see that given n > 0 we can find a k,, such that

mli{z € X : |ful2) — f(@)] = 1/n}] < 27"

for all k > k,. Set E, = {z € X : |fx,(z) — f(z)| > 1/n} for
each n. Let £ =Ny2, U2, Ej. Then

m(E) <m(Up,) < im(Ek) <2t

This holds for all n so m(EF) = 0. In addition, if z € E, then
there is an n such that © ¢ N2, Ey, so | fx, (x) — f(z)] < 1/m
holds for each m > n. Therefore f, (x) — f(z) for each z € E°,
so fr, converges to f a.e. From this it follows that there is a
subsequence fx, gk, of fng, which converges a.e. to fg.

Now we show that if f,, — fa.e. on X, with m(X) < oo, then
fn — f in measure. To this end let € > 0 and set F,, = {x €
X | fu(z)— f(x)] > €}. Since m(X) < oo we can use Eogoroff’s
Theorem and given § > 0 there exists a measurable set A such
that m(A) < § and f,, — f uniformly to f on A°. So f, — f in
measure on A°. Now choose k such that |f,(z) — f(z)| < € holds
for all x € A¢ and all n > k. Then E,, C A holds for all n > k.
So m(E,) < m(A) < ¢ for all n > k. So lim,,_,.. m(E,) = 0.
And the proof is finished.

Consequently, fi gx, converges to fg in measure.

To finish the proof suppose that f,g, does not converge in
measure to fg. Then given € > 0 we can find § > 0 such that
for all n.

ml{z : |fu(@)gn(z) — f(2)g(2)] > €}] >

But we know that the subsequence fy, g, converges in measure
to fg. This is a contradiction. So f,g, to fg in measure. Note
this result is only true if m(X) < oo. If m(X) = oo, then there
are sequences of functions for which the result is false.

(iv) The proof of this is now trivial. We simply apply the result of
(iv) with g, = g all n.

Question 3
We have fEf = [ fxg. Now suppose that k£ < f < K. Then

/\fxEl < K/XE = Km(E).

Similarly for the other inequality.
Question 4



If f > 0 then there exists § > 0 such that for all x we have f(z) > J..
Now [, f=0and [, f > dm(E) by the previous question. So we have

Oz/EchSm(E).

Hence m(F) = 0.

Question 5
To show that fooo sin x2dx does not exist as a Lebesgue integral, we
use the substitution y = 22 to obtain

o 1 o :
/ sin 2?dx = = P ydy
0

2Jo VY

Now y~ /¢ is integrable near zero, so we are concerned with what hap-
pens as the upper limit of integration increases to infinity. Recall that
the Lebesgue integral of f only exists if [ |f]| < co. So we note that

> | siny| /°°|siny|
dy > dy
/0 VY VY
km :
sin y
[t
(k—Dx VY

= OQ.

1/2

NE

k=2

WE
Sk

bl
[|
N

So the Lebesgue integral diverges.
Now we evaluate the improper Riemann integral. To do this we
notice that

/ / e’ sinxdxdy:/ / e~ sin zdydx
o Jo 0o Jo

/00 e~ sin xdy = M
0 2\/x

and

Now integration by parts gives

r 7T'y2 2 -
C? 1—e cosT + y“sinr
/ e sinxdr = ( )
0

1+ y
So
o 1 T — —ry? 2 &
/ sing 1 e (cosr:—y smr)dy’
0 2/ NZN I+y
Hence

) "sinw dy
lim

1 oo
do = — .
e Jy 2T \/7?/0 1+



Now 14y = (1+v2y+y?) (1 — 2y +y?). Partial fractions now gives

L V2—y N y+V2
L+y* 2v2(2—V2y+1)  2v2(2+V2y+1)

So that

d 1 1 2 2 2
/79:_ (Y2 o VY
L+y* 42 1 — 2y + 12 1— g2

The Fundamental Theorem of Calculus then gives

/°° dy 7w
o l4+yt 2y2

Which gives the improper Riemann integral

/Ooo sin(2?)dx = %

Question 6

We know that f : [0,1] — R, f’(0) exists and f(0) = 0. So by
continuity and differentiability there exists M > 0 and 0 < § < 1 such
that for 0 < 2 <6 |f(z)| < Mx. Since for 0 < 2 < 1, we have 27%/2 <
673/2. We may assume that M > 6=%2. Now g(z) = 2732 f(z). So

lg()| = |22 f ()|

~1/2
Y e 0<xr <o
- f(@), d<z<1

Now h(z) = 27%/2 is Lebesgue integrable on [0, 6] and we have

1 ) 1
/|g|:/ |g|+/ ]
0 0 )

5 1
gM/h+M/f<oo.
0 5

So g is Lebesgue integrable.

