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Abstract. These are the lecture notes for the subject 37438Mod-
ern Analysis and its applications, taught at the University of Tech-
nology, Sydney. They are based on a variety of sources and are not
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Sources include, Introduction to Real Analysis, by G. Mcllenand,
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tion R. Beals, Cambridge; Principles of Real Analysis, Aliprantis
and Burkinshaw, North Holland; W. Rudin, Functional Analysis,
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1. Introductory Real Analysis

Let us review a few important ideas introduced in a typical first
course in analysis. Analysis is largely concerned with the behaviour of
functions, which we usually want to be continuous. However in order
to develop a useful theory of the behaviour of functions, we first need
to study sequences. An investigation of sequences and functions leads
to the major tools of elementary calculus, namely the derivative and
integral.

We begin with one of the most basic concepts in mathematics.

1.0.1. Sets. Particularly in the theory of measure, we are required to
manipulate sets. So here we review some elementary facts.

Definition 1.1. Let A and B be sets.

(i) The union of A and B is denoted A ∪B and is given by

A ∪B = {x : x ∈ A or B}.
The union of a collection of sets Ai, i ∈ N is defined inductively
and denoted ∪i∈NAi.

(ii) The intersection of A and B is denoted A ∩ B and is given by

A ∩ B = {x : x ∈ A and B}.
The intersection of a collection of sets Ai, i ∈ N is defined in-
ductively and denoted ∩i∈NAi.

(iii) The set difference of A and B is denoted A−B and is given by

A− B = {x ∈ A, x 6∈ B}.
(iii) We say that A is a subset of B and write A ⊂ B if every element

of A is contained in B. If A is contained in and may be equal
to B we write A ⊆ B.

Throughout these notes ∅ will denote the empty set. That is, the set
containing no elements.

Definition 1.2. Two sets A,B are said to be disjoint if A ∩ B = ∅.
Unions complements and differences satisfy certain laws. The proof

of the next result is a simple exercise.

Proposition 1.3. Let A,B,C be sets. The following relations hold.

(i) (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C).

(ii) (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C).

(iii) (A ∪B)− C = (A− C) ∪ (B − C).

(iv) (A ∩B)− C = (A− C) ∩ (B − C).

The most important rules for sets are deMorgan’s laws.
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Definition 1.4. Let A ⊂ X. Then Ac = {x ∈ X : x 6∈ A}. We call Ac

the complement of A. We define Xc = ∅.
Theorem 1.5 (deMorgan). Let Ai, i ∈ N be a collection of sets. Then

( ∞⋃

i=1

Ai

)c

=

∞⋂

i=1

Ac
i ,

( ∞⋂

i=1

Ai

)c

=

∞⋃

i=1

Ac
i .

Two other useful relationships are A − B = A ∩ Bc and A ⊆ B if
and only if Bc ⊆ Ac.

1.1. Countability. It is often important to distinguish between dif-
ferent kinds of infinite sets. For example, the rational numbers and the
real numbers are both infinite sets, but there is a sense in which the
real numbers is a bigger set than the rational numbers. To make this
precise we introduce the notion of countability.

Definition 1.6. A set X is countable if there is a one to one function
f : X → N. A countable set is also said to be denumerable. A set
which is not countable is said to be uncountable. If f is also onto then
we say that X is countably infinite.

Some authors prefer to use the term countable only when the set is
countably infinite. A finite set might then be termed finitely countable.
However this distinction is unimportant. There are equivalent formu-
lations which are useful in establishing the countability of certain sets.

Theorem 1.7. Let A be an infinite set. The following are equivalent.

(i) A is countable.

(ii) There exists a subset B of N and a function f : B → A which
is onto.

(iii) There exists a function g : A→ N that is one to one.

Proof. These are all straightforward. For example (iii) follows from the
fact that there is a one to one and onto function f : A → N, so f is
invertible. The others are exercises. �

An important fact about countable sets follows.

Theorem 1.8. Let Xi, i = 1, 2, 3, ... be countable sets. Then the union
X =

⋃∞
i=1Xi is also countable.

Proof. We let Xi = {xi1, xi2, xi3, ....}. Let B = {2k3n : k, n ∈ N}. Now
define f : B → A by f(2k3n) = xnk . Then f maps B onto A, so A is
countable by Theorem 1.7. �

The proof of the next result is also an easy consequence of Theorem
1.7 and is an exercise.
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Theorem 1.9. Suppose that Xi, i = 1, ..., n, n < ∞. are countable
sets. Then X1 × · · · ×Xn is countable.

Example 1.1. The set {a, b, c, d} is countable. For example we might
have f(a) = 1, f(b) = 2, f(c) = 3, f(d) = 4.

Example 1.2. The natural numbers are countable. Just take f(n) = n.

Example 1.3 (Cantor). The rational numbers Q are countable. Clearly
Q = Q+

⋃
Q−, where the superscripts denote the negative and non-

negative rationals respectively. So it is enough to show that the positive
rationals are countable. Define f : N × N → Q+ by f(m,n) = m/n.
Clearly f is onto, so by Theorem 1.7 the rationals are countable.

Example 1.4 (Cantor). The real numbers R are uncountable. A very
nice proof of this result uses the Baire Category Theorem and will be
presented later. Cantor presented at least two proofs of this result.
The second is the most famous and is known as his diagonal argument.
Suppose that we restrict attention to the interval [0, 1] and represent
every number in [0, 1] in binary, that is as a possibly infinite sequence
of zeroes and ones. We then make a list of all the elements in some
order. So for example if we create a list of sequences from the binary
expansion of the numbers in [0, 1], the list might look like this:

s1 = (0, 0, 0, 0, 0, 0, 0, .....)

s2 = (0, 1, 1, 1, 0, 0, 1, .....)

s3 = (1, 1, 1, 1, 0, 0, 0, .....)

s4 = (0, 0, 1, 1, 0, 1, 0, .....)

s5 = (0, 1, 1, 0, 0, 1, 1, .....)

...

We claim that no possible list can contain every possible sequence of
zeroes and ones. To show this we construct and element s0 which is
not in the given list. We do so by looking down the diagonal of the
array of numbers given above. That is, we look at the element sii and
choose element number i of s0 to not equal sii. So from the list here we
would define

s0 = (1, 0, 0, 0, 1, ....)

Notice the first element of s1 is 0, so we choose the first element of s0
to be 1. The second element of s2 is 1, so the second element of s0 is 0.
The third element of s3 is 1, so the third element of s0 is 0 and so on.

The sequence s0 is not in the above list. Suppose otherwise. Then
there is an integer N such that SN is in the above list and s0 = sN .
In particular the Nth term of the sequence s0 is the Nth term of the
sequence sN . But this is a contradiction, because we constructed s0 by
choosing s0N 6= sNN . So s0 is not in the above list. This is true for any
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possible countable list. So no countable list of sequences of zeroes and
ones can contain every sequence of zeroes and ones. Hence the interval
[0, 1] is not countable and hence R is not countable.

1.1.1. Sets and Real numbers. Analysis makes use of an axiom and
properties of the real numbers. We start with the humble triangle in-
equality, which is easily the most important inequality in mathematics.

Lemma 1.10. For any real numbers a, b, |a+ b| ≤ |a|+ |b|, where the

absolute value is defined by |x| =
√
x2 for x ∈ R.

Proof. This is elementary.

|a+ b|2 = (a + b)2 = a2 + 2ab+ b2

≤ |a|2 + 2|ab|+ |b|2

= (|a|+ |b|)2.
We used the fact that ab ≤ |ab|. Now take square roots. �

A rigorous treatment of analysis must begin with the axiom which is
the foundation of the subject. If we consider sets of real numbers, then
we can ask various questions of them. For example, are they bounded?

Definition 1.11. A finite number u is an upper bound for a set A ⊆ R
if for every x ∈ A, x ≤ u. Similarly, l is a lower bound for A if for
every x ∈ A, x ≥ l.

Now suppose that A ⊂ R is non-empty and that there is an upper
bound? We can ask whether or not there is a least upper bound?

Definition 1.12. If ū is an upper bound of a set A ⊆ R with the
property that ū ≤ u, for all other upper bounds u, then ū is called the
least upper bound or supremum of A. We write ū = supA. Similarly, a
lower bound l̄ of a set A ⊂ R is the greatest lower bound or infimum,
if for every lower bound of A we have l̄ ≥ l. We write l̄ = inf A.

Consideration of elementary examples would suggest that every non
empty set, bounded above, does indeed have a least upper bound. In-
deed it is impossible to write down a counter example. Many examples
are straightforward. Take the set [0, 1). The least upper bound is ob-
viously 1. This is easy, but it turns out that there is no way that one
can prove that every nonempty set of real numbers which is bounded
above has a least upper bound. Instead we make it an axiom.

Axiom 1: The Least Upper Bound Axiom: Every non empty
set of real numbers which is bounded above has a least upper bound.

Example 1.5. This example is important and uses ideas that we will
develop below. Let f : [0, 1] → R be a continuous function. Let
P = {x0, x1, ..., xn} be a partition of [0, 1]. Let mi = maxx∈[xi−1,xi] f(x).
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Define L(f,P) =
∑n

i=1mi(xi − xi−1). Then by our axiom,

I = sup
P

{L(f,P)} (1.1)

exists. The point is that we could not otherwise prove the existence of
this supremum.

Example 1.6. Does the set of rational numbers in [0, π] have a least
upper bound? Suppose that there is a rational number 0 < ǫ < π, then
by the continuum property of the real numbers, there is a rational
number δ, with ǫ < δ < π. So this set has no least upper bound.

From this axiom all of analysis is derived. We start by proving that
non-empty sets bounded below have greatest lower bounds.

Theorem 1.13. A non-empty set of real numbers bounded below has
a greatest lower bound.

Proof. Suppose that A is nonempty and bounded below. Now consider
the set −A = {−x : x ∈ A}. This set is nonempty and bounded above:
If l is a lower bound of A, then −l is an upper bound of −A. To see
this, notice that if x ∈ A, then l ≤ x. So −l ≥ −x. Hence −l is an
upper bound. By Axiom 1, −A has a least upper bound ū. Then it
follows that l̄ = −ū is the greatest lower bound for A. �

An important result we use extensively follows.

Theorem 1.14. Assume that supA exists, where A ⊂ R. Then for
every ǫ > 0 we can find an x such that

supA− ǫ < x ≤ supA.

Proof. Suppose that for every x ∈ A, x ≤ supA − ǫ. Then supA − ǫ
is an upper bound for A, less than supA, which is a contradiction. So
there must be some x in A with x > supA− ǫ. Clearly x ≤ supA. �

The Archimedean Property This is an obvious property, which
nevertheless is fundamental: Given any two positive real numbers x, y,
we can find a natural number n such that nx > y. Equivalently, there
is no largest natural number.

1.2. Sequences. We now introduce the concept of a sequence.

Definition 1.15. A sequence in R is a function f : N → R.We usually
write f(n) = xn and denote the sequence by {xn}∞n=1 or just {xn}.

Sequences are what analysis is made of. Many practical problems
have solutions which are given by constructing sequences which “con-
verge” to a solution. That is, which gets closer and closer to the solution
as n increases. We can formally define convergence as follows.
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Definition 1.16. A sequence of real numbers {xn}∞n=1 is said to be
convergent with limit x, if for every ǫ > 0 there exists N ∈ N such that
n ≥ N implies |xn − x| < ǫ. We write xn → x. A sequence which does
not converge is said to diverge.

It is easy to establish some basic facts about convergent sequences.
From here on we will see just how essential the triangle inequality is to
analysis. The subject could not exist without it.

Theorem 1.17. The limit of a convergent sequence is unique.

Proof. Suppose that xn → x and xn → y. Then for all n

|x− y| = |x− xn + xn − y| ≤ |xn − x|+ |xn − y|.
But |xn − x| → 0 and |xn − y| → 0, so |x− y| = 0. �

Theorem 1.18. Every convergent sequence is bounded.

Proof. Let {xn}∞n=1 be a convergent sequence with limit x and choose
N such that n ≥ N implies |xn − x| < 1. Now let

M = max{|x1|, ..., |xN−1|, 1 + |x|}.
Clearly if 1 ≤ n ≤ N − 1 then |xn| ≤M. Conversely, if n ≥ N , Then

|xn| = |xn − x+ x| ≤ |xn − x| + |x| < 1 + |x| ≤M.

So for all n, |xn| ≤M , and hence the sequence is bounded. �

Convergent sequences behave as you would expect under addition,
multiplication and division.

Theorem 1.19. Let a, b be constants and suppose that {xn} and {yn}
are convergent sequences, with limits x, y respectively. Then

(1) axn → ax.

(2) axn + byn → ax+ by

(3) xnyn → xy

(4) If yn is never zero and y 6= 0, xn/yn → x/y.

Proof. These are easy to prove. For example, let ǫ > 0. Choose M
such that n ≥ N implies |xn − x| < ǫ/(2|a|) and K such that n ≥ K
implies |yn − y| < ǫ(2|b|). Then let N = max{M,K}. Then for n ≥ N ,

|axn + byn − ax− by| ≤ |a||xn − x|+ |b||yn − y|
< |a|ǫ/(2|a|) + |b|ǫ/(2|b|) = ǫ.

Proofs of the other results are exercises. �

We also have the essential result that increasing bounded sequences
are convergent.
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Theorem 1.20. Every monotone increasing sequence which is bounded
above has a limit. Every monotone decreasing sequence bounded below
has a limit.

Proof. Let {xn}∞n=1 be a bounded, increasing sequence. Then for all n,
xn+1 ≥ xn. Consider the set A = {x1, x2, x3, ...}. This set is non-empty
and bounded above, so it has a least upper bound, which we denote
by x. Now pick ǫ > 0 and choose N ∈ N such that xN > x− ǫ. Since
x is the least upper bound we can do this, otherwise it would not be
the least upper bound. Since {xn}∞n=1 is increasing we have for n ≥ N ,
|xn−x| = x−xn < ǫ. Hence xn → x. The case of a decreasing sequence
is similar. �

Subsequences play an essential role in analysis.

Definition 1.21. Let {xn}∞n=1 be a sequence. A subsequence {xnK
}∞K=1

is a sequence contained in {xn}∞n=1, where nK is an increasing sequence
of integers. So nK → ∞ as K → ∞.

The most important results about sequences on the real line stem
from the Bolzano-Weierstrass Theorem. To prove this, we need some
preliminaries.

Theorem 1.22. Every sequence has a monotone subsequence.

Proof. We sketch the proof. We suppose that the sequence is not con-
stant after some term xN . If xn = a for all n ≥ N , then the result is
trivial. So suppose this is not the case. The basic idea is to construct
the sequence. We pick the first element, say y1 = xn, then we move
along the sequence till we find another element xn1 which is larger then
xn and then take y2 = xn1 . Now move along the sequence till we come
to a larger element, make that the third element of the subsequence.
Continuing we construct a monotone increasing sequence. Similarly for
the case of a monotone decreasing sequence. �

Theorem 1.23 (Bolzano-Weierstrass). Every bounded sequence of real
numbers has a convergent subsequence.