Question 7. Recall that if A, B are disjoint, then fAUB h = fA h+ fB h.
Let A=[0,1] —Q and B = [0, 1] N Q. Obviously [0,1] = AU B and A
and B are disjoint. Further, A(B) = 0, where \ is Lebesgue measure.
Let f(z) = 2® + 5z and g(x) = 22% Set h(z) = f(x) for z € A and
h(z) = g(z) for x € B. Therefore fol hWa)de = [, f+ [z9= [, f since

the integral over B is zero. Now

/01 f(z)dx = /Af+/Bf. (0.6)



But again [, f

f=0.80

X

dx—/f /x+5x

(0.7)
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Problem sheet five solutions.

Question 1.
Define p(z) = ¢(b) if x > b and p(z) = ¢(a) if x < a. Since
pr+h) — o)

h

> 0,

and

as h — 0, then Fatou’s Lemma gives the inequality

/b ()da:<hm ’ (x+h)_('0($)d:c.

h—0 h

/b (Hh)dx—l/bgp(x)d
il alf L)
(L ) e
/bm :c——/a o) da

(b) = ¢(a)

by the Fundamental Theorem of Calculus. Hence

/abgol(x)dx S}}L%/ab o(r + h})b — @)
= ¢(b) — p(a).

Now

/b oo +h) — olz)

8
I

h

?IH ?IH ;“IP—‘ SRS

Question 2.

We know that (14 )" — e as n — o0o. So that
x
1 “\n ,—2x S e T
(1+ n> e e

We want to show that (1+2)"e™" < e*. This is equivalent to showing
that (14 2)" < e”. Since the logarithm is increasing we want

nin(1l + %) <, (0.8)

which is true at # = 0. Now if h(z) = nln(1 + %) — z, then

h'(z) = -1<0, >0

n+x



so h is decreasing. Hence (??) holds and (1+2)" < e”. Now g(x) = ™
is integrable, so by the Dominated Convergence Theorem

o0

lim (1+ E)”6_2“”(1:16 = / e fdr = 1.
0

n—oo Jg n

Question 3
If ¢ = 0 we have the improper Riemann integral fooo

let
F(t) :/ et g
0

T

sinx
T

dr = % Now

Then |#22| < 1 and so |e *#2Z| < ¢!, Since e *' is integrable,

we may apply the dominated convergence series, and % (e_”%) =

—e *tginx is integrable, so we differentiate under the integral sign to
obtain

F'(t) = —/ e " sin zdx
0

1
1+¢2

Integrating with respect to ¢ gives
F(t) = C —tan 't

The DCT gives lim; o, F'(t) = C — /2 =0 and so
F(t) = g — tan"'t.

Question 4.
We only do one. The second is similar. Integration by parts gives

s - 1 -
f(z)sin(nz)dx = {—f(x) Cos(nx)] n . ) cos;nx) I
By continuity we have the inequality
/ f(z)sin(nz)dx| < C/n

for some constant C' depending on f. Taking limits as n — oo gives
the result.

Question 5.
Assume that I = [ f(x)dz exists. Choose M > 0 such that

'1— /arf(x)dx

<€
2




holds for all » > M. If s,t > M then

/stf(x)dx /atf(x)dx—/:f(x)dx

I—/atf(x)dx +‘I—/asf(x)d:p

€.

<
<

Conversely, assume that the condition is satisfied. If {a,} is a se-
quence in [,00) such that a, — oo , then { [ f(x)dx}zozl is a Cauchy
sequence. Thus A = lim, e [ f(x)dx exists. Now let {b,}°2; be an-

other sequence in [a, 00) with b, — oo. Then let B = lim,, o, f;" f(x)dx.
Now

A—B| < 'A—/anf(x)d:c +

— 0.

bn
f(z)dz

an

+ 'B 7 pw)de

a

as n — 00. So A= B. Hence [ f(z)dx exists.

Question 7
The function
1 z=0
fa)={ () o<r<i
x—12, x> 1,

is Lebesgue integrable over [0, 00). Now 0 < (%)2 < f(x) , so (%)2
is Lebesgue integrable on [0, 00). Now for each r, e > 0 we have

. 2 . . .
" (sinx Sln2 € SIH2 r " 2sinx cosx
. x € r . T

The limit as € — 0 and r — oo on the left side exists, since the function
is Lebesgue integrable. Now

/’"QSinxcosxd /QTsinxd
——dz = x,
€ x 2e x

since 2sinzcosz = sin(2z). Taking limits we see that the Lebesgue
integral is equal to the improper Riemann integral obtained by taking
limits on the right. That is

o /o 2 o s
L/ (smx) d:p:IR/ Y e =T
0 x 0 x 2
Question 8.

Let f : R — R be differentiable and such that for some M > 0
we have |f'(z)] < M for all © € [a,b]. This is reasonable since f is
continuous and continuous functions are bounded. Now for x < a
we can set f(z) = f(z) + f'(a)(z — a) and for z > b we set f(z) =




f(0)+ f'(b)(x—0b) and so we can extend f to be a differentiable function
on R.