Proof. A bounded sequence has a bounded monotone subsequence.
Bounded monotone sequences are convergent. So every bounded se-
quence has a convergent subsequence. �

The reason why this result is so important is that we often need
to deal with sequences of real numbers on bounded intervals and in
many proofs we pick a convergent subsequence to work with. Texts
on elementary real analysis will deal with this and we will see some
examples of this in practice.

Definition 1.24. A sequence of real numbers {xn}∞n=1 is said to be a
Cauchy sequence if for every ǫ > 0 we can find an N ∈ N such that
n,m ≥M implies |xn − xm| < ǫ.
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Every Cauchy sequence is convergent. This fact underpins a lot of
what follows. Cauchy sequences and convergent sequences are basically
the same. The point is that Cauchy’s criterion gives us a different way
of determining convergence, which is particularly useful when we do
not have the limit available to us. First we show an easy result.

Proposition 1.25. Every convergent sequence is a Cauchy sequence.

Proof. We pick N ∈ N such that n ≥ N implies |xn − x| < ǫ/2. Then
we have for n,m ≥ N

|xn − xm| = |xn − x+ x− xm| ≤ |xn − x|+ |xm − x| < ǫ/2 + ǫ/2 = ǫ,

so a convergent sequence is Cauchy. �

Proving the converse is more difficult. We have to show that a
Cauchy sequence is bounded. The proof of this result is much the
same as the proof that a convergent sequence is bounded. Then we
establish the following result:

Proposition 1.26. If a Cauchy sequence has a convergent subsequence
with limit x, then the Cauchy sequence converges to x.

Proof. To see this, suppose that {xn}∞n=1 is Cauchy and that there is a
subsequence {xnK

}∞K=1 which converges to x. So that limK→∞ xnK
= x.

We then choose N large enough to make |xn−xm| < ǫ/2 for all n,m ≥
N and pick K large enough to make nK > N. Then by the triangle
inequality

|xn − x| = |xn − xnK
+ xnK

− x|
≤ |xn − xnK

|+ |xnK
− x|

< ǫ/2 + ǫ/2 = ǫ.

So xn → x. �

The next step is easy.

Theorem 1.27. Every Cauchy sequence is convergent.

Proof. Every Cauchy sequence is bounded. By the Bolzano-Weierstrass
Theorem, it follows that every Cauchy sequence has a convergent sub-
sequence. Consequently, every Cauchy sequence converges. �

Cauchy sequences are important because they allow us to establish
convergence without knowing what the limit is. In most cases, we
cannot compute the limit exactly, so we cannot prove convergence by
establishing that |xn − x| → 0 since x is unknown. We can however
often prove that |xn − xm| → 0 as n,m→ ∞.

It is important to understand that a sequence with the property that
|xn+k − xn| → 0, as n→ ∞, for fixed k, is not necessarily Cauchy. We
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insist that |xn−xm| → 0 as both n,m→ ∞. For example, the harmonic
sequence

xn =
n∑

k=1

1

k
,

diverges. The proof of this result is quite ancient and is often attributed
to Nicolas Oresme (born between 1320-25, died 1382). However it may
well have been established in India even earlier. It is based on the
observation that

2N∑

k=N

1

k
=

1

N
+ · · ·+ 1

2N

≥ N × 1

2N
=

1

2

Similarly
∑4N

k=2N+1 ≥ 1
2
,
∑8N

k=4N+1 ≥ 1
2
etc. So that

∞∑

k=1

1

k
≥ 1 +

1

2
+

1

2
+

1

2
+ · · ·

and so xn → ∞. However |xn+1 − xn| = 1
n
→ 0 as n→ ∞.

The use of convergent subsequences is one of the most common tech-
niques in analysis. Notice that we have also used the triangle inequality
extensively. When we come to extend analysis to other types of spaces,
we will want our measure of length to satisfy the triangle inequality.
This is not hard to do, but obtaining convergent subsequences will be
more difficult. We will discuss this further when we turn to Hilbert
and Banach spaces.

1.3. Series. As the example of the harmonic sequence shows, we can
handle series by treating them as sequences.

Definition 1.28. A series S =
∑∞

n=1 an is said to be convergent with

limit S if the sequence of partial sums {SN}∞N=1 with SN =
∑N

n=1 an
is convergent with limit S. If the series is not convergent, we say it
diverges.

The next result is obvious.

Theorem 1.29. If
∑∞

n=1 an and
∑∞

n=1 bn are convergent with sums S
and T respectively, then

∑∞
n=1(an+bn) = S+T. Further

∑∞
n=1 can = cS

for all c ∈ R.

Proof. This follows from previously established properties of sequences
applied to SN =

∑N
n=1 an and TN =

∑N
n=1 bn. �

Note it is not true that if
∑∞

n=1 an and
∑∞

n=1 bn both converge then∑∞
n=1 anbn is convergent. We require absolute convergence for this.
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Definition 1.30. A series is said to be absolutely convergent if the se-
ries

∑∞
n=1 |an| converges. If

∑∞
n=1 an converges, but

∑∞
n=1 |an| diverges,

the series is said to be conditionally convergent.

Example 1.7. The harmonic series
∑∞

n=1
1
n
is divergent. However the

alternating series
∑∞

n=1
(−1)n+1

n
= ln 2. Hence this series is conditionally

convergent.

There are many simple but useful properties possessed by convergent
series.

Lemma 1.31. If
∑∞

n=1 an is convergent, then limn→∞an = 0.

Proof. We have Sn =
∑n

k=1 ak and {Sn}∞n=1 is convergent with limit S.
Then Sn+1 − Sn → 0 butSn+1 − Sn = an. �

Another useful fact is the following. The proof is an exercise.

Proposition 1.32. Let
∞∑

n=1

an be convergent. Then as, N,M → ∞,

∑N
n=M+1 an → 0.

Let us see what is needed to guarantee that
∑∞

n=1 anbn converges.

Proposition 1.33. If
∑∞

n=1 an is convergent and
∑∞

n=1 bn is absolutely
convergent, then

∑∞
n=1 anbn is convergent.

Proof. Consider the sequence SN =
∑N

n=1 anbn. Now
∑∞

n=1 an is con-
vergent, hence the sequence an → 0 and so is bounded. Suppose that
|an| ≤ K. Then if N > M

|SN − SM | = |
N∑

n=M+1

anbn| ≤
N∑

n=M+1

|anbn|

≤ K

N∑

n=M+1

|bn| → 0,

as N,M → ∞ since
∑∞

n=1 |bn| is convergent. Thus {SN}∞N=1 is Cauchy
and hence it converges. �

There are various tests for convergence. Most rely on the comparison
test.

Theorem 1.34 (Comparison Test). Suppose that
∑∞

n=1 an and
∑∞

n=1 bn
are series of positive terms. If there is an N ∈ N such that n ≥ N
implies an ≤ bn and

∑∞
n=1 bn is convergent, then

∑∞
n=1 an is also con-

vergent. Conversely if
∑∞

n=1 an is divergent, then
∑∞

n=1 bn is also di-
vergent.
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Proof. Let T =
∑∞

k=1 bk and Sn =
∑n

k=1 ak. Since the an are positive
SN is increasing. We show that it is bounded above.

Sn = a1 + a2 + · · ·+ aN−1 + aN + · · ·+ an

≤ a1 + · · ·+ aN−1 + bN + · · ·+ bn

= b1 + · · ·+ bN−1 + bN + · · ·+ bn

+ (a1 − b1) + · · ·+ (aN−1 − bN−1)

= Tn +
N−1∑

k=1

(ak − bk)

≤ T +
N−1∑

k=1

(ak − bk).

So {Sn}∞n=1 is increasing and bounded above and hence converges.
The proof of the second part is similar. �

A variant of this is the limit comparison test.

Theorem 1.35 (The Limit Comparison Test). Let
∑∞

n=1 an and
∑∞

n=1 bn
be series of strictly positive terms. Suppose that

lim
n→∞

an
bn

= l 6= 0.

Then either both series converge or both series diverge.

Proof. We can assume that an → 0 and bn → 0, since the series will
diverge otherwise. Since an/bn → l, the sequence {an/bn} is bounded
by some number K. From which it follows that an ≤ Kbn. So that
if
∑∞

n=1 bn converges, then
∑∞

n=1 an converges by the comparison test.
Conversely, if

∑∞
n=1 an diverges, then so does

∑∞
n=1 bn.

Now we can find N ∈ N such that n ≥ N implies an >
1
2
lbn, so that

if
∑∞

n=1 an converges, then so does
∑∞

n=1 bn. The divergence of
∑∞

n=1 bn
implies the divergence of

∑∞
n=1 an. �

Example 1.8. Consider Sn =
∑∞

n=1
1
n2 . Then

Sn = 1 +
1

4
+

1

9
+

1

16
+ · · ·

< 1 +
1

2
+

1

2 · 3 +
1

3 · 4 +
1

n(n− 1)

= 1 + (1− 1

2
) + (

1

2
− 1

3
) + (

1

3
− 1

4
) + · · ·+ (

1

n− 1
− 1

n
)

= 2− 1

n
< 2.

So this series is convergent. (It actually equals π2/6). Now consider

the series
∞∑

n=1

n+ 1

2n3 + n + 3
. We apply the limit comparison test and



14 MARK CRADDOCK

compute

lim
n→∞

(
n+ 1

2n3 + n+ 3

)
/

(
1

n2

)
= 1/2 6= 0.

So the second series also converges.

A powerful convergence test follows.

Theorem 1.36 (The Ratio Test). Let
∑∞

n=1 an be a series of strictly

positive terms. Let lim
n→∞

an+1

an
= L. Then the series converges if L < 1

and diverges if L > 1. If L = 1 then the test is inconclusive.

Proof. Suppose that L < 1. Pick r ∈ R such that L < r < 1. We can
choose n ∈ N such that n ≥ N implies∣∣∣∣

an+1

an
− L

∣∣∣∣ < r − L

or

−(r − L) <
an+1

an
− L < r − L.

So an+1 < ran. Also an < ran−1 < r2an−2 < r3an−3 etc. Indeed
an < rkan−k. Now let k = n−N. Then

an ≤ rn−NaN =
(aN
rN

)
rn.

The series
∑∞

n=1

(
aN
rN

)
rn is a geometric series with common ratio r < 1

and so converges. By the comparison test
∑∞

n=1 an also converges.
For the case L > 1 the proof is similar, with the final inequalities

reversed and r > 1, giving a divergent geometric series. Finally, for the
series

∑∞
n=1

1
n
, L = 1 and the series diverges. For the series

∑∞
n=1

1
n2 ,

L = 1 and the series converges. So the ratio test is inconclusive if
L = 1. �

Remark 1.37. We can apply the ratio test to series of nonpositive terms.

We instead consider limn→∞

∣∣∣an+1

an

∣∣∣ = L and the conclusions are the

same as in the given result.

To state the nth root test, we introduce the idea of a limsup.

Definition 1.38. If {xn} is a bounded sequence, then the largest sub-
sequential limit l̄ is

l̄ = lim sup xn (1.2)

and the smallest subsequential limit s is

s = lim inf xn. (1.3)

Some authors also write lim
n→∞

sup xn0 and lim
n→∞

inf xn.

Example 1.9. If xn = (−1)n, then lim sup xn = 1 and lim inf xn = −1.
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The convergence of a sequence can be given in terms of its lim sup
and lim inf . The proof of the next result is an exercise.

Proposition 1.39. A sequence {xn}∞n=1 converges if and only if

lim sup xn = lim inf xn.

We now give yet another convergence test.

Theorem 1.40 (The nth root test). Let
∑∞

n=1 an be a series and sup-
pose that

lim sup |an|1/n = L. (1.4)

If L < 1 the series converges. If L > 1 the series diverges. If L = 1
the series may converge or diverge.

Proof. This is another application of the comparison test. If L < 1,
then there is an r such that L < r < 1 and for n large enough |an| < rn.
Convergence follows from the comparison test with a geometric series.
The proof of the second case is similar. Finally, we can exhibit series
which converge when L = 1 and diverge when L = 1. (This is an
exercise). �

There are a number of other, lesser known tests for convergence
which can be very useful. We present one next.

Theorem 1.41 (Cauchy Condensation Test). Suppose that the se-
quence an is positive and non-increasing. Then the series

∑∞
n=1 an

converges, if and only if the series
∑∞

n=0 2
na2n converges. Moreover we

have the estimate
∞∑

n=1

an ≤
∞∑

n=0

2na2n ≤ 2

∞∑

n=1

an.

Proof. Since the sequence is non-decreasing, we have a2 + a3 ≤ 2a2,
a4 + a5 + a6 + a7 ≤ 4a4 etc. So that

∞∑

n=1

an ≤ a1 + 2a2 + 4a4 + 8a8 + · · · =
∞∑

n=0

2na2n .

Thus if
∑∞

n=0 2
na2n converges, then so does

∑∞
n=1 an. Similarly a1+a2 ≤

2a2, a2 + a4 + a4 + a4 ≤ 2a2 + 2a3, etc. So that
∞∑

n=0

2na2n = a1 + 2a2 + 4a4 + · · · ≤ 2a1 + 2a2 + 2a3 + · · ·

= 2

∞∑

n=1

an.

So by the comparison test the series
∑∞

n=0 2
na2n converges if

∑∞
n=1 an

converges. The estimate follows from the above. �
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Example 1.10. We consider the convergence of
∑∞

n=1
1
np . Now

∞∑

n=0

2na2n =
∞∑

n=0

2n
1

(2n)p
=

∞∑

n=0

1

2np−n
.

This is a geometric series that will converge for np−n > 1 and diverge
otherwise. Hence the original series converges for p > 1 and diverges
for p ≤ 1.

Finally we mention a test for alternating series.

Theorem 1.42. Let {an}∞n=1 be a sequence of positive terms with an →
0. Then the series

∑∞
n=1(−1)n+1an is convergent.

Proof. We will show that the sequence of partial sums is Cauchy. Let
ǫ > 0 and note that since an → 0 we can find an N ∈ N such that
an < ǫ for all n ≥ N. Next observe that since an is monotone decreasing,
an − an+1 ≥ 0. Consequently

am+1 − am+2 + am+3 − am+4 + · · ·+ (−1)n+1an ≤ am+1.

Now if Sn =
∑∞

k=1(−1)k+1ak, then pick n > m ≥ N.

|Sn − Sm| = |(a1 − a2 + a3 − · · ·+ (−1)n+1an)− (a1 − a2 + a3

− · · ·+ (−1)m+1am)|
= |am+1 − am+2 + am+3 − am+4 + · · ·+ (−1)n+1an|
≤ |am+1| < ǫ.

So {Sn}∞n=1 is Cauchy and so the series converges. �

1.4. Continuous Functions. Once we have the basic facts about se-
quences, we are able to introduce the concept of continuity. First we
must extend the definition of a limit to functions.

Definition 1.43. We define limit points and limits of functions as
follows.

(1) A point x is a limit point of a set X ⊆ R if there is a sequence
{xn}∞n=1 ⊂ X such that xn → x. If there is no such sequence,
then x is an isolated point.

(2) Let X ⊆ R, f : X → R and x0 a limit point of X. Then L is
the limit of f as x→ x0 if and only if, given ǫ > 0, there exists
δ > 0 such that x ∈ X, |x− x0| < δ implies |f(x)− L| < ǫ.

Limits of functions satisfy the usual arithmetic properties.

Theorem 1.44. Let f, g : X → R be functions and c a constant. If
x0 is a limit point of X and limx→x0 f(x) = L and limx→x0 g(x) = M ,
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then

lim
x→x0

cf(x) = cL (1.5)

lim
x→x0

(f(x) + g(x)) = L+M (1.6)

lim
x→x0

f(x)g(x) = LM (1.7)

lim
x→x0

f(x)/g(x) = L/M, (1.8)

provided M 6= 0 and g is nonzero.

Proofs of these results are exercises with the triangle inequality and
are left to the reader. We can define right and left limits for functions.

Definition 1.45. Let f : X → R, where X ⊆ R. We say that

lim
x→a+

f(x) = L,

if for every ǫ > 0, there exists δ > 0 such that a < x < a + δ implies
|f(x)− L| < ǫ. Similarly we say

lim
x→a−

f(x) = L,

if for every ǫ > 0, there exists δ > 0 such that a − δ < x < a implies
|f(x)− L| < ǫ.

An easy result follows.

Proposition 1.46. Let f : X → R, where X ⊆ R. Then limx→a f(x) =
L if and only if limx→a+ f(x) = limx→a− f(x) = L.

The proof is an exercise. Finally we define the limit at infinity.

Definition 1.47. Let f : R → R be a function. Then limx→∞ f(x) = L
if for every ǫ > 0 there exists an M > 0 such that x ≥ M implies
|f(x) − L| < ǫ. Similarly we say that limx→−∞ f(x) = L if for every
ǫ > 0 there exists M < 0 such that x ≤M implies |f(x)− L| < ǫ.

Having established the essentials about limits of functions, we intro-
duce the crucial idea of continuity.

Definition 1.48. A function f : X → R is said to be continuous at x
if for any sequence {xn}∞n=1 ⊂ X which converges to x, we have

lim
n→∞

f(xn) = f(x).

This can be recast in the following form.

Definition 1.49. A function f : X → R is continuous at x ∈ X if
for any ǫ > 0, we can find a δx > 0 such that |x − y| < δx implies
|f(x)− f(y)| < ǫ.
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We write δx to emphasise the dependence on the point x. So for
each x we will require a different δ. If a function is continuous at every
point in its domain, we say that it is continuous. The two definitions
are clearly equivalent.

Theorem 1.50. The two definitions of continuity stated above are
equivalent.

Proof. First suppose that f satisfies Definition 1.49. Let {xn}∞n=1 be a
sequence in X with limit x. Pick ǫ > 0 and δ > 0 such that |x−x0| < δ
implies |f(x)− f(x0)| < ǫ. Since xn → x we may find an N ∈ N such
that n ≥ N implies |xn − x| < δ. Then |f(xn) − f(x)| < ǫ, but this
means that f(xn) → f(x), so f is continuous according to Definition
1.48.

Suppose that f does not satisfy Definition 1.49. Then we can find ǫ >
such that for every δ > 0 with |x−x0| < δ we have |f(x)−f(x0)|ǫ. Now
choose a sequence {xn}∞n=1 in X with limit x ∈ X . Then given δ > 0
we may find an N ∈ N such that |xn − x| < δ, but |f(xn)− f(x)| ≥ ǫ.
So {f(xn)}∞n=1 does not converge to f(x) and thus f is not continuous
by Definition 1.48. �

There are other notions of continuity. We will see a third definition
in terms of open sets and encounter the concept of absolute continuity
later. We can also consider functions which are right and left continu-
ous.

Definition 1.51. We say that f is right continuous at x0 if limx→x+
0
f(x)

exists. If limx→x−

0
f(x) exists, then we say that f is left continuous.

The most important form of continuity for the Riemann integral is
uniform continuity.

Definition 1.52. A function f : X → R is said to be uniformly contin-
uous if given ǫ > 0 we can find a δ > 0 such that whenever |x− y| < δ
we have |f(x)− f(y)| < ǫ.

The point here is that unlike ordinary continuity, δ does not depend
on x or y. Only on how far apart they are. Uniform continuity implies
continuity, but the converse is false. Most functions on the real line are
not uniformly continuous, but they are on compact intervals. In order
to prove this we introduce an equivalent idea.

Definition 1.53. A function f : X ⊆ R → R is sequentially uniformly
continuous if given xn, yn ∈ X , yn−xn → 0 implies f(yn)−f(xn) → 0.

The proof of the following is straightforward and we omit it.

Theorem 1.54. A function f : X → R is sequentially uniformly con-
tinuous if and only if it is uniformly continuous.

Now we will prove a major result.
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Theorem 1.55. A continuous function on a closed bounded interval
[a, b] is uniformly continuous.

Proof. Suppose that f is not uniformly continuous. It therefore cannot
be sequentially uniformly continuous. Choose r ≥ 0 such that for every
δ > 0 there exists x, y ∈ [a, b] such that |x−y| < δ and |f(x)−f(y)| > r.

For each N ∈ N, choose xn, yn ∈ [a, b] such that

|xn − yn| <
1

n
, and |f(xn)− f(yn)| ≥ r.

By the Bolzano-Weierstrass Theorem, {xn}∞n=1 has a convergent sub-
sequence {xnK

}∞K=1. Suppose that xnK
→ x. Since {xnK

− ynK
}∞K=1 is

a subsequence of {xn − yn}∞n=1 and xn − yn → 0, so xnK
− ynK

→ 0. So
we have

ynK
= xnK

− (xnK
− ynK

) → x− 0 = x.

But f is continuous on [a, b] and hence at x. So f(xnK
) → f(x). and

f(ynK
) → f(x) and so f(xnK

) − f(ynK
) → 0. But we have assumed

that

|f(xnK
)− f(ynK

)| ≥ r > 0, (1.9)

for all K > 0. We have a contradiction. So f is sequentially uniformly
continuous and hence uniformly continuous. �

The fact that continuous functions on closed and bounded intervals
are uniformly continuous is essential to many other results. For exam-
ple, the proof of Riemann’s theorem that every continuous function is
Riemann integrable requires it. So does the proof of the Fundamental
Theorem of Calculus.

Another widely used type of continuity is Lipschitz continuity.

Definition 1.56. A function f : X → R is Lipschitz continuous if
there exists a constant M such that

for every x, y ∈ X, |f(x)− f(y)| ≤M |x− y|.
Lipschitz continuous functions are obviously continuous and in fact

uniformly continuous.
We now turn to another of the big results about continuous functions.

This is about maxima and minima.

Theorem 1.57. A continuous function on a closed, bounded interval
[a, b] is bounded. Moreover it attains its maximum and minimum values
on [a, b].

Proof. Suppose that f is unbounded. Then given n ∈ N, n is not a
bound for f and thus there exists xn ∈ [a, b] such that |f(xn)| > n.
However, we know that [a, b] is closed and bounded, and so the se-
quence {xn}∞n=1 has a convergent subsequence {xnK

}∞K=1. Suppose that
xnK

→ x as K → ∞. By continuity of f , f(xnK
) → f(x). But this

is impossible, since f(xnK
) > nK for each K and nK → ∞, so the
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sequence {f(xnK
)}∞K=1 is not convergent, and hence f is not continu-

ous at x. This is a contradiction and we therefore conclude that f is
bounded.

Now suppose that M = supx∈[a,b] f(x). For each n ∈ N choose xn ∈
[a, b] such that f(xn) > M − 1/n. Then f(xn) → M. {xn}∞n=1 is con-
tained in [a, b], so is bounded and hence has a convergent subsequence
{xnK

}∞K=1. Suppose xnK
→ c ∈ [a, b]. By continuity, f(xnK

) → f(c).
But the sequence {f(xn)}∞n=1 is convergent, so the sequence {f(xnK

)}∞K=1

has the same limit. Thus f(c) = M, so f reaches its maximum. The
case for the minimum is similar. �

We also need to mention the intermediate value property. This is
the result which tells us that we can solve certain equations.

Theorem 1.58. Suppose f : [a, b] → R is continuous on [a, b] and
f(a)f(b) < 0. Then there is a c ∈ [a, b] such that f(c) = 0.

Proof. Without loss of generality, we suppose that f(a) < 0, f(b) > 0.
Let A = {x ∈ [a, b] : f(x) < 0}. Then a ∈ A and so A is nonempty
and bounded above. It therefore has a least upper bound, which we
we call c. Choose xn such that c− 1/n < xn ≤ c. Then f(xn) < 0. By
continuity, f(c) = limn→∞ f(xn) ≤ 0. Now take yn = c+(b−c)/n. Then
yn → c and by continuity f(c) = limn→∞ f(yn) ≥ 0. Hence f(c) = 0.
The case f(a) > 0 and f(b) < 0 is similar. �

Corollary 1.59. Let f be continuous on [a, b]. Suppose that f(a) 6=
f(b) and that M lies between f(a) and f(b). Then there is a c ∈ [a, b]
such that f(c) =M.

Proof. Apply Theorem 1.58 to the function g(x) = f(x)−M. �

Definition 1.60. A function is said to be monotone increasing if for
each x ≥ y we have f(x) ≥ f(y).We say that f is monotone decreasing
if f(y) ≤ f(x).

An important question that arose at the end of the nineteenth cen-
tury was which functions are differentiable? Weierstrass had con-
structed a nowhere differentiable function, an event that was a con-
siderable shock to mathematicians. Lebesgue proved that every mono-
tone function is differentiable ‘almost everywhere’. As a first step we
can show that monotone functions are continuous except possibly on a
countable set of points.

Theorem 1.61. Suppose that f is monotone on (a, b). Then f is con-
tinuous except possibly on a countable set of points in (a, b).

Proof. Without loss of generality we can assume that f is increasing. If
f is decreasing we can just multiply by minus one to obtain an increas-
ing function. We can also assume that (a, b) is bounded. Otherwise we
can write it as a countable union of open, bounded subintervals and
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the discontinuities of f will be a countable union of the discontinuities
on each subinterval. Now let x0 ∈ (a, b) and then by the least upper
bound axiom

f(x−0 ) = sup{f(x) : a < x < x0}, (1.10)

and

f(x+0 ) = inf{f(x) : x0 < x < b}, (1.11)

both exit and f(x−0 ) ≤ f(x+0 ). The only way that f can be discontinuous
at x0 is if there is a jump at x0. We define the jump interval at x0 by
J(x0) = {y ∈ (f(x−0 ), f(x

+
0 ))}. Clearly J(x0) ⊆ (a, b) and so it is

bounded. The jump intervals for f are also obviously disjoint. So for
every n ∈ N , there are only a finite number of jump intervals of length
greater then 1/n. Hence the set of points of discontinuity of f is a
countable union of finite sets and is therefore countable.

�

1.5. The Derivative. The derivative is one of the two major tools of
calculus. It is the limit of the Newton quotient.

Definition 1.62. A function f : X → R, where X is open, is said to
be differentiable at x if

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
(1.12)

exists. We say that f ′(x) is the derivative of f at x. We also write df
dx

for f ′.

An equivalent formulation is

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
. (1.13)

Derivatives are defined on open sets. So one talks about a function
being differentiable on an open interval (a, b) rather than on [a, b], be-
cause the limit in the definition is not necessarily defined at the end
points of an interval. The basic rules of differentiation are well known.

Theorem 1.63. Let c be constant and f, g be differentiable at x0. Then

(cf)′(x0) = cf ′(x0) (1.14)

(f + g)′(x0) = f ′(x0) + g′(x0) (1.15)

(fg)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0) (1.16)
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Proof. Once more this an exercise manipulating limits. For example,
the product rule is proved as follows.

(fg)′(x0) = lim
x→x0

(fg)(x)− (fg)(x0)

x− x0

= lim
x→x0

[
f(x)g(x)− f(x)g(x0) + f(x)g(x0)− f(x0)g(x0)

x− x0

]

= lim
x→x0

f(x)
g(x)− g(x0)

x− x0
+ lim

x→x0

g(x0)
f(x)− f(x0)

x− x0
= f(x0)g

′(x0) + f ′(x0)g(x0).

�

The next result is easy to prove and will be used in the proof of the
chain rule.

Theorem 1.64. If f is differentiable at a point x, then it is continuous
at x.

Proof. We can write

f(x) = (x− x0)

(
f(x)− f(x0)

x− x0

)
+ f(x0) (1.17)

Since f is differentiable at x0, we have

lim
x→x0

f(x) = lim
x→x0

(
(x− x0)

(
f(x)− f(x0)

x− x0

)
+ f(x0)

)

= lim
x→x0

(x− x0) lim
x→x0

f(x)− f(x0)

x− x0
+ f(x0)

= 0× f ′(x0) + f(x0) = f(x0).

So f is continuous at x0. �

Again the converse of this result is false. The function f(x) = |x| is
continuous at zero, but is not differentiable there. Indeed Weierstrass
proved that there are functions which are continuous everywhere, but
differentiable nowhere. We will see Weierstrass’ nowhere differentiable
function later.

The most important result is the chain rule.

Theorem 1.65 (The Chain Rule). Suppose that g is differentiable at
x and f is differentiable at y = g(x). Then

(f ◦ g)′(x) = f ′(y)g′(x). (1.18)
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Proof. Write k = g(x + h) − g(x). Since g is differentiable at x, it is
continuous there and so as h→ 0, k → 0. Now

f(g(x+ h))− f(g(x))

h
=
f(g(x+ h))− f(g(x))

g(x+ h)− g(x)

g(x+ h)− g(x)

h

=
f(y + k)− f(y)

k

g(x+ h)− g(x)

h
.

Suppose that at no value of h does k = 0. Then taking the limit as
h→ 0 gives the result. To take care of the case k = 0 we let

F (k) =

{
f(y+k)−f(y)

k
k 6= 0

f ′(y) k = 0.
(1.19)

By differentiability of f , as k → 0 F (k) → f ′(y) and so F is continuous
at 0. Thus as h→ 0, F (k) → f ′(y). So for k 6= 0

f(g(x+ h))− f(g(x))

h
= F (k)

g(x+ k)− g(x)

h
. (1.20)

This also holds when k = 0 since both sides will be zero. Consequently

f(g(x+ h))− f(g(x))

h
→ f ′(y)g′(x) (1.21)

as h→ 0. �

Example 1.11. Let us compute the derivative of a reciprocal. We have
f(x) = 1/g(x) = h(g(x)), where h(u) = 1/u. Hence

d

dx
f(x) = g′(x)h′(u) = − g′(x)

(g(x))2
.

Example 1.12. The quotient rule is obtained by combining the chain
rule and the product rule:

d

dx

f(x)

g(x)
=
f ′(x)

g(x)
+ f(x)

d

dx

1

g(x)

=
f ′(x)

g(x)
− f(x)g′(x)

g(x)2

=
f ′(x)g(x)− f(x)g′(x)

g(x)2
.

The first application of differentiation that we see is usually to the
problem of obtaining maxima and minima.

Definition 1.66. A function f : X → R has a local maximum at
c ∈ X if there is a subset Y ⊆ X such that c ∈ Y and f(c) > f(x)
for all x ∈ Y. A point c is a local minimum for f if there is a subset
Y ⊆ X such that c ∈ Y and f(c) < f(x) for all x ∈ Y. If f has a
local maximum at c, then c is called a maximimiser. If f has a local
minimum at c, Then c is called a minimiser. In general c is called an
extreme point.
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Theorem 1.67. Let I be an open interval in R, f : I → R be differ-
entiable at c ∈ I. If f attains a local maximum or minimum at c, then
f ′(c) = 0.