Next we consider the sequence
ﬁ@ﬁzﬂﬂx+UM—f@H:f@+4£2_ﬂ@'

Then f,(x) — f'(z) for each x € R. By the Mean Value Theorem
|fu(@)] < |f(z)] < M Consequently by the DCT, f’ is Lebesgue
integrable over [a, b]

/ f'(x)dz = lim bfn(x)dx.

n—oo
Now
b b b
/ falz)dz =n / fz+ 1/n)dx—/ f(x)dx]
: b+1/n b
=n / f(z)dz — / f(z)dz
|/ a+1/n a
[ ro+1/n a+1l/n
=n / f(x)dx—/ f(z)dz
b a
_ fbb-l-l/n f(l')dl’ - faa-l-l/n f(l')dl'
1/n 1/n
— f(b) = f(a),
by the Fundamental Theorem of Calculus, since the limits return the
derivatives of the integrals. That is, if F'(x f f(z)dz, then

Fot) —FO) _ Jy Jj‘”)‘” — F'(b) = f(b),

n n

as n — oo. Similarly for the second integral.

Question 9.
Inz

Obviously f(r) = — > 0 holds for each z > 1. If » > 1 then
x

integration by parts gives

/lnx lnxr "dx
1 22
1 1
:1___2
r r



Question 10

Fix a > 0 and define f,(x) = f(nz). Clearly lim,,_, f,.(z) = ¢ for all
x € [0, a]. Since f is continuous the sequence { f,, ()}, is bounded. As
f — 9, there is an M > 0 such that for x > M |f(x)| < 14|4|. That is,
| f(x)] is eventually smaller than 14 |d|. By continuity f is bounded on
[0, M]. So f is bounded on [0, M| and [M, co). Thus there is a constant
C such that |f(x)] < C for all z. Hence |f,(z)| = |f(nz)| < C and so
by the DCT

lim f(nz)der = lim fo(z)dx = / ddx = ad.

n—oo 0
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Question 1.

We will actually give a more general result, due to Frullani. Let f be
differentiable and suppose we can differentiate under the integral sign.
Further suppose that lim, ., f(z) = 0. Let

F(a,b) /f” flaz) = J(ba) .

and suppose that the integral exists. Then

— = /OO f'(ax)dx

Put az = ¢ so that 2 = 1/a J° f(t)dt = —f(0)/a. Integration with
respect to a gives
F(a)=—f(0)Ina+ C(b).

Likewise differentiation of F' with respect to b gives

oF 1 ,

=10 =C0)
This gives F'(a,b) = f(0)In(b/a) + K, where K is a constant. Now
a = b implies F' = 0, so that K = 0. Hence

F(a,b) = f(0)In(b/a).
Taking f(z) = e gives the result of the question on the sheet. It is

possible to give precise technical conditions on f needed to make this
work, but we will not do so here.

Question 2. For each p > 0, define
p_

P —1

k(x) = ——
(l') ]_nl‘ Y x

Notice that lim,_,; k(x) = p and lim, o, k(x) = 0. So we can define

k(1) = p and k(0) = 0 and the resulting function is continuous and

Lop
hence integrable on [0, 1]. Let F(p) = / L
0
for all p > 0. We want F'(1).

€ (0,1).

dx Clearly F(p) exists

d
Now 2P = eP!"® 50 that —a” = 2" Inz. Hence dimlp_l
dp p Inx
integrable. Observe that k is continuously differentiable on [0,1]. So

for h suitably small so by Taylor’s Theorem we have

= 2P which is

PR op
hinz
where L(z,h) — 0 as h — 0, for each x. L must be integrable for p > 0
(why?) and so 2? + L(x, h) is integrable on [0, 1]. Thus we may apply
the dominated convergence theorem and deduce that

= 2P + L(x, h),



lim = lim dx
h—0 h—0 Jq hilnz
1 h
—1
= lim P x dx
h—0 Jo hlnx

Thus

So F(p) =In(p+ 1) + K. Taking p = 0 gives F/(0) =0=1In1+ K. So
K =0. Hence F(1) =In2.

Question 3. Differentiation under the integral sign is easy to establish
here because of the rapid decay of the integrand.
So let a, 8 > 0. If we put y = az,p = af, then

/OO 6_a2$2_62/x2d:p _ l /OO 6_y2_p2/y2dy,
0 @ Jo

J(p) = / eV P dy
0

Let

so that -
P 2
J(p) = —2/0 Ee vy
We put 2z = p/y, so that dz = —p/y* and

J'(p) = —2/ e~ # P gy — —2J(p).
0

Solving the ODE gives J(p) = J(0)e~%. But J(0) = [;7 e ¥ dy = 3/7.
So we have shown that

o
2,2 27,2 m
e /xdx:—\/_e 2p.
0 2

(0%

Question 4.

d
Let p(z,y) = H(cglci(’:;y)y) It is obvious that p(z,z) =0, p(x,y) > 0
and p(z,y) = p(y,x) as d is a metric. For the triangle inequality we

use the fact that if 0 < z < y, we have
T .Y

l+2 14y

?



which follows from the fact that f(z) = x/(14) is increasing on [0, 00)
since f'(z) = 1/(1 + z)? > 0. We will show that

r+y < x n Y
l+z+y " 14+2 1+y

, x,y > 0.