Proof. There are two cases to consider, which turn out to be very simi-
lar. So we only prove the case for a local maximum. The proof proceeds
by contradiction, so we assume that c is a point where f attains a local
maximum and that f ′(c) > 0. Choose δ > 0 such that for x ∈ I and
0 < |x− c| < δ we have

∣∣∣∣
f(x)− f(c)

x− c
− f ′(c)

∣∣∣∣ < f ′(c).

Pick an x > c with |x− c| < δ. Then we have

−f ′(c) <
f(x)− f(c)

x− c
− f ′(c) < f ′(c).

Which implies
f(x)− f(c)

x− c
> 0

and hence f(x) > f(c), which is a contradiction. Thus f ′(c) ≤ 0.
Suppose then that f ′(c) < 0. Pick a δ > 0 such that for x ∈ I and

0 < |x− c| < δ we have
∣∣∣∣
f(x)− f(c)

x− c
− f ′(c)

∣∣∣∣ < −f ′(c).

Pick an x < c with |x− c| < δ. Then

f ′(c) <
f(x)− f(c)

x− c
− f ′(c) < −f ′(c).

Which implies
f(x)− f(c)

x− c
< 0,

and hence f(x) > f(c), since x − c < 0, which is a contradiction once
more. Thus f ′(c) = 0. The proof for a local minimum is essentially the
same. �

A useful corollary of this is called Rolle’s Theorem.

Theorem 1.68 (Rolle’s Theorem). Let [a, b] be a closed interval in R
and suppose that f is continuous on [a, b] and differentiable on (a, b). If
f(a) = f(b) = 0 then then there is a point c ∈ (a, b) such that f ′(c) = 0.

Proof. Continuous functions attain their maximum and minimum val-
ues on closed bounded intervals. If c ∈ (a, b) is an extreme point, then
f ′(c) = 0. Suppose that both the maximum and minimum values occur
at [a, b]. Then since f(a) = f(b), it follows that f is constant and so
f ′(x) = 0 for all x ∈ (a, b). �
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The main applications of Rolle’s Theorem are to prove the Mean
Value Theorem and Taylor’s Theorem, which are two of the most useful
results in analysis.

Theorem 1.69 (Mean Value Theorem). Let [a, b] be a closed and
bounded interval on R and f : [a, b] → R a continuous function which
is differentiable on (a, b). Then there is a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. The proof is an application of Rolle’s Theorem. We consider
the function

g(x) = f(x)− f(a)−
(
f(b)− f(a)

b− a

)
(x− a).

Then g(a) = g(b) = 0 and

g′(x) = f ′(x)− f(b)− f(a)

b− a
.

By Rolle’s Theorem there is a c ∈ (a, b) with g′(c) = 0, which proves
the result. �

The MVT is one of the most powerful results in calculus. Let us
consider some simple applications. Later we will see it used to prove a
result about the behaviour of limits for sequences of derivatives. One
can also use it to prove the Fundamental Theorem of Calculus. It is
quite ubiquitous.

Corollary 1.70. If [a, b] is a closed and bounded interval in R and f
is continuous on [a, b] and differentiable on (a, b), then f is Lipschitz
continuous on [a, b].

Proof. For any x, y ∈ (a, b) the MVT gives, |f(x)−f(y)| ≤ |f ′(c)||x−y|
for some c ∈ (x, y). �

The following result is well known from high school calculus, but
usually is not given a rigourous proof.

Corollary 1.71. If f is continuous on [a, b] and differentiable on (a, b),
and f ′(x) = 0 for all x ∈ (a, b), then f is constant on [a, b].

Proof. For any x, y ∈ (a, b), f(x) − f(y) = f ′(c)(x − y) = 0. Hence
f(x) = f(y) for all x, y and so f is constant on (a, b). By continuity it
is also constant on [a, b]. �

Let us use this to prove uniqueness for the solution of a differential
equation.

Proposition 1.72. The equation y′ = ky, y(0) = y0 has a unique
solution.
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Proof. We let y(x) = y0e
kx. Then this is clearly a solution of the dif-

ferential equation. Now suppose that f is any solution of the equation.
Consider h(x) = f(x)e−kx. Then

h′(x) = f ′(x)e−kx − ke−kxf(x) = e−kx(f ′(x)− kf(x)) = 0.

Thus h is constant. Hence f(x) = Cekx. The condition that f(0) = y0
proves the result. �

There is a more general version of the MVT. It is due to Cauchy and
is often called the Cauchy Mean Value Theorem.

Theorem 1.73 (Generalised Mean Value Theorem). Suppose that f
and g are continuous functions on [a, b], which are differentiable on
(a, b) and suppose that g′(x) 6= 0 for all x ∈ (a, b). Then there exists a
point c ∈ (a, b) such that

f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
. (1.22)

Proof. This again relies upon Rolle’s Theorem. First, observe that if
g(b)−g(a) = 0, then the Mean Value Theorem tells us that there exists
a point c ∈ (a, b) such that g′(c) = 0. However we have assumed that
g′ is nonzero, so g(b)− g(a) 6= 0. Next introduce the function

h(x) = f(x)[g(b)− g(a)]− g(x)[f(b)− f(a)].

Then

h(a) = f(a)[g(b)− g(a)]− g(a)[f(b)− f(a)]

= f(a)g(b)− f(b)g(a) = h(b).

Rolle’s Theorem then tells us that there is a c ∈ (a, b) such that h′(c) =
0. Which means that

f ′(c)[g(b)− g(a)]− g′(c)[f(b)− f(a)] = 0. (1.23)

Rearranging gives the result. �

As an application of this result we prove L’Hôpital’s rule.

Theorem 1.74. Suppose that f and g are differentiable on (a, b) and
that g(x) 6= 0 and g′(x) 6= 0 for all x ∈ (a, b). Suppose further that
limx→a+ f(x) = limx→a+ g(x) = 0. Then,

lim
x→a+

f(x)

g(x)
= lim

x→a+

f ′(x)

g′(x)
, (1.24)

provided the right side exists.

Proof. Suppose that

lim
x→a+

f ′(x)

g′(x)
= L.
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Then given ǫ > 0 we can find δ > 0 such that if c ∈ (a, a+ δ) then
∣∣∣∣
f ′(c)

g′(c)
− L

∣∣∣∣ < ǫ.

However, by the generalised MVT, if x ∈ (a, a+ δ) then
∣∣∣∣
f(x)

g(x)
− L

∣∣∣∣ =
∣∣∣∣
f(x)− f(a)

g(x)− g(a)
− L

∣∣∣∣ < ǫ.

�

The extension of this result to the case when

lim
x→a

f(x) = lim
x→a

g(x) = ∞

can also be established using the generalised MVT.

Remark 1.75. L’Hôpital’s rule was actually discovered by the Swiss
mathematician Johann Bernoulli, who taught Euler and worked for
L’Hôpital. L’Hôpital published the rule in his textbook on calculus,
and it became known by his name.

1.5.1. Inverse Functions. We first state our definitions.

Definition 1.76. A function f : X → Y is said to be one to one if for
each y ∈ Y there is at most one x ∈ X such that f(x) = y. We also
say that such an f is a bijection. If f : X → Y is one to one then it
has an inverse function f−1 : Y → X which satisfies

f(f−1(f)) = f−1(f(x)) = x

for all x ∈ X.

Suppose that f : X ⊆ R → R is strictly increasing (or decreasing).
Then f is clearly one to one, and hence it has an inverse. If f is
continuous, then the inverse function will also be continuous.

Theorem 1.77. Suppose that f : X ⊆ R → Y is a strictly increasing
(or decreasing) continuous function. Then the inverse function f−1

exists and is continuous and increasing (or decreasing) on f(X).

Proof. We only deal with the case when f is increasing. We show that
f−1 is increasing. Assume not. Then we can find y1, y2 ∈ Y with
y2 > y1 and f−1(y2) < f−1(y1). But f is increasing, so

f(f−1(y2)) < f(f−1(y1)),

so that y2 < y1 which is a contradiction.
To prove continuity, take y0 ∈ f(X). Then there exists x0 ∈ X with

f(x0) = y0. We suppose that y0 is not an endpoint, so x0 is not an
endpoint and we may find ǫ0 > 0 such that the interval

(f−1(y0)− ǫ0, f
−1(y0) + ǫ0) ⊂ X.
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Pick ǫ < ǫ0. Then there exist y1, y2 ∈ f(X) such that f−1(y1) =
f−1(y0) − ǫ and f−1(y2) = f−1(y0) + ǫ. Because f is increasing y1 <
y0 < y2 and the inverse is increasing so for all y ∈ (y1, y2) we have the
inequality

f−1(y0)− ǫ < f−1(y) < f−1(y0) + ǫ.

Consequently, if δ = min{y2 − y0, y0 − y1}, then
|f−1(y0)− f−1(y)| < ǫ

whenever |y0 − y| < δ. So f−1 is continuous at y0.
We can also prove that if y0 is a left (or right) endpoint, then f−1 is

left (or right) continuous at y0. �

The most important result about inverse functions relates the deriv-
ative of f and that of f−1.

Theorem 1.78 (The Inverse Function Theorem). Suppose that f is
differentiable and one to one on an open interval I. If f ′(a) 6= 0,
a ∈ I, then f−1 exists and is differentiable at f(a) and

(
f−1
)′
(f(a)) =

1

f ′(a)
.

Proof. Since f ′ is nonzero on I, it follows that f is either increasing or
decreasing on I, and hence f is invertible. The inverse is continuous.
Since f is decreasing or increasing, for x 6= a it follows that f(x) 6= f(a).
Now

lim
y→f(a)

f−1(y)− f−1(f(a))

y − f(a)
= lim

f(x)→f(a)

f−1(f(x))− f−1(f(a))

f(x)− f(a)

= lim
x→a

(
x− a

f(x)− f(a)

)−1

=
1

f ′(a)
.

�

1.5.2. Convex Functions. An interesting and important class of func-
tions for which we can establish some very general results about differ-
entiability are convex functions. We begin with the definition.

Definition 1.79. A function f : I → R is said to be convex on an
open interval I if for all x ∈ I and a > 0, b > 0 with a+ b = 1, we have

f(ax+ by) ≤ af(a) + bf(y).

If

f(ax+ by) ≥ af(a) + bf(y)

then f is said to be concave.
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An equivalent formulation of convexity is that for all x1, x2, x3 ∈ I
with x1 < x2 < x3 we have

f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x2)

x3 − x2
. (1.25)

Convex functions are automatically continuous. To prove this we
have a preliminary result.

Proposition 1.80. If f is convex on an open interval I ⊂ R, then the
left and right hand derivatives, defined respectively by,

f ′(x+) = lim
h→0+

f(x+ h)− f(x)

h
,

and

f ′(x−) = lim
h→0−

f(x+ h)− f(x)

h
,

both exist for each x ∈ I. Moreover, if x, y ∈ (a, b) and y > x, then

f ′(x−) ≤ f ′(x+) ≤ f(y)− f(x)

y − x
≤ f ′(y−) ≤ f ′(y+). (1.26)

Proof. We let 0 < h1 < h2, then observe that

f(x+ h1)− f(x1)

h1
≤ f(x+ h2)− f(x1)

h2
.

Hence

F (h) =
f(x+ h)− f(x1)

h
is an increasing function on some interval (0, δ) and hence limh→0+ F (h)
exists. Similarly for the second limit. The inequality follows from (1.25)
and is an easy exercise. �

Note, this result does not mean that f is differentiable at x.We have
not established equality of the limits and in fact, this may not hold.
However, it is a remarkable fact that convex functions are differentiable
except possibly on a countable set of points. We will prove this below.

An application of the mean value theorem allows us to establish the
following test for convexity.

Theorem 1.81. Suppose that f is differentiable on an open interval
I. Then f is convex on I if and only if f ′ increases on I.

Proof. Suppose that f ′ is increasing on I and pick three points x1 <
x2 < x3 ∈ I. Then by the mean value theorem there exists points
a, b ∈ I with b > a such that

f(x2)− f(x1)

x2 − x1
= f ′(a) (1.27)
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and
f(x3)− f(x2)

x3 − x2
= f ′(b). (1.28)

Now f ′ is increasing, hence f ′(a) ≥ f ′(b) and thus f is convex.
Conversely, suppose that f is convex. Then for points x1 < x2 <

x3 < x4 we have

f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x2)

x3 − x2
≤ f(x4)− f(x3)

x4 − x3
. (1.29)

Letting x2 → x+1 and x2 → x−4 shows that f ′(x3) ≤ f ′(x4) and so f is
increasing. �

For twice differentiable functions we have a simple result.

Theorem 1.82. Let f be twice differentiable on an open interval I.
Then f is convex on I if and only if f ′′(x) ≥ 0 for all x ∈ I.

Now we prove continuity for convex functions.

Theorem 1.83. Suppose that f is convex on an open interval I. Then
f is continuous on I.

Proof. We let x ∈ I. Then

lim
h→0+

(f(x+ h)− f(x)) = lim
h→0+

(
f(x+ h)− f(x)

h

)
h = 0

and

lim
h→0−

(f(x+ h)− f(x)) = lim
h→0−

(
f(x+ h)− f(x)

h

)
h = 0.

Thus both limits exist and are equal, so f is continuous at x. �

Actually, convex functions are not just continuous.

Proposition 1.84. Let f be a convex function on (a, b). Then f is
Lipschitz continuous on each closed bounded subinterval [c, d] of (a, b).

Proof. This follows from the inequality

f ′(c+) ≤ f ′(u+) ≤ f(v)− f(u)

v − u
≤ f ′(v−) ≤ f ′(d−), (1.30)

valid for c ≤ u ≤ v ≤ d. So that for all u, v,∈ [c, d] with M =
max{|f ′(c+), f ′(d−)|} we have

|f(u)− f(v)| ≤M |u− v|.
�

Indeed we can show something even stronger.

Theorem 1.85. A convex function f on an interval (a, b) is differ-
entiable except at most on a countable set of points. Moreover, the
derivative is an increasing function.
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Proof. We already know that the left and right derivatives at a point
exist. They are also increasing, and so they are continuous except at
most on a countable set of points, which we denote by D. Take a point
x ∈ (a, b)− D and let xn → x+ and apply the inequality (1.30). This
gives

f ′(x−) ≤ f ′(x+) ≤ f ′(x−)

so that f ′(x+) = f ′(x−) and hence f is differentiable at x. That f is
increasing also follows from (1.30). �

Lebesgue proved a deeper result about differentiability. Namely that
any monotone function is differentiable almost everywhere. We will
discuss this later.

We can define higher derivatives in the obvious way. So

d2f

dx2
=

d

dx

(
df

dx

)
,

or f ′′(x) = (f ′)′(x) etc.

Definition 1.86. A function f : X → R for which the nth derivative
f (n) exists for all n ∈ N is said to be infinitely differentiable, or smooth.
We write f ∈ C∞(X). (Pronounced C infinity on X). If f is n times
differentiable for finite n we write f ∈ Cn(X).

1.6. Power Series. A power series about a point x0 is an expression
of the form

f(x) =
∞∑

n=0

an(x− x0)
n.

By the ratio test such a series will converge if

lim
n→∞

∣∣∣∣
an+1(x− x0)

n+1

an(x− x0)n

∣∣∣∣ = L < 1.

Upon rewriting this becomes

|x− x0| lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = L < 1. (1.31)

We can think of this as determining the values of x for which the series
converges.

Definition 1.87. Suppose that for the series
∑∞

n=0 an(x− x0)
n

|x− x0| lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = L < 1 (1.32)

for all |x− x0| < R. We call R the radius of convergence of the power
series.

Note a power series with radius of convergence R may converge or
diverge when |x − x0| = R. One has to check convergence at the end
points individually.
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Example 1.13. The series 1 + x+ x2 + · · · =∑∞
n=0 x

n is convergent for
all |x| < 1. Hence the radius of convergence is 1.

For simplicity we will take x0 = 0 in what follows. All results can
be transferred to the more general case by making the replacement
x→ x− x0

Power series have very nice properties. In particular they converge
absolutely within their radius of convergence.

Theorem 1.88. Let
∑∞

n=o anx
n be a power series with radius of con-

vergence R. Then the series converges absolutely for |x| < R and
diverges for |x| > R.

Proof. Let t ∈ (−R,R), then ∑∞
n=0 ant

n converges and the sequence
ant

n → 0 and is thus bounded. Let M be a bound. Now pick x with
|x| < |t|, then

|anxn| = |antn|
∣∣∣x
t

∣∣∣
n

≤ Mrn

where r = |x/t| < 1. But
∑∞

n=0Mrn is a convergent geometric series,
and so

∑∞
n=0 |anxn| converges by the comparison test. The other result

is similar. �

Power series actually converge uniformly, a result we prove later. An
important fact is that we can differentiate power series term by term
and this does not change the radius of convergence.

Theorem 1.89. Let
∑∞

n=0 anx
n have radius of convergence R. Then

the power series
∑∞

n=1 nanx
n−1 has radius of convergence R.

Proof. Suppose that the series
∑∞

n=1 nanx
n−1 has radius of convergence

Rd < R. Choose r, s so that Rd < r < s < R. Clearly
∑∞

n=0 ans
n

converges which shows that ans
n → 0 and so is bounded by a constant

M . Then

|nanrn−1| = n|an|sn−1
(r
s

)n−1

≤ M

s
n
(r
s

)n−1

.

Now

lim
n→∞

(M/s)(n+ 1)(r/s)n

(M/s)n(r/s)n−1
=
r

s
< 1.

Thus the series
∑∞

n=1
M
s
n
(
r
s

)n−1
is convergent by the ratio test. Thus∑∞

n=1 nanr
n−1 is absolutely convergent, which is a contradiction since

r > Rd. Hence R ≤ Rd. Similarly we show that Rd > R leads to a
contradiction. (Exercise). Hence R = Rd. �

From this we can establish an important corollary.
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Theorem 1.90. Let
∑∞

n=0 anx
n be a power series with radius of con-

vergence R > 0. Let f : (−R,R) → R be defined by

f(x) =
∞∑

n=0

anx
n.

Then f is differentiable on (−R,R) and

f ′(x) =
∞∑

n=1

nanx
n−1.

To prove this result we actually need some more information about
the convergence of series. The key is that the series for f and f ′ both
converge uniformly. We will discuss uniform convergence later.

The most commonly encountered power series are functions given by
Taylor series expansions.

Definition 1.91. Let f be smooth in a neighbourhood X of a point
a. We let the Taylor series for f at a be given by

Tf (x) = f(a) + f ′(a)(x− a) + · · ·+ 1

n!
f (n)(a)(x− a)n + · · · .

If the series is convergent for all x ∈ X and |Tf(x) − f(x)| = 0 for
all x ∈ X , we say that f is analytic at a. If we truncate the Taylor
expansion after n terms, the resulting expression is known as the nth
Taylor polynomial.

Even if the Taylor series does not converge, smooth functions can be
approximated by Taylor polynomials.

Theorem 1.92 (Taylor’s Theorem). Let I be an open interval in R,
n ∈ N and f ∈ Cn+1(I). Let a ∈ I and x ∈ I, with x 6= a. Then there
is a point ξ between a and x such that

f(x) = f(a) + f ′(a)(x− a) +
1

2!
f ′′(a)(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

+
f (n+1)(ξ)

n!
(x− a)n.

Proof. The proof uses Rolle’s Theorem and is conceptually similar to
the proof of the MVT. We define a function

F (t) = f(x)− f(t)− f ′(t)(x− t)− 1

2!
f ′(t)(x− t)2 − · · ·

− f (n)(t)

n!
(x− t)n. (1.33)
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Plainly F (x) = 0. Since f ∈ C(n+1)(I) we see that F is differentiable.
Now

F ′(t) = −f ′(t)− f ′′(t)(x− t) + f ′(t)− f ′′′(t)

2!
(x− t)2 + 2

f ′′(t)

2!
(x− t)

− · · · − f (n+1)t

n!
(x− t)n + n

f (n)(t)

n!
(x− t)n−1

= −f
(n+1)

n!
(x− t)n.

Next we introduce the function

G(t) = F (t)−
(
x− t

x− a

)n+1

F (a).

Obviously G(a) = 0 and G(x) = F (x) = 0. Then

G′(t) = F ′(t)

= −f
(n+1)(t)

n!
(x− t)n + (n + 1)

(x− t)n

(x− a)n+1
F (a).

By Rolle’s Theorem there is a point ξ between x and a such that
G′(ξ) = 0. That is

f (n+1)(ξ)

n!
(x− ξ)n = (n+ 1)

(x− ξ)n

(x− a)n+1
F (a).

Rearranging we get

F (a) =
f (n+1)(ξ)

(n + 1)!
(x− a)n+1.

If we substitute this into (1.33) we have Taylor’s Theorem.
�

The other major tool in analysis is the integral. Although the Funda-
mental Theorem of Calculus was first stated by Newton and Leibnitz,
the first rigorous theory of integration was developed by Cauchy, and
extended by Riemann. Let us briefly summarise Riemann’s theory.

1.7. The Riemann Integral. We take an interval [a, b] and partition
it as

P = {x0, x1, ..., xn},
where x0 = a, x0 < x1 < · · · < xn and xn = b.

Now let f be a bounded function on [a, b] then define

Mi = sup{f(x) : x ∈ [xi−1, xi)},
and

mi = inf{f(x) : x ∈ [xi−1, xi)}.
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We then form the upper and lower Riemann sums

U(f,P) =

n∑

i=1

Mi(xi − xi−1) (1.34)

and

L(f,P) =

n∑

i=1

mi(xi − xi−1). (1.35)

The least upper bound axiom establishes that the upper and lower
integrals

∫ b

a

f = inf{U(f,P) : P a partition of [a, b]} (1.36)

and

∫ b

a

f = sup{U(f,P) : P a partition of [a, b]} (1.37)

both exist. We then say that f is Riemann integrable on [a, b] if∫ b

a
f =

∫ b

a
f. The Riemann integral is then equal to the upper (or lower)

integral.
It is easy to prove the following results.

Proposition 1.93. The Riemann integral has the following properties.

(1) If c is a constant,
∫ b

a
cdx = c(b− a).

(2)
∣∣∣
∫ b

a
f(x)dx

∣∣∣ ≤
∫ b

a
|f(x)|dx.

The most important results about the Riemann integral are as fol-
lows.

Theorem 1.94 (Riemann’s Criterion). Let f be a bounded function on
the closed interval [a, b]. Then f is Riemann integrable on [a, b] if and
only if, given any ǫ > 0, there exists a partition P of [a, b] such that
U(f,P)− L(f,P) < ǫ.

From this one establishes the first major result.

Theorem 1.95. Every continuous function on a closed bounded inter-
val [a, b] is Riemann integrable.

Proof. The function f is continuous on [a, b] and so is bounded. Let
ǫ > 0. Since f is continuous it is uniformly continuous and so we
can choose δ > 0 such that x, y ∈ [a, b] with |x − y| < δ implies
|f(x)− f(y)| < ǫ/(b− a). Now choose N ∈ N such that N > (b− a)/δ.
For each i = 0, 1, ...N, let xi = a+(b−a)i/N. Then P = {x0, x1, ...xN}
is a partition of [a, b], with |xi − xi−1| < δ. By continuity, f attains
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its maximum and minimum values on each closed subinterval [xi−1, xi].
Now let

f(ci) = inf{f(x) : x ∈ [xi−1, xi]}, (1.38)

f(di) = sup{f(x) : x ∈ [xi−1, xi]}. (1.39)

Obviously |di − ci| < δ and f(di) ≥ f(ci). By uniform continuity

f(di)− f(ci) <
ǫ

(b− a)
.

So we have

U(f,P) − L(f,P) =

N∑

i=1

f(di)(xi − xi−1)−
N∑

i=1

f(ci)(xi − xi−1)

=
N∑

i=1

(f(di)− f(ci))(xi − xi−1)

<

N∑

i=1

ǫ

b− a
(xi − xi−1)

=
ǫ

b− a

N∑

i=1

(xi − xi−1) = ǫ.

Thus by Riemann’s criterion, f is integrable on [a, b].
�

1.7.1. Calculating Integrals By Riemann Sums. It is possible to explic-
itly compute a surprisingly large class of integrals by evaluating Rie-
mann sums. For monotone functions, the construction of upper and
lower sums is straightforward. One simply picks sample points at the
ends of each subinterval. We restrict our attention to [0, 1]. We can
extend to the interval [a, b] by a linear change of variable.

Example 1.14. We integrate f(x) = x2 on [0, 1] Since f is increasing
we can take P = {0, 1/n, 2/n, ..., n/n} and note that

n∑

i=1

i2 =
1

6
n(n+ 1)(2n+ 1). (1.40)

Now we observe that

mi(f,P) = inf{x2 : x ∈ [
i− 1

n
,
i

n
)}

=
(i− 1)2

n2

Mi(f,P) = sup{x2 : x ∈ [
i− 1

n
,
i

n
)}

=
i2

n2
.
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Then

L(f,P) =

n∑

i=1

(i− 1)2

n2

(
i

n
− (i− 1)

n

)

=
1

n3

n∑

i=1

(i− 1)2.

Also

U(f,P) =
n∑

i=1

i2

n2

(
i

n
− (i− 1)

n

)

=
1

n3

n∑

i=1

i2.

Using (1.40) we get

U(f,P)− L(f,P) =
1

6
n(n + 1)(2n+ 1)

1

n3
− (n− 1)n(2n− 1)

6n3
=

1

n
.

By Riemann’s Criterion, f is Riemann integrable if for any ǫ > 0 we
can find a partition P such that U(f,P)−L(f,P) < ǫ. Clearly we can
do this by taking n > 1/ǫ. So f is Riemann integrable. Further

∫ 1

0

f(x)dx = sup{L(f,P),P a partition of [0, 1]}

= sup
n≥1

{
(n− 1)n(2n− 1)

6n3

}

= sup
n≥1

{
1

6n2
− 1

2n
+

1

3

}
=

1

3
.

Example 1.15. Let a 6= 0 and consider f(x) = eax on [0, 1]. The function
is monotone and we take the same partition as in the previous example.
Then

mk(f,P) = inf

{
eax : x ∈

[
k − 1

n
,
k

n

)}
= e(k−1)a/n (1.41)

Mk(f,P) = sup

{
eax : x ∈

[
k − 1

n
,
k

n

)}
= eka/n (1.42)

Then

L(f,P) =

n∑

k=1

mk(f,P)(xk − xk−1)

=
1

n
(1 + ea/n + · · ·+ e(n−1)a/n)
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and

U(f,P) =

n∑

k=1

Mk(f,P)(xk − xk−1)

=
1

n
(ea/n + e2a/n + · · ·+ ean/n).

So

U(f,P)− L(f,P) =
ea − 1

n
.

This can be made smaller than ǫ by picking n > ǫ/(ea − 1). Thus by
Riemann’s Criterion, f is Riemann integrable on [0, 1]. We can explic-
itly evaluate the upper and lower sums by noticing that they are sums
of geometric progressions with common ratio ea. Hence

L(f,P) =
1

n
(1 + ea/n + · · ·+ e(n−1)a/n)

=
1

n

(1− ea)

(1− ea/n)
.

So we have
∫ 1

0

eaxdx = sup
n

{
1

n

(1− ea)

(1− ea/n)

}

= lim
u→0

u(1− ea)

1− eau

=
1

a
(ea − 1)

where we put u = 1/n and used L’Hôpital’s rule to evaluate the limit.

We can actually prove that bounded monotone functions are Rie-
mann integrable.

Theorem 1.96. Suppose that f : [0, 1] → R is monotone increasing
and f(1) is bounded. Then f is Riemann integrable on [0, 1].

Proof. With the previous partition of [0, 1] we have

U(f,P)− L(f,P) =
1

n
(f(1)− f(0)). (1.43)

Since f is monotone increasing, f(0) must be finite and f(1) is also
finite, we can make this smaller than any ǫ > 0 by suitable choice of n.
So f is Riemann integrable. �

It is possible to evaluate many integrals by means of Riemann sums-
in particular, we can integrate any polynomial- but it is clearly a la-
borious procedure. Fortunately we have a far more powerful means of
doing integration. The key is the following result, which is at the heart
of modern science.
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Theorem 1.97 (Fundamental Theorem of Calculus). If f is a contin-
uous function on [a, b], then for all x ∈ [a, b]

d

dx

∫ x

a

f(t)dt = f(x).

Proof. We define the function F (x) =
∫ x

a
f(t)dt. Since f is continuous,

it is bounded. Thus there is an M > 0 such that |f(t)| ≤ M for all
t ∈ [a, b]. Then

|F (x)− F (y)| =
∣∣∣∣
∫ x

y

f(t)dt

∣∣∣∣

≤
∫ x

y

|f(t)|dt

≤M |x− y|.
Consequently, F is Lipschitz continuous on [a, b] and hence continuous.
Now

F (x)− F (y)

x− y
− f(y) =

1

x− y
(F (x)− F (y)− (x− y)f(y))

=
1

x− y

∫ x

y

(f(t)− f(y))dt.

By uniform continuity of f , given ǫ > 0, we may find δ > 0 such that
|x − y| < δ implies |f(x) − f(y)| < ǫ. We choose such an ǫ and δ to
obtain ∣∣∣∣

F (x)− F (y)

x− y
− f(y)

∣∣∣∣ ≤
1

|x− y|

∫ x

y

|f(t)− f(y)|dt

<
1

|x− y|ǫ(x− y) = ǫ

as x > y. Thus F is differentiable and F ′ = f. �

In other words, integration is essentially the inverse of differentia-
tion. From this we can establish the well known second form of the
fundamental theorem.

Corollary 1.98 (The Fundamental Theorem of Calculus II). Let f be
a Riemann integrable function on [a, b]. Then if F ′ = f on (a, b) the
integral is given by

∫ b

a

f(x)dx = F (b)− F (a). (1.44)

Proof. Suppose that G(x) =
∫ x

a
f(t)dt and F ′(x) = f(x). It follows that

G− F is a constant, since G′ = f. Hence G(b)− F (b) = G(a)− F (a).