We have

(x+y)Q+2)(1+y) =z(1+2)1+y)+y(l+2)(1+vy)
<z(1+z)1+y) +ay(l+y) + (x+ Dy(1+y)
+zy(1 + x)
=x(1+y)1+z+y) +y(l+2)(1+z+7y)

Now divide through both sides by (1 + x)(1 + y)(1 + 2 + y). We can
therefore conclude that
d(x,y d(x,z) +d(z,y
oy — @) d@2) 4 dzy)
L+d(z,y) — 1+d(z,2) +d(2,y)
dez) , _diy.2)
T 14+d(z,z) 1+d(zvy)
= p(,2) + p(2,y).

Question 5.
Suppose that o > 5 > 0. We know that ||z + y| = ||| + ||y| for
some x,y. Now

lez + Byl < lalllzll + [Blllyll = allzll + Allyll

as a, 8 > 0. For the reverse inequality we observe that

laz + Byl| = [la(z +y) + (5 = a)yll
> [la(z +y)l| = 16 = )yl
= allz+yll = (= Byl
= a(llz]| +llyl) = allyll + Byl
= aljz]| + Bllyll.
So we conclude that ||ax + Sy|| = af|z|| + 5|yl

Question 6.

Given a metric d we would seek to define a norm by setting d(z,0) =
||z||. This does not in general give a norm. To see why let d be defined
by d(xz,z) = 0 and d(x,y) = 1. Then d(Az,0) = 1 # |\|d(z,0). So

| Az|| # |A|||x||- Thus this metric does not define a norm.

Question 7.
Let f: X — R. Set || flloo = Inf{M : |f(x)| < M, almost all z}.

(i) If f = g a.e. then |f(z)] < M a.e. implies |g(z)| < M a.e. So
[ flloe = [lglloo-



(ii) This is obvious.
(iii) If [f(2)| < M then |af(x)| < aM. So |af(x)| = [a]|f(z)].
(iv) If |f(z)| < M; a.e. and |g(z)| < M, a.e. then

|f(z) 4+ g(x)| < My + M a.e.
So that [|f 4 gllee < || fllec + 1|9 ]loc-

(v) It is clear that if |f(z)| < |g(z)| then if |g(x)] < M a.e then
|[f(2)] < M a.e. so that || fllo < l¢]lc0-

Question 8.
All finite dimensional vector spaces are isomorphic to R", so that
without loss of generality we can prove the result on R"™. Let || - ||

denote the usual Euclidean norm given by ||z|s = /23 + -+ 22. If
| - || is another norm on R"™ we prove that this is equivalent to the
Euclidean norm. If all norms are equivalent || - || then we are done.

Let eq, ..., e, be the standard basis for R” and let x = ZZ=1 Trek.
Then the triangle inequality gives

n n
Z«Tkek < Z|~’Uk|H€k”
k=1 k=1

< (Z ||€k||> [ll2 = Mzl
k=1

The last step essentially following from Cauchy-Schwartz. So with
M =357, |lex]| we have [|z|| < M]||z|]2 holds for all = € R™. This is
the first part.

Now [[lz] = [lylll < llz — yll < Mz = yl[2, so the map z — [lz]| is
a continuous function on R™. Since continuous functions attain their
maximum values on compact sets, we let xy be the point on the unit
sphere "1 = {z € R" : ||z||; = 1} where ||z|| has its maximum. So
|z|| > ||zo|| all z € S™

Let K = ||zo||. Now ||zo|l2 = 1, so zyp # 0 and hence K = ||zo|| > 0.

> K. Hence

] =

Now if x € R" is nonzero, then

]|
Kllz|l2 < [l

as required. So all norms on R™ are equivalent to the Euclidean norm

and hence each other. Since there is a one to one correspondence be-

tween finite dimensional vector spaces, the result holds for an arbitrary
finite dimensional vector space.

Question 9.



Since || - ||« is @ norm, then clearly

1f + gl = 1£(0) + gO)| + 1/ + g'lloc < [SO)+ [1f'lloc + 9(O) + llgll0

so the triangle inequality is satisfied. Similarly, if ||f|] = 0, then
|f(0)] = ||f'llo = 0. Hence f" = 0 so f is constant, but f(0) = 0,
so f = 0. Finally [|af|| = |a|[f(0)| + lalllf"ll« = lalllf]|. So this is a
norm.

The Fundamental Theorem of Calculus gives

ﬂ@=ﬂ®+£7ww.