But G(a) = 0. Hence G(b) =
∫ b

a
f(x)dx = F (b)− F (a). �

There is a mean value theorem for the Riemann integral which is
often useful.
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Theorem 1.99 (Mean Value Theorem for Integrals). Suppose that f
and g are continuous on [a, b] and g(x) ≥ 0, for all x ∈ [a, b]. Then
there exists c ∈ [a, b] such that

∫ b

a

f(x)g(x)dx = f(c)

∫ b

a

g(x)dx. (1.45)

Proof. By continuity f is bounded. Suppose that for all t ∈ [a, b]
m ≤ f(t) ≤M. Then

m

∫ b

a

g(x)dx ≤
∫ b

a

f(x)g(x)dx ≤M

∫ b

a

g(x)dx.

Let F (t) = f(t)
∫ b

a
g(t)dt. By the Intermediate Value Theorem, there

is a c ∈ [a, b] such that

F (c) = f(c)

∫ b

a

g(t)dt =

∫ b

a

f(x)g(x)dx.

�

Notice that if g = 1 and F ′ = f then we have the existence of a
c ∈ [a, b] such that

∫ b

a

f(x)dx = F (b)− F (a) = F ′(c)(b− a) (1.46)

which is the mean value theorem. Actually the mean value theorem
can be used to prove the fundamental theorem of calculus. This is an
exercise.

1.7.2. Integration Rules. Integration is intrinsically more difficult than
differentiation. Useful rules for evaluating integrals exist however. Inte-
gration by parts is simply the product rule of differentiation backwards.
Specifically

(fg)′(x) = f ′(x)g(x) + f(x)g′(x).

Integrating both sides gives the integration by parts rule
∫ b

a

f(x)g′(x)dx = [f(x)g(x)]ba −
∫ b

a

f ′(x)g(x)dx. (1.47)

The most important technique for evaluating integrals is the use of
substitutions. This is the chain rule in reverse. The chain rule says
that (f ◦ g)′(x) = f ′(g(x))g′(x). Thus letting u = g(x) gives

∫ b

a

f ′(g(x))g′(x)dx =

∫ g(b)

g(a)

f(u)du. (1.48)

We can use integration by parts to show how Taylor’s Theorem fol-
lows from the Fundamental Theorem of Calculus. Assume that f is
continuously differentiable n+ 1 times. We know that
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f(x)− f(a) =

∫ x

a

f ′(t)dt. (1.49)

We are going to integrate by parts. Notice however that instead of
using the obvious anti-derivative of 1, we are going to use t− x, which
is also an anti-derivative of 1. So that

f(x)− f(a) = [(t− x)f ′(t)]xa −
∫ x

a

(t− x)f ′(t)dt

= (x− a)f ′(a) +

∫ x

a

(x− t)f ′(t)dt

= (x− a)f ′(a) +
(x− a)2

2
f ′′(x) +

1

2

∫ x

a

(x− t)2f ′′(t)dt.

Repeating this n times gives

f(x) = f(a) + (x− a)f ′(a) +
(x− a)2

2
f ′′(x) + · · ·

+
1

n!
(x− a)nf (n)(a) +

1

n!

∫ x

a

(x− t)nf (n)(t)dt.

This gives us the useful form for the remainder in the Taylor series
expansion

Rn(a, x) =
1

n!

∫ x

a

(x− t)nf (n)(t)dt.

Using the mean value theorem for integrals we can show that this is
the same as the derivative form we found earlier.

1.7.3. Improper Riemann Integrals. It is often the case that we wish
to consider an integral of a function over a set where the function is
discontinuous.

Definition 1.100. Let f : [a, b] → R be continuous on (a, b], but f
is discontinuous at a. Then the improper Riemann integral of f over
[a, b] is define by

∫ b

a

f(x)dx = lim
X→a

∫ b

X

f(x)dx, (1.50)

provided the limit exists. Similarly, if the discontinuity is at x = b then
∫ b

a

f(x)dx = lim
X→b

∫ X

a

f(x)dx, (1.51)

provided the limit exists.

Example 1.16. Consider f(x) = 1/
√
x on [0, 1]. Then f is continuous

on (0, 1] with a discontinuity at 0. Thus the improper Riemann integral
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of f over [0, 1] is
∫ 1

0

f(x)dx = lim
X→0

∫ 1

X

dx√
x

= lim
X→0

2
√
x]1X

= lim
X→0

(2
√
1−

√
X) = 2.

For integrals on unbounded domains we can use the same idea.

Definition 1.101. The improper Riemann integral of f over R is de-
fined by

∫ ∞

−∞
f(x)dx = lim

R→∞

∫ 0

−R

f(x)dx+ lim
T→∞

∫ T

0

f(x)dx, (1.52)

provided the limits exist.

One has to be careful to distinguish between Definition 1.101 and
the Cauchy Principal value.

Definition 1.102. The quantity

pv

∫ ∞

−∞
f(x)dx = lim

R→∞

∫ R

−R

f(x)dx,

is known as the Cauchy Principal value of the integral, provided that
the limit exists.

Example 1.17. The improper Riemann integral
∫∞
−∞ xdx does not exist,

but

pv

∫ ∞

−∞
xdx = lim

R→∞

[
x2

2

]R

−R

=
1

2
(R2 − R2) = 0.

1.8. Sequences of Functions. The Riemann integral is a powerful
tool, but it has limitations. The most important relates to the question
of swapping integrals and limits. To see what this involves, let us
introduce the notion of convergence of a sequence of functions.

Definition 1.103. We say that a sequence of functions {fn}∞n=1 con-
verges pointwise to a function f on a set X ⊆ R if limn→∞ fn(x) = f(x)
for all x ∈ X.

Given such a sequence, we would like to be able to conclude that

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

f(x)dx.
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A common example is where we have a function defined as an infinite
sum

f =
∞∑

n=1

fn,

and we would like to determine
∫
f by term by term integration. So

that we would like
∫ b

a

f(x)dx =

∞∑

n=1

∫ b

a

fn(x)dx.

Unfortunately this is not in general true. Consider the sequence

fn(x) = nxe−nx2

. (1.53)

Then on [0, 1], fn → 0 pointwise as n→ ∞. Hence
∫ 1

0

lim
n→∞

fn(x)dx = 0.

However ∫ 1

0

nxe−nx2

dx =
1− e−n

2
.

Hence

lim
n→∞

∫ 1

0

fn(x)dx =
1

2
6=
∫ 1

0

lim
n→∞

fn(x)dx.

In order to safely swap limits and Riemann integrals, we need uni-
form convergence.

Definition 1.104. A sequence of functions {fn}∞n=1 on a set X ⊆ R
converges uniformly to f on X if for any ǫ > 0 we can find N ∈ N such
that n ≥ N implies |fn(x)− f(x)| < ǫ for all x ∈ X.

The first result is a trivial exercise.

Lemma 1.105. If fn → f uniformly on X, then fn → f pointwise.

The converse of this result is false. Pointwise convergent sequences
usually do not converge uniformly. The example (1.53) converges point-
wise but not uniformly. There is a result due to Egoroff which we will
see later, that tells us that a sequence of functions converging point-
wise on a closed and bounded interval [a, b], converges uniformly on
[a, b]−E, where E is a small set. However this is not enough to swap
limits and Riemann integrals.

Uniformly convergent sequences have nice properties. An important
one is that they preserve continuity.

Theorem 1.106. If {fn}∞n=1 is a uniformly convergent sequence of
continuous functions on X ⊆ R, with fn → f then f is continuous on
X.
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Proof. Since fk is continuous at x ∈ X , given ǫ > 0, we may choose
δ > 0 such that for all y satisfying 0 < |x− y| < δ we have

|fk(x)− fk(y)| < ǫ/3.

By uniform convergence, we may choose N ∈ N such that k ≥ N
implies

|f(x)− fk(x)| < ǫ/3,

for all x ∈ X. Consequently, given x ∈ X , then for all y ∈ X satisfying
0 < |x− y| < δ we have

|f(x)− f(y)| = |f(x)− fk(x) + fk(x)− fk(y) + fk(y)− f(y)|
≤ |f(x)− fk(x)|+ |fk(x)− fk(y)|+ |fk(y)− f(y)|
< ǫ/3 + ǫ/3 + ǫ/3 = ǫ.

Thus f is continuous at x. �

This result is not true for pointwise convergence. For example, the
pointwise convergent double sequence fn,j(x) = (cos(n!πx))2j does not
have a continuous limit on [0, 1]. In fact it converges to the Dirichlet
function

D(x) =

{
1 x ∈ Q ∩ [0, 1]

0 x 6∈ Q ∩ [0, 1].
(1.54)

To see this, observe that if x is rational, then x = p/q for some integers
p, q. Then for k > q it follows that πk!x = Nπ for some integer N.
Now cos2j(Nπ) = 1 for all j. Thus if x is rational, limj,k→∞ gk,j(x) = 1.
Suppose however that x is irrational. Then πk!x is never an integer
multiple of π and so −1 < cos(πk!x) < 1. Now if |r| < 1, r2j → 0 as
j → ∞. So for x irrational, limj,k→∞ gk,j(x) = 0. Hence the limit of this
sequence of functions is a function that is 1 if x is rational and 0 if x is
irrational. This function is not Riemann integrable and it is not even
continuous, despite the fact that every function in the sequence is not
only continuous, but is analytic.

Uniform convergence is preserved under addition.

Proposition 1.107. If fn → f and gn → g uniformly, then afn +
bgn → af + bg uniformly, where a, b are constants.

Proof. Suppose that a, b 6= 0. fn, gn : X ⊆ R → R. Then given ǫ > 0
there exists N1 ∈ N such that

sup
x∈X

|fn(x)− f(x)| < ǫ/(2|a|)

and there exists N2 ∈ N such that

sup
x∈X

|gn(x)− g(x)| < ǫ/(2|b|).
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Let N = maxN1, N2. Then for n ≥ N

sup
x∈X

|afn(x) + bgn(x)− af(x)− bg(x)| ≤ |a| sup
x∈X

|fn(x)− f(x)|

+ |b| sup
x∈X

|gn(x)− g(x)|

< ǫ/2 + ǫ/2 = ǫ.

�

However, uniform convergence is not preserved under pointwise mul-
tiplication. That is, if fn → f uniformly on X ⊆ R and gn → g
uniformly on X , it is not in general true that fngn → fg uniformly on
X . The best we can say is the following.

Theorem 1.108. Suppose that fn → f uniformly on the closed and
bounded interval [a, b] and gn → g uniformly on [a, b]. Then fngn → fg
uniformly on [a, b].

Proof. Since fn → f uniformly, it converges pointwise on [a, b] and
hence each sequence {fn(x)}∞n=1 is bounded, for all x ∈ [a, b]. Conse-
quently f is also bounded. Similarly for {gn}∞n=1. Let

A = sup
x∈[a,b]

|f(x)|, B = sup
x∈[a,b],n≥1

|gn(x)|.

Choose an ǫ > 0. We can find N1 ∈ N such that n ≥ N1 implies
|fn(x)− f(x)| < ǫ/(2B) and an N2 ∈ N such that n ≥ N2 implies that
|gn(x)− g(x)| < ǫ/(2A). Then take N = max{N1, N2} and for n ≥ N

sup
x∈[a,b]

|fn(x)gn(x)− f(x)g(x)| = sup
x∈[a,b]

|fn(x)gn(x)− f(x)gn(x)

+ f(x)gn(x)− f(x)g(x)|
= sup

x∈[a,b]
|gn(x)||fn(x)− f(x)|

+ sup
x∈[a,b]

|f(x)||gn(x)− g(x)|

< ǫ/(2A) + ǫ/(2B) = ǫ.

�

There are various tests for uniform convergence. For series we have
the following powerful result.

Theorem 1.109 (Weierstrass M-Test). Let {fn}∞n=1 be a sequence of
functions on X such that |fn(x)| ≤Mn all x ∈ X and

∑∞
n=1Mn <∞.

Then the series
∑∞

n=1 fn(x) is uniformly convergent.
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Proof. Let SN(x) =
∑∞

n=1 fn(x) and suppose that |fn(x)| ≤Mn. Then
for all N ≥M

|SN(x)− SM(x)| = |
N∑

n=M+1

fn(x)|

≤
N∑

n=M+1

|fn(x)|

≤
N∑

n=M+1

Mn → 0,

as N,M → ∞. So the series SN converges independently of x and
hence is uniformly convergent. �

Example 1.18. The M test is generally easy to use. To illustrate, con-
sider the series

f(x) =

∞∑

n=1

cos(nx)

n2 + 1
. (1.55)

Letting fn(x) =
cos(nx)

n2 + 1
, we immediately see that

|fn(x)| ≤
1

n2 + 1
, (1.56)

and by the comparison test
∑∞

n=1
1

n2+1
<∞. Hence the series (1.55) is

uniformly convergent and so f is a continuous function.

As an application we prove a result about power series.

Theorem 1.110. Let
∑∞

n=0 anx
n be a power series with radius of con-

vergence R. Let 0 < r < R. Then the series converges uniformly on
[−r, r].
Proof. Let

∑∞
n=0 anx

n be convergent for |x| < R. Then it is absolutely
convergent. Pick x = x0 > r and x0 < R and we have

∑∞
n=0 anx

n
0

is convergent, hence anx
n
0 → 0. So there is an M > 0 such that

|anxn0 | ≤M . Then

|anxn| ≤ |an|rn

= |anxn0 |
∣∣∣∣
r

x0

∣∣∣∣
n

≤M

∣∣∣∣
r

x0

∣∣∣∣
n

.

Now
∑∞

n=0M
∣∣∣ r
x0

∣∣∣
n

converges and hence the power series converges uni-

formly by the Weierstrass M test. �
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It is important to note that this theorem does not say that a power
series converges uniformly on (−R,R). Indeed the series

∑∞
n=0 x

n con-
verges on (−1, 1) but the convergence is not uniform. It does converge
uniformly on [−r, r] for r < 1. The point is we cannot necessarily
extend the uniform convergence to the entire interval of convergence.

Another useful test is due to Dini.

Theorem 1.111 (Dini). Let {fn}∞n=1 be a sequence of continuous func-
tions on [a, b] which converges monotonically to a continuous function
f on [a, b]. Then fn → f uniformly on [a, b].

Proof. We can with no loss of generality suppose that f = 0 and that
fn(x) decreases monotonically to 0 for all x ∈ [a, b]. If this is not the
case then we can consider the functions gn = ±(fn − f) depending
on whether fn increases or decreases. The sequence {gn} will then
decrease monotonically to 0.

Now set

Mn = sup{fn(x) : x ∈ [x, b]}.
Since fn decreases to 0, it follows thatMn is decreasing. We claim that
Mn → 0. This will be sufficient to establish that the convergence is
uniform, since then given ǫ > 0 we will be able to find N such that for
all n ≥ N Mn < ǫ and so for n ≥ N we will have

sup
x∈[a,b]

|fn(x)− f(x)| < ǫ. (1.57)

We proceed by contraction. Suppose otherwise. Then we can find
δ > 0 such that for every n, Mn > δ. Consequently for every n there is
a point xn such that f(xn) > δ. The sequence {xn} ∈ [a, b] is bounded,
so by the Bolzano-Weierstrass Theorem it contains a convergent sub-
sequence {xnk

}∞k=1. Let xnk
→ α as k → ∞. By assumption, fn(α) → 0

as n → ∞. So there exists N > 0 such that for n ≥ N , we have
|fn(α)| < δ. But each fn is continuous, so that we can find ǫ > 0
such that |x − α| < ǫ implies |fn(x)| < δ for all n ≥ N. But this is
a contradiction, because we can choose N such that for all nk ≥ N ,
|xnk

− α| < ǫ and fn(xnk
) > δ. Thus our assumption must be false and

hence Mn → 0. �

1.8.1. The Weierstrass Approximation Theorem. One of the most im-
portant results on uniform approximation of functions is due to Weier-
strass. This says that any continuous function on a closed and bounded
interval [a, b] can be approximated uniformly by a polynomial. Equiv-
alently, there is a sequence of polynomials converging uniformly to f .
This can be proved in a number of ways. We can use Fourier series
to establish the result, but Bernstein actually constructed a sequence
of polynomials which approximates any continuous function uniformly.
To present Bernstein’s proof, we require a preliminary lemma.
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Lemma 1.112. For each fixed x, the following identities hold.
n∑

k=0

(
n

k

)
xk(1− x)n−k = 1 (1.58)

n∑

k=1

k

(
n

k

)
xk(1− x)n−k = nx (1.59)

n∑

k=1

k2
(
n

k

)
xk(1− x)n−k = n(n− 1)x2 + nx. (1.60)

Proof. For the first identity, observe that 1n = (x+(1−x))n and apply
the Binomial Theorem to both sides. For the second,

k

(
n

k

)
=

kn!

k!(n− k)!
=

n(n− 1)!

(k − 1)!(n− 1− (k − 1))!

= n

(
n− 1

k − 1

)
.

So that
n∑

k=1

k

(
n

k

)
xk(1− x)n−k =

n∑

k=1

n

(
n− 1

k − 1

)
xk(1− x)n−k

= n

n−1∑

j=0

(
n− 1

j

)
xj+1(1− x)n−1−j

= nx(x+ (1− x))n−1 = nx.

For the final identity, notice that k2 = k(k − 1) + k, so that
n∑

k=1

k2
(
n

k

)
xk(1− x)n−k =

n∑

k=1

(k(k − 1) + k)

(
n

k

)
xk(1− x)n−k

= nx+
n∑

k=1

k(k − 1)

(
n

k

)
xk(1− x)n−k

Now

k(k − 1)

(
n

k

)
= n(n− 1)

(
n− 2

k − 2

)

so that
n∑

k=1

k(k − 1)

(
n

k

)
xk(1− x)n−k =

n∑

k=1

n(n− 1)

(
n− 2

k − 2

)
xk(1− x)n−k

= n(n− 1)x2(x+ 1− x)n−2

= n(n− 1)x2.

This completes the proof.
�

Now we come to Weierstrass’ Theorem.
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Theorem 1.113 (Weierstrass Approximation Theorem). Let f be a
continuous function on a closed and bounded interval [a, b]. Then given
any ǫ > 0 there is a polynomial P with the property that

sup
x∈[a,b]

|f(x)− P (x)| < ǫ.

Proof. This is Bernstein’s proof. For simplicity we can restrict atten-
tion to the interval [0, 1], since [0, 1] can be mapped to [a, b] by the
function ϕ(t) = a(1 − t) + bt, where 0 ≤ t ≤ 1. It is not hard to show
that if Pn → g uniformly on [0, 1], then

Pn(ϕ(t)) → g

(
t− a

b− a

)

uniformly on [a, b].
Now let f be continuous on [0, 1] and define the polynomials

Pn(x) =
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k. (1.61)

These are the Bernstein polynomials for f . We claim that Pn → f
uniformly on [0, 1]. That is, given ǫ > 0 we want to find an n ∈ N such
that n ≥ N implies supx∈[0,1] |Pn(x)− f(x)| < ǫ. Notice that

Pn(x)− f(x) =

n∑

k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k

− f(x)

n∑

k=0

(
n

k

)
xk(1− x)n−k

=

n∑

k=0

[
f

(
k

n

)
− f(x)

](
n

k

)
xk(1− x)n−k. (1.62)

We want to use the uniform continuity of f to make this small. So let
ǫ > 0 and pick δ > 0 such that |x− y| < ǫ/2 implies

|f(x)− f(y)| < ǫ/2.

We therefore want to consider values of k/n such that |x − k/n| < δ.
Since k, n are integers we need to use the integer part function [x] =
greatest integer ≤ x. We split the sum as

Pn(x)− f(x) =
∑

[x−k/n]<δ

[
f

(
k

n

)
− f(x)

](
n

k

)
xk(1− x)n−k

+
∑

[x−k/n]≥δ

[
f

(
k

n

)
− f(x)

](
n

k

)
xk(1− x)n−k.
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Using the fact that
∑n

k=0

(
n
k

)
xk(1− x)n−k = 1 and the continuity of f

we get
∣∣∣∣∣∣
∑

[x−k/n]<δ

[
f

(
k

n

)
− f(x)

](
n

k

)
xk(1− x)n−k

∣∣∣∣∣∣
<
ǫ

2
,

since |k/n− x| < δ. For the second sum
∣∣∣∣∣∣
∑

[x−k/n]≥δ

[
f

(
k

n

)
− f(x)

](
n

k

)
xk(1− x)n−k

∣∣∣∣∣∣

≤ 2 sup
x∈[0,1]

|f(x)|

∣∣∣∣∣∣
∑

[x−k/n]≥δ

(
n

k

)
xk(1− x)n−k

∣∣∣∣∣∣

Now |x − k/n| ≥ δ, so that (x − k/n)2/δ2 ≥ 1. We can then produce
the estimate

∑

[x−k/n]≥δ

(
n

k

)
xk(1− x)n−k ≤ 1

δ2

n∑

k=0

(
x− k

n

)2(
n

k

)
xk(1− x)n−k

=
1

δ2

n∑

k=0

(
x2 − 2xk

n
+
x2

k2

)(
n

k

)
xk(1− x)n−k

=
1

δ2

(
x2 − 2x

n
nx+

1

n2
(n(n− 1)x2 + nx)

)

=
x(1− x)

nδ2
≤ 1

4nδ2
,

since x(1− x) ≤ 1/4 if x ∈ [0, 1]. We thus arrive at
∣∣∣∣∣∣
∑

[x−k/n]≥δ

[
f

(
k

n

)
− f(x)

](
n

k

)
xk(1− x)n−k

∣∣∣∣∣∣
≤ 1

4nδ2
2A, (1.63)

where A = supx∈[0,1] |f(x)|. Hence we need to choose n ≥ 2ǫA/δ2. This
will guarantee that supx∈[0,1] |Pn(x)− f(x)| < ǫ. �

Weierstrass’ Theorem was extended by Marshall Stone to algebras
of functions on more abstract spaces and the result is known as the
Stone-Weierstrass Theorem. It plays a central role in much modern
analysis.

Remark 1.114. A word of caution. Weierstrass’ Theorem does not
mean that the Taylor series of a function f will converge to f uniformly.
The Taylor series may not exist, since we only assume continuity, not
differentiability for f . Even when f is infinitely differentiable the Taylor
series may still not converge.



MODERN ANALYSIS 51

Uniform convergence allows us to reverse the order of a limit and a
Riemann integral.

Theorem 1.115. If {fn}∞n=1 is a sequence of Riemann integrable func-
tions converging uniformly to f on [a, b], then f is Riemann integrable
on [a, b] and

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

f(x)dx.

Proof. If the functions fn are continuous then the proof is easy. By
uniform convergence we can choose N such that n ≥ N implies

|fn(x)− f(x)| < ǫ/(b− a).

As f is continuous by Theorem 1.106, we have for n ≥ N
∣∣∣∣
∫ b

a

fn(x)dx−
∫ b

a

f(x)dx

∣∣∣∣ ≤
∫ b

a

|fn(x)− f(x)| dx (1.64)

<

∫ b

a

ǫ

(b− a)
dx = ǫ. (1.65)

If the functions {fn} are not assumed to be continuous, then we have
to prove the limit is integrable. Each fn is bounded, so the limit f is
bounded. Pick ǫ > 0 and by uniform convergence we can choose N ∈ N
such that for all x ∈ [a, b] n ≥ N implies |fn(x)− f(x)| < ǫ

3(b−a)
. Since

fN is integrable, by Riemann’s criterion we can choose a partition P
of [a, b] such that

U(fN ,P)− L(fN ,P) <
ǫ

3
.

Now supx∈[a,b] |fN(x)− f(x)| < ǫ
3(b−a)

, so we have

U(f,P)− L(f,P) = U(f + f − fN ,P)− L(f + fN − f,P)

≤ U(fN ,P) + U(f − fN ,P)− L(fN ,P)

− L(f − fN ,P)

= U(fN ,P)− L(fN ,P) + U(f − fN ,P)

− L(f − fN ,P)

<
ǫ

3
+ 2

ǫ

3(b− a)
(b− a) = ǫ.

The inequalities used above can be verified by direct calculation. So
f is Riemann integrable. The rest of the proof is as in the continuous
case. �

This swapping of limits does not work for pointwise convergence with
the Riemann integral. The limit function may not even be Riemann
integrable, as is the case with the double sequence fn,k above. Unfortu-
nately when we have sequences of functions, they often do not converge
uniformly. This leads to the question of how can we modify the integral
in such a way as to be able to swap limits and integrals, even when we
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do not have uniform convergence? This problem led to a new theory
of integration, which we will consider, beginning in section three.

Uniform convergence is equivalent to a sequence being uniformly
Cauchy.

Definition 1.116. A sequence fn : X ⊆ R → R is uniformly Cauchy
if given ǫ > 0 there exists N ∈ N such that for all n,m ≥ N

sup
x∈I

|fn(x)− fm(x)| < ǫ.

The next result connects uniformly Cauchy and uniformly convergent
sequences.

Theorem 1.117. Every uniformly convergent sequence of functions is
uniformly Cauchy.

Proof. Let {fn}∞n=1 be a uniformly convergent sequence of functions
defined on X ⊆ R and suppose it has limit f. Let ǫ > 0. Choose
N ∈ N such that x ∈ X, n ≥ N implies

|fn(x)− f(x)| < ǫ

2
.

Then if x ∈ X,m, n ≥ N implies

|fm(x)− fn(x)| = |fm(x)− f(x) + f(x)− fn(x)|
≤ |fm(x)− f(x)|+ |f(x)− fn(x)|
<
ǫ

2
+
ǫ

2
= ǫ.

So {fn}∞n=1 is uniformly Cauchy. �

The converse of this result is also true, but the proof is a little harder.

Theorem 1.118. Every uniformly Cauchy sequence of functions is
uniformly convergent.

Proof. There are two parts. First we have to define the limit and
then we have to prove that the convergence is uniform. The first part
proceeds as follows.

Let {fn}∞n=1 be a uniformly Cauchy sequence on X ⊆ R. Let x0 ∈ X.
Then {fn(x0)}∞n=1 is a Cauchy sequence in R and hence it is convergent.
Let us denote the limit by f(x0). This process defines a limit function
for each x ∈ X. By construction, fn → f pointwise.

Now we prove that fn → f uniformly. Let ǫ > 0 and choose N ∈ N
such that for all x ∈ X , n,m ≥ N we have

|fm(x)− fn(x)| <
ǫ

2
.

Now fm → f pointwise. So for all x ∈ X , n ≥ N

|f(x)− fn(x)| = lim
m→∞

|fm(x)− f(x)| < ǫ

2
.

Thus fn → f uniformly. �
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Interchanging limits and derivatives is actually harder than inter-
changing a limit and an integral. Consider the sequence of functions
fn(x) =

√
x2 + 1/n2. Then for every n, f ′

n(x) exists for all x ∈ R.
However fn → |x| which is not differentiable at zero. Yet the conver-
gence is uniform. To see this, observe that

√
x2 +

1

n2
− |x| = (

√
x2 +

1

n2
− |x|)

√
x2 + 1

n2 + |x|
√
x2 + 1

n2 + |x|

=
1

n2(
√
x2 + 1

n2 + |x|)

≤ 1

n
.

Thus we can bound the difference between the nth term of the sequence
and the limit independently of x and so the convergence is uniform. So
uniform convergence is not enough to guarantee that the limit function
is differentiable.

Even if the limit is differentiable, it does not follow that f ′
n → f ′.

Example 1.19. Let fn(x) =
x

1 + nx2
. Now fn → 0 for all x as n → ∞.

But

f ′
n(x) =

(1− nx2)

(1 + nx2)2

and so f ′
n(0) → 1 6= 0 = f ′(0).

We actually require uniform convergence of the derivatives in order
to swap differentiation and limits. The relevant result follows.

Theorem 1.119. Let I be an open interval in R, f : I → R and let
{fn}∞n=1 be a sequence of differentiable functions on I which converges
pointwise to f on I. Let g : I → R and let the sequence of derivatives
{f ′

n}∞n=1 converge uniformly to g on I. Then f is differentiable on I
and f ′(x) = g(x) for all x ∈ I.

Proof. Let ǫ > 0 and pick an N1 ∈ N such that

sup
x∈I

|fn(x)− f(x)| < ǫ

3
.

The sequence {f ′
n}∞n=1 is uniformly Cauchy on I. So we can find N2 ∈ N

such that for all x ∈ I, n,m ≥ N2

|f ′
m(x)− f ′

n(x)| <
ǫ

3
.

Now let N = maxN1, N2. The function fN is differentiable on I and
so at any point x0 ∈ I there exists δ > 0 such that for x ∈ I, 0 <
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|x− x0| < δ we have∣∣∣∣
fN(x)− fN(x0)

x− x0
− fN(x0)

∣∣∣∣ <
ǫ

3
.

Now let x ∈ I, x 6= x0 and choose M ≥ N. fM − fN is differentiable
and so by the Mean Value Theorem we can find c between x and x0
such that

(fM − fN )(x)− (fM − fN)(x0)

x− x0
= (fM − fN )

′(c).

which is the same as

(fM − fN )(x)− (fM − fN)(x0) = (fM − fN)
′(c)(x− x0).

From this we deduce that

|fM(x)− fM(x0)− (fN(x)− fN (x0))| = |f ′
M(c)− f ′

N(c)||x− x0|
(1.66)

<
ǫ

3
|x− x0|,

where |f ′
M(c)− f ′

N(c)| < ǫ/3 by the fact that the sequence is uniformly
Cauchy and M,N ≥ N and c ∈ I. Taking limits as M → ∞ in (1.66)
we get

|f(x)− f(x0)− (fN(x)− fN(x0))| ≤
ǫ

3
|x− x0|,

which leads to the inequality∣∣∣∣
f(x)− f(x0)

x− x0
− fN (x)− fN(x0)

x− x0

∣∣∣∣ ≤
ǫ

3
.