So |f(x)] < [f(0)] + |||l for each z € [0, 1]. Taking the supremum
gives
LA < 1£O) + 1 lloo-

Now
[l + 1 Moo < TFO)] + 2[| f[|oo
< 2([£O)] + 11/ Nl0)
= 2[|flla < 2([[fllso + I1f ll0)-
Question 10.
The operator is given by T'f(z) = /b f(y)K(z,y)dy. So that

b
\ﬂﬁs/WMMwam
< sup [(5)] = M|

where M = sup, <, f; | K (x,y)|dy, which is finite since K is continu-
ous and hence bounded. So ||Tf]lc < M| f]|co-

Question 11.
Take f,(x) = a™. Then || f,||cc =1 on [0, 1], but

1D flloo = SUP{nxnilﬂc €[0,1]} =n

for each m. Thus there is no constant K for which ||Df||.c < K||f]o
for every K. Hence D is unbounded.

Question 12.
We have

| rwemar—iy [ e i = iyf)
where we used integration by parts and assumed that

lim f(x)=0.

r—*+00

Question 13.



/00 rvf(z)e "Vdr = ZC% /00 f(z)e ™Ydx

-~

d
:Zd—yf(y)-

Question 14.

Taking the Fourier transform in « in the given DE gives iyu+iu, = 0.
Cancelling the is gives yu + uw, = 0. Thus the Fourier transformed
equation is the same as the original equation. Thus u and u satisfy the
same equation and so by uniqueness of solutions they must be the same
up to a constant. Solving the original equation gives u(z) = v/2me *"/2,

Now the only solution of the equation for u is u(y) = Ce /2. This
must be the Fourier transform of u so that

> 712/27ixy o C 7y2/2
e dr = —e )
/_oo 2T

This holds for all y, so taking y = 0 gives

e 2 C
Ry = —— = /2
e T .
/oo V2T

So that C = 27 and
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Problem sheet seven solutions.

Question 1.
Let x,y be vectors in a real inner product space. If x L y then

Iz +yl* = (@ +y,2+y) = (z,2) + (z,9) + (¥, 2) + (¥ 9)
= (z,2) + (y.9) = ll=[I* + lly]I*.
Conversely suppose that ||z + y||* = ||«]|* 4 ||y||?, then since the vector
space is real, (z,y) = (y,x) and
Iz +yl* = (@ +y,2+y) = (x.2) + (z,9) + (v, 2) + (.9)
= llz]1* +2(z, y) + Iyl
so that (z,y) = 0.
This is false in a complex inner product space. Take z # 0 and
y =iz. Then (y,y) = [ly||* = ii(z,2) = [[z]|* and (x,y) # 0. But
|z +y|I* = (z + iz, x + iz)
= (z,2) + (z,ix) + (iz,z) + (iz,ix)
= llz)|* —i(z, @) + i(z, 2) + [|=]|* = 2||=]|*.
Question 2.
We know (z,,z) — [|z]|* and ||z,|* — ||=]|*. So that (z,z,) =
(€n, ) = [|l2]|* = [|«|]*. Then

|zn — 2|]* = (2, — 2,2, — )
= llzall® = (@n, 2) — (20, 2) + |2]*
= [l2|* = 2l|2[|* + [|=[* = 0.
Hence ||z,, — z|| — 0 so that z,, — .

Question 3.
For (i) we note that {z,} is convergent if ||z, — z|| — 0. That is
(xy, — x,x, —x) — 0. By the Cauchy-Schwartz inequality
[(@n,y) = (@,9)| = (20 — 2,9)| < llzn — =[]yl = 0.

For part (ii) observe that if z,, — x and x,, — 2z weakly, then (z,y) =
(z,y) for all y € H. Thus (x — z,y) =0 for all y € H. Take y = x — 2.

We have (z — 2,z — z) = ||z — z||* = 0. Which implies that = z since
|w]] = 0 only when w = 0.
For part (iii) Consider fi(z) = ﬁsin(kx) which is in L*([—m, 7]).

Let g € L*([—m, x]). Then g(k) = (fx, g), the kth Fourier coefficient of
g. By the Riemann-Lebesgue Lemma (which we have seen in lectures
and will prove later) g(k) — 0 as k — oo. Thus fj converges weakly to
zero in L?([—m,7]). But fi does not converge in the strong sense.



Question 4.
Just expand both sides. All terms on right cancel except (x,y).

Question 5.
1

Let f(z) =
)=
let g(x) = ﬁx[oﬂ. Then g € L'(R) but g ¢ L*(R).
Question 6.

f € L'([a,b]) does not imply that f € L?*([a,b]) as the previous

question shows. However if f € L?([a,b]) and a,b are finite, then by
Holder’s inequality

b b
/ ()| = / 1Lf ()| dx
< 11allf 1

=V (b—a)llfll2 < oo

. Then f € L*(R), but f ¢ L'(R). Conversely,

So f € L([a,b]).

Question 7.
This is again Holder’s inequality

/_ @) Pz < [

[e. 9]

Question 8.
Let f € L2(0,1]) and 0 < 8 < . Then f — 3 < (f — B)xz < fxn,.

So by Holder’s inequality

1

0 — dr —
<a=pz [ Jyr—p
1
- [ (@) - p)aa

0
</ 1 (z)xE, (x)dz

< I lalm(Ee))? = [m(Eg)]"2.

So m(Es) > (a - B)2.

Question 9.



We have
b
nsthn) = | (@)l

- o () (

Nowlett:b2 (Jf—b+a) en (Y, Ym) = 0y

—a 2
Question 10
Observe that the set

E={zela,b:[f(z)] = e} ={relab]:[f(2)]" >}

Now we have
b
[ wwrd > [xslsapa

> EP/XEdT

(55

=m"(E)e.
The result follows.
Question 11
The previous question gives
m*([z € [a,b] : |fu(z) — f(2)] > €]) <€ p/ | fr(z x)|Pdx.

Clearly if || f, — f||P — 0, then f, — f in measure.
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Problem sheet eight solutions.

Question 1.
We assume that f,h € L'(R) and solve

U = Uz + h(x), T € R E >0,
u(z,0) = f(z),

by taklng the Fourier transform in z. This gives the first order ODE
Uy + y?u = h(y) where u(y,0) = f( ). Here f is the Fourier transform
of f. This is the same as

jt (ey tﬁ) = eyQtﬁ(y),

where we multiplied the equation through by the integrating factor e¥™.
This gives

t
Uy, t) = fly)e ™t + / e n(y)ds.
0

Taking the inverse Fourier transform gives

1 [~
t) :_ﬂ-/ f(y —y t+zymdy_|__/ / —y? (t— s+zyzh( )dsdy

As in the lecture notes

_/ f 6 yt+zya:dy_/ f _ (== E)2d€
47rt .

Similarly

1 0 t o t [e%¢) [e%¢)
_/ / e_yQ(t_S)J”Wh(y)dtdy:/ / / h(&)e™V 2(t—s)+iy(z g)dydﬁds
T J-xJo 0 —o0 J —00

_ /Ot /: h(g)me(fﬁidgds.
uwt) = [ 16 —=

@92 s) (z—€)2
d§+// e ~ A=) dEds.
Var(t —s)
Question 2.

To solve u,, + uy,, = h(z), take the Fourier transform in . This

So

gives Uy, — £2u = h(£). Solving the ODE using variation of parameters
or undetermined coefficients gives

1)

U(E,y) = A()e Y 4+ B(&)evél — o



We take B = 0, since we cannot invert the Fourier transform if B is
not zero, the corresponding integral being divergent. Using the initial
data we have

A(E.0) = A(E) - @ ~ e,

So

u(e,) =  Fle) + 28 ) ertew - M)
§ 3

Inverting this is not at all straightforward. It depends on the be-
haviour of h, especially at £ = 0. If h does not have sufficient decay
at infinity, as well as the right behaviour at the origin, the inverse
transform will not exist.

This is the starting point for a major theme of Fourier analysis, the
theory of singular integrals. The origin of the problem of singular in-
tegrals lies in solving the Poisson equation Au = f on some domain
) C R. The fundamental solution of the Laplace equation for dimen-
sions strictly greater than 2 is K (z) = c||z||* ™, where c is a constant
depending on n. This is the Newton potential and notice that it is
singular at the origin. To solve the Poisson equation in principle we
have

ul(z) — f(y)
(=) /Q||<x—y>||n—2dy'

But for which functions f does this make sense? This is the basic
problem of the theory of singular integrals. How do we make sense
of integrals where the kernel has a singularity? It is a major area of
research in Fourier analysis.

Question 3.
We take/\ thq\ Fourier transform and use the convolution theorem.
Then u = h + ku. This gives
h
U= ——:.
1—k
Given h we will often be able to invert this to obtain the value of w.
Question 4.

(a) We use the Parseval-Plancherel theorem || f||2 = 27| f|2. Notice
that

1 1 [> |
N —lyl=iyz g
1+a2 2 /Ooe 4



Consequently

& dx > /1 2
/_oo (1+22)? :2”/_00 (56 |y) %

5.
(b) Take f(x) = xj-1,1](x), so that

1 .

~ 4 2

fl) = [ a2
-1 Yy

Hence by Plancherel
00 302 1
4/ Smdey:%/ dr = 4.
—0 Y —1
Question 5.

The purpose of this question is to prove a form of the Fourier inver-
sion theorem. The first few parts establish some useful identities.

(a)

h)\(l') — / e—)\|y\+iyzdy

0 00
— / e’\y”y“dy 4 / efAeriy:vxdy
0

—0o0

ey(y+iz) |0 e~ Y(A—iz) |
B Y+ iz _oo+ —(A—1z)|,
2
=N

/OO hy(x)dz = 2tan_1(:p/)\)}iooo

[e o]

= 2.



o (e / / ~Nel+e e gy
— /OO/ e MNEHE gy e
_ /sj /;? e~ MelFi(z—r gdrydﬁ
_ /;ff e~ Ael+iot e

as required.

(¢) We consider
Fehao) = 2 @) = Frme) = [ )y
= [ (@ = ) sy
— [ le =)= 5@) halo/Niy
= [ e =22) = @) ()i

Now we apply the DCT to obtain

[e.e]

lim (f « ha(z) = 2nf(2)) = lim [ (f(z = A2) = f(2)) I (2)d2

A—0 o

:/MMnﬁ@—Ad—f@»m@Mz

oo A—0
= 0.
So limy_,o f * hy(z) = 27 f(z). Now if f, fe L*(R) then we can
apply the DCT to obtain

= — hm/ f e Ve~ Al gy

271' A—0

- ey o=l
;g%f() e Wdy

P

which is the Fourier inversion theorem.

Question 6.



Integration by parts gives

/_oo f(x>€7iyxd{[ _ /_OO %f”(l‘)ei‘yzdl‘.

[e.9]

Thus
-~ 1
|f(y)] < Wﬂf”!h.

Now

/ 1 Fw)ldy = | \Fwlas+ | iy

o] M

~ 1
< W Fxearal + 171 / gy

ly|>M |y|2
~ 2
= || fxi=manll + Hf”HlM

< 00.

So f € L*(R).

Question 7.
We define

~ 1 [T

Ft) = 5= | p@yetes
and

Fuk) = o= [ fula)e

n(k) = 5 - T)e .
Then

0 = Fl =5 [ e i) - flaas
< [ 15ule) = f@)ldz 0

as n — oo by the DCT. Since we are on a finite interval then |f,(z) —
f(x)| is bounded by a constant, so swapping limits and integrals is
allowed.

Question 8.

There is a proof of Weierstrass’s Theorem in the notes. We provide
here an alternative proof using Fourier series. Any interval [a,b] can
be mapped to the interval [—m, 7] by a linear change of variables, so
it is enough to work on [—m, 7] to prove the result. See the notes for
more on this.



~

1 [" <
Let f € C([-m,7]). Let f(n) = Py f(z)e™™*dz. Then define
™ —Tr
Syf(z) =N f(n)e™. By Fejer’s Theorem

M—-1

1
omf = i Z Snf—=f
N=0
uniformly. Thus for € > 0 we can find M’ large enough so that for

M > M

sup |oaf () — f(2)] <e

z€[—m,m]

Now oarf = S0 ane™ for some numbers {a,}. Let M be such
that

M
' f(z) — Z ane™| < g
n=—M
for all z € [—7,7]. Now ™" = Z g(zxn)k and the convergence is
k=0 """

uniform on any interval [—R, R]. So we can find M (n) such that

(an)k ikx €
> e < A+ 4M(n)[an])

N

all |x] < 7. Now let P(x) = Z an, Z (w]:) . Clearly P is a poly-
n=—M k=0
nomial and by the triangle inequality

M M
|P(x) = f(@)| < sup | |P(x)— > ane™|+|f(x) = Y ane™
w€[—m,7] n=—M n=—M
al pal (ixn)*
ikx
< 3 |3 g
n=—»M k=0
M
1 €
< —
> AM +2 ' 2
n=—M
B 2Me +e
AM+2 2 °°€

Thus P uniformly approximates f and we are done.

Question 9.



(a) We have

fin) = o | sy
1 " i —ixn
=5 _Wf<x—|—g>e dz.

So
Foy =4 [ ()= slo+ D)) e

47 n

(b) By the previous part,
Fol < 4= [ 1@ =1 (0 ) do =0

~4r
as n — oo by the DCT. (Bound the integrand by a constant).

(¢) If |f(x + h) — f(x)| < Clh]* then

Cm
Fol < 5= [ s

_ Cr
 2ne

So N
f(n) =0 (In|7).

Question 10.
To simplify we use the Fourier transform in the form

_ / Z F(x)e > dy.

Then the Poisson summation formula takes the form

Yo Jm)y =" f)

Let f(l') = 6771.2&1‘2- Then f(y) = %efﬂy2/t. SO
Q(t) — Z —mtn

1 & e

v I
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Problem sheet nine solutions.

Question 1.

It is obvious that p x v(@)) = 0. Positivity is also obvious. We need
to establish that the product measure is countably additive. To this
end, let A x B € S x X and suppose that A, x B, is a collection of
mutually disjoint sets, such that A x B = U2, A, x B,,. We want to
prove that

=D n(Av(B.) (%)

If either A or B has measure zero, then (x) holds trivially, so we assume
this is not the case.
Using the relation xaxp = 22021 XA, xB, We have

Z XA, (T)xB, (Y

for all z,y. Fix y € B and notice that xp, (y) is either 1 or 0, so that
xa(x) = Y ek xa,(x), where K = {i € N;y € B;}. The collection
A; i€ K is disjoint and so p(A) = > ., 11(A;) holds. Therefore

Z:u XBn (**)7

for all y € Y. Since a term with p(A,) = 0 does not alter the sum in
(*) or (**), we can assume u(A,) = 0 for all n.

If both A and B have finite measure, then we integrate term by term
and (*) holds. If either A or B has infinite measure, then

> ulAnv(B,) = oo,

and equality holds.

Question 2.
We have




Conversely

L[AV@w@m:AT&ﬁaaE;M

1
dx _
:/ 7:tan_1x|y;é:z
o 1+ a2 v 4

This does not contradict Fubini’s Theorem since the integrand is not
integrable. That is the integral of |f(z,y)| is not finite.

Question 3.
dA d
Put f = 9= d—:, so that
= / fdv = /fXAdz/
A
= /fQXAdM
= / fogdp 1 ae.
A
So by the Radon-Nikodym Theorem
d\ d\ dv
a9 aag
H vap
Question 4.

This is obvious from the previous question.

() v
/ fl@)eda / \/_Jexp< ( - QM) >6_mdx

u 1
/ 27mexp< 22+$(§—8)—T‘2)dx

Question 5.

Let a = pu/o? —s. With f(x) =

Question 6.



Clearly aE = [a, ax]. It follows that

W(E) = / " f(t)dt = ulaF) (0.9)
and
w(aE) = / _ax= / F(t)dt. (0.10)

Hence the Radon-Nikodym derivative must satisfy

/1 " pdt = / Y . (0.11)

Differentiating both sides gives

= “pn =L / " pt (0.12)

Thus f(z) = af(az). Taking © = 1 gives f(a) = @ Hence f(x) = ¢/x
for some constant c.
Question 7.

A linear functional L is continuous at a € X if for every sequence
{a,} in X with a, — = we have L(a,) — L(a). This is equivalent to
saying that if € > 0 then there exists § > 0 such that |ja—y|| < J implies
|L(a) — L(y)| < e. Let y = a+ h. Then we have |L(a + h) — L(a)| < €
whenever ||h]| < d. But since L is linear, this gives

IL(a + h) — L(a)| = |L(h)| < .

Now suppose ||z —y|| < d for any z,y € X. Write y = x + h for some
h € X. Then

|L(z) = L(y)| = [L(z + h) — L(h)| = [L(h)| < e,

whenever ||h]| < d. Hence L is uniformly continuous.
Question 8.

P (lim, 50 4,) = lim P <U An>

n>m

< Ii =
< lim Y P(4,) =0,

n>m

if Y7 P(A,) < .
Next P (MYHOOA,L) = 1 if and only if

(09 (909

n>m m=1n>m

= P (o)) = 0.



But by countable additivity, for given m > 1 we have
P (ﬂ An> = lim [T~ P(4.)

N
< lim exp (— > P(An>) =0

if >° | P(A,) = co. Here we used the inequality 1 —¢ < e~ for ¢ > 0.

Question 9.
Let X, Y be independent random variables. Then

= E(X?) — (E(X))*+ E(Y?) — (E(Y))?
+2[E(XY) - E(X)E(Y)]
=Var(X)+ Var(Y),

since by independence E(XY) = E(X)E(Y). By induction we can
establish the more general result that if X;,2 =1,...,n are independent
random variables, then Var(}! | X;) = > 1, Var(X;).

Question 10.
Let S, = > 7_; Xs. Then E(S,) = > ,_, E(X}). So that we have

E (&> = p. Thus
n

E«%_@j:w4%>
:%wm&)

1 n
= Z Var(Xy)
k=1

K
< — =0
n

as n — o0o. Thus ((i—" - u)2> — 0 as n — oo. Hence 1/nS,, — p in
the L? sense.

Question 11.
The fact that d(X,Y) = d(Y, X) is obvious. If d(X,Y) = 0 then
E(|X —Y])=0s0o X =Y in L. The triangle inequality follows from



the same inequality for the metric
[z —y|

d ===

which was established in an earlier tutorial.
Now suppose that X,, — X in the probability measure P. Let € > 0.
Then

(X, X) :/ X=X dP+/ X=X e
| Xn—X|<e/2 1+ ‘Xn - X‘ | Xn—X|>e€/2 1+ ‘Xn - X‘

S/ dP—I—S/ dP
| Xn—X|<e/2 | Xn—X|>e€/2

<5+ P(IX— X| > ¢/2).

Since we assumed that P(|X,, — X| > ¢/2) — 0 then d(X,, X) — 0 as
n — oo.

Conversely, let E., = {z : |X,,(z) — X(z)| > €} and suppose that
0<e<l. Let A, ={z:|X,(z) — X(x)| < 1}. Then write

X, - X X, - X
d(Xn,X):/ Ldlﬂ/ Md?
A A

1+ ]X, — X e 1+]X, — X|
We estimate from below these terms.
X, — X X, — X
/—‘" |dP2/ X X] |dP
An1+|Xn_X| AnmEe,n1+|Xn_X‘
1
> —/ edP
2 JAunEen
- %P(An NE.),

a
since > — if a < 1. For the second integral

a
1+a 2
X,—X 1 1
/ Ldpz/ —dP+/ 4P
Az 1+ X, — X| A 2 ASNE., 2

> -P(A,NE.,)

[NNNe

since € < 1. Hence d(X,,X) >
converges to X in the measure P.

P(E.,) — 0asn — oo. So X,

£
2