Finally, we put this altogether and let x ∈ I, 0 < |x − x0| < δ, then
adding and subtracting appropriate terms, and using the triangle in-
equality, we can write∣∣∣∣

f(x)− f(x0)

x− x0
− g(x0)

∣∣∣∣ ≤
∣∣∣∣
f(x)− f(x0)

x− x0
−
(
fN(x)− fN(x0)

x− x0

)∣∣∣∣

+

∣∣∣∣
fN(x)− fN(x0)

x− x0
− f ′

N(x0)

∣∣∣∣
+ |f ′

N(x0)− g(x0)|
<
ǫ

3
+
ǫ

3
+
ǫ

3
= ǫ.

Hence f is differentiable at x0 and f ′(x0) = g(x0).
�

For many problems, the methods we have developed are sufficient
to provide a solution. However analysis does not stop at this point.
There are areas where more sophisticated techniques are needed. For
example, do we really need uniform convergence to swap a limit and
an integral, or can we do better? The answer is that yes we can, but
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it will require us to completely redefine what we mean by integration.
Much of the remainder of these notes will flow from giving a better
answer to the question: What is the best way to define the integral?
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2. The Riemann-Stieltjes Integral

2.1. Basic Concepts. In this section we will consider a modification
of the integral due to Thomas Stieltjes. This integral has many uses so
we will develop it in some detail, before turning to the more important
Lebesgue integral.

Recall that for a function f , we can form a Riemann sum by taking
n∑

i=1

f(x∗i )(xi − xi−1). (2.1)

Here x∗i ∈ [xi−1, xi). While studying problems involving the calcula-
tion of moments, Thomas Stieltjes generalised the Riemann integral
by considering a sum

n∑

i=1

f(x∗i )[φ(xi)− φ(xi−1)] =
∑

P
f∆φ, (2.2)

for some bounded function φ. Taking φ(x) = x we obtain a Riemann
sum. However Stieltjes claimed without proof that if we let

|P| = max
i

{|xi − xi−1|} → 0, (2.3)

then
∑

P f∆φ converges to a limit. This turns out to be true under
suitable assumptions on f and φ and this limit is a new kind of integral.

Definition 2.1 (Riemann-Stieltjes Integral). Suppose that we have
two bounded functions f and φ on [a, b] and that there is a number A
such that for each ǫ > 0 there is a δ > 0 for which∣∣∣∣∣

n∑

k=1

f(ck) (φ(xk)− φ(xk−1))− A

∣∣∣∣∣ < ǫ, (2.4)

where xk−1 ≤ ck ≤ xk and maxk |xk − xk−1| < δ. Then we say that f is
Riemann-Stieltjes integrable and we write

RS

∫ b

a

f(x)dφ(x) = A, (2.5)

or usually just
∫ b

a

f(x)dφ(x) = A. (2.6)

We call this the Riemann-Stieltjes integral or the RS integral. If φ(x) =
x, the standard Riemann integral is to be understood.

We easily see that for φ a constant, the integral is zero. Conversely,
if f(x) = k then

∫ b

a

kdφ(x) = k[φ(b)− φ(a)]. (2.7)
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If φ is a step function with discontinuities at x̂1, ..., x̂n then the RS
integral has a simple expression.

Theorem 2.2. Suppose that f is continuous on [a, b] and that φ is a
step function with

φ(x) =

n∑

k=1

ckχ[xk−1,xk)(x),

where χA(x) = 1 if x ∈ A and zero otherwise. Then the RS integral of
f with respect to φ exists and

RS

∫ b

a

f(x)dφ(x) =

n∑

k=1

f(x̂k)[φ(x̂
+
k )− φ(x̂−k )]. (2.8)

Here φ(a+) − φ(a−) means φ(a+) − φ(a) and φ(b+) − φ(b−) means
φ(b)− φ(b−).

The essential feature to understand is that φ(x̂+k ) − φ(x̂−k ) is the
change in φ across any jump point x̂k. So if there is a jump at x = 2
and to the left φ(2−) = 5 and to the right φ(2+) = 9, then the change
is 4. This result is best understood by an example.

Example 2.1. Let f(x) = x2 and φ(x) = [x], the greatest integer ≤ x.
Then the jumps occur at x̂k = 1, 2, 3... and the jump size is always 1.
So φ(x̂+k )− φ(x̂−k ) = 1 for every k.

∫ n

0

x2d([x]) =

n∑

k=1

k2 =
n

6
(n+ 1)(2n+ 1). (2.9)

Note: The RS integral can exist only if f and φ have no common
points of discontinuity. If f and φ both jump at xk, then there is
a problem. Do we take f(x−) or f(x+) in the RS Sum? Taking
f(x−)[φ(x+) − φ(x−)] will lead to one value for the integral and tak-
ing f(x+)[φ(x+) − φ(x−)] will give a different value for the integral.
Since functions may have many different jump points, there are many
different possible integrals. So no consistent choice is possible.

2.2. Evaluating the RS Integral. The next result is the most im-
portant. This tells us how to actually evaluate a RS integral when φ is
differentiable.

Theorem 2.3. Suppose that f is continuous and φ is differentiable on
(a, b), with φ′ being Riemann integrable on [a, b]. Then the RS integral
of f with respect to φ exists and

RS

∫ b

a

f(x)dφ(x) = R

∫ b

a

f(x)φ′(x)dx (2.10)

where the right side is a regular Riemann integral.
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Proof. It is clear that fφ′ is Riemann integrable and∫ xk

xk−1

φ′(x)dx = φ(xk)− φ(xk−1). (2.11)

So
∑

P
f∆φ−R

∫ b

a

f(x)φ′(x)dx =

n∑

k=1

f(ck)(φ(xk)− φ(xk−1))

−R

∫ b

a

f(x)φ′(x)dx

=
n∑

k=1

R

∫ xk

xk−1

(f(ck)− f(x))φ′(x)dx.

Now f is uniformly continuous on [a, b]. Choose δ > 0 such that
|xk − xk−1| < δ implies

|f(xk)− f(xk−1)| <
ǫ

n(1 + |φ(b)− φ(a)|) .

Then∣∣∣∣∣
n∑

k=1

R

∫ xk

xk−1

(f(ck)− f(x))φ′(x)dx

∣∣∣∣∣ <
n∑

k=1

R

∫ xk

xk−1

|f(ck)− f(x)||φ′(x)|dx

<

n∑

k=1

ǫ|φ(b)− φ(a)|
n(1 + |φ(b)− φ(a)|)

< ǫ.

�

Example 2.2. Using the previous result we can easily compute most RS
integrals. For example

∫ 1

−1

x2d(x2) =

∫ 1

−1

x2(2xdx) = 2

∫ 1

−1

x3dx = 0.

There is also an integration by parts formula.

Theorem 2.4. Suppose that f, φ are bounded functions with no com-

mon discontinuities on the interval [a, b] and that the RS integral
∫ b

a
fdφ

exists. Then the RS integral
∫ b

a
φdf exists and

∫ b

a

φ(x)df(x) = f(b)φ(b)− f(a)φ(a)−
∫ b

a

f(x)dφ(x).

Proof. Let P be a partition of [a, b] whose subintervals have length less
than δ/2. If c0 = a and cn+1 = b, then {c0, c1, ...., cn+1} is a partition
of [a, b] for ck ≤ xk ≤ ck+1 and ck − ck−1 < δ. We have∣∣∣∣∣

∑

P
f∆φ−

∫ b

a

fdφ

∣∣∣∣∣ < ǫ
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for this partition. Then
∣∣∣∣∣

n∑

k=1

φ(ck)[f(xk)− f(xk−1)]−
(
f(b)φ(b)− f(a)φ(a)−

∫ b

a

f(x)dφ(x)

)∣∣∣∣∣

=

∣∣∣∣∣
n∑

k=1

φ(ck)[f(xk)− f(xk−1)]− (f(xn)φ(cn+1)− f(x0)φ(c0))

+

∫ b

a

f(x)dφ(x)

∣∣∣∣

=

∣∣∣∣∣
n∑

k=0

φ(ck)f(xk)−
n+1∑

k=1

φ(ck)f(xk−1) +

∫ b

a

f(x)dφ(x)

∣∣∣∣∣

=

∣∣∣∣∣

∫ b

a

f(x)dφ(x)−
n∑

k=0

f(xk)[φ(ck+1)− φ(ck)]

∣∣∣∣∣ < ǫ.

�

There is a fundamental theorem of calculus for the RS integral.

Theorem 2.5. If f is continuous on [a, b] and φ is monotone increasing

on [a, b], then
∫ b

a
f(x)dφ(x) exists. If F (x) =

∫ x

a
f(t)dφ(t) then

(1) F is continuous at any point where φ is continuous

(2) F is differentiable at any point where φ is differentiable and
F ′(x) = f(x)φ′(x).

Proof. Proof of the existence of the integral is left as an exercise. First
note the elementary point that since φ is monotone increasing, we can
assume φ(b) − φ(a) > 0. If φ(b) = φ(a) then φ is constant and hence
the RS integral is zero.

To show that F is continuous at any point where φ is, we use the fact
that a continuous function on a closed, bounded interval is bounded.
So we can assume that maxa≤x≤b |f(x)| = B. We wish to show that
given ǫ > 0 we can find δ > 0, such that for a given x, |x − y| < δ
implies that |F (x)− F (y)| < ǫ. By linearity of the integral

|F (x)− F (y)| ≤
∣∣∣∣
∫ x

y

f(t)dφ(t)

∣∣∣∣

≤ B

∣∣∣∣
∫ x

y

dφ(t)

∣∣∣∣
≤ B|φ(x)− φ(y)|,

and so if δ is chosen so that |x − y| < δ, then |φ(x) − φ(y)| < ǫ
B

and
the desired inequality for F follows. Hence F is continuous wherever
φ is.



60 MARK CRADDOCK

Next, we suppose that φ is differentiable at x ∈ (a, b). By continuity
of f , on the interval [a, b], if h > 0 and sufficiently small

min
t∈[x,x+h]

f(t)[φ(x+ h)− φ(x)] ≤
∫ x+h

x

f(t)dφ(t)

≤ max
t∈[x,x+h]

f(t)[φ(x+ h)− φ(x)].

Since F is continuous, we can apply the intermediate value theorem to
conclude that there is a c ∈ [x, x+ h] such that

∫ x+h

x

f(t)dφ(t) = f(c)[φ(x+ h)− φ(x)]. (2.12)

We then write∣∣∣∣
F (x+ h)− F (x)

h
− f(x)φ′(x)

∣∣∣∣ =
∣∣∣∣
1

h

∫ x+h

x

f(t)dφ(t)− f(x)φ′(x)

∣∣∣∣

=

∣∣∣∣f(c)
φ(x+ h)− φ(x)

h
− f(x)φ′(x)

∣∣∣∣

≤
∣∣∣∣f(c)

(
φ(x+ h)− φ(x)

h
− φ′(x)

)∣∣∣∣
+ |φ′(x)[f(x)− f(c)]|.

Since φ is differentiable, the first term goes to zero as h→ 0. Similarly,
as h→ 0, |f(c)− f(x)| → 0 since c ∈ [x, x+ h].

�

2.3. Euler-MacLaurin Summation. As an application of the RS
integral, we prove a famous result due to Euler and MacLaurin. A
very common problem in mathematics and its applications is to sum a
series of numbers given by some sequence. Thus practical methods of
summing series had to be developed. Probably the best known is that
of Euler and MacLaurin.

Theorem 2.6. Suppose that f and f ′ are continuous on [0,∞). Then

N∑

k=1

f(k) =

∫ N

1

f(x)dx+
1

2
(f(1) + f(N)) +

∫ N

1

(x− [x]− 1/2)f ′(x)dx.

Proof. From our earlier considerations, we see that
∫ N

1
f(x)d([x]) =∑N

k=2 f(k) since the first jump occurs at 2. Integration by parts for the
RS integral gives

∫ N

1

f(x)d([x]) = Nf(N)− f(1)−
∫ N

1

[x]df(x)

= Nf(N)− f(1)−
∫ N

1

[x]f ′(x)dx
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So
∫ N

1

(x− [x]− 1/2)f ′(x)dx =

∫ N

1

(x− 1/2)f ′(x)−
∫ N

1

[x]f ′(x)dx

= (N − 1/2)f(N)− 1/2f(1)−
∫ N

1

f(x)dx

−Nf(N) + f(1) +

∫ N

1

f(x)d([x])

= −1/2(f(N) + f(1))−
∫ N

1

f(x)dx

+

N∑

k=1

f(k),

since ∫ N

1

f(x)d([x]) =
N∑

k=2

f(k) =
N∑

k=1

f(k)− f(1).

The result follows. �

To use Euler-Maclaurin summation we have to evaluate the integral
∫ N

1

(x− [x]− 1/2)f ′(x)dx.

The best way to do this is by means of Fourier series. (We will dis-
cuss Fourier series later in the course, but now we only assume basic
knowledge from the subject 35231). We assume that f is sufficiently
smooth on [1, N ]. Since x− [x]− 1/2 is periodic, with period 1, we can
represent it as a Fourier series. The Fourier series

P1(x) = −
∞∑

n=1

2 sin(2nπx)

2nπ
(2.13)

represents x− [x]− 1/2 on [1, N ]. Now if we integrate P1 we obtain

P2(x) =
∞∑

n=1

2 cos(2nπx)

(2nπ)2
+ A (2.14)

The constant A we can take to be zero, since we will be evaluating a
definite integral by parts. Integrating repeatedly we are lead to the
odd and even indefinite integrals of P1.

P2k+1(x) = (−1)k+1
∞∑

n=1

2 sin(2nπx)

(2nπ)2k+1

P2k(x) = (−1)k+1
∞∑

n=1

2 cos(2nπx)

(2nπ)2k
.
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We notice P2k+1(N) = 0 for any integer N and

P2k(N) = 2(−1)k+1 1

(2π)2k

∞∑

n=1

1

n2k
= 2(−1)k+1 1

(2π)2k
ζ(2k),

where ζ(s) =
∞∑

n=1

1

ns
is the Riemann zeta function. Euler proved that

ζ(2k) = (−1)k+1π2kB2k
22k−1

(2k)!
, (2.15)

where Bn is the nth Bernoulli number, defined by Bn = Bn(0) and the
Bernoulli polynomials satisfy

∞∑

n=0

Bn(x)t
n =

text

et − 1
.

These can be computed and we have ζ(2) = π2/6, ζ(4) = π4/90, ζ(6) =
π6/945 etc.

Now
∫ N

1

(x− [x]− 1/2)f ′(x)dx =

∫ N

1

P1(x)f
′(x)dx

= P2(x)f
′(x)]N1 −

∫ N

1

P2(x)f
′′(x)dx

=
1

12
[f ′(N)− f ′(1)]− P3(x)f

′′(x)]N1

+

∫ N

1

P3(x)f
′′′(x)dx

=
1

12
[f ′(N)− f ′(1)] + P4(x)f

′′′(x)]N1

−
∫ N

1

P4(x)f
(iv)(x)dx

=
1

12
[f ′(N)− f ′(1)]− 1

720
[f ′′′(N)− f ′′′(1)]

+ · · ·
We are thus lead to the approximation

N∑

k=1

f(k) =

∫ N

1

f(x)dx+
1

2
(f(1) + f(N)) +

1

12
[f ′(N)− f ′(1)]−

1

720
[f ′′′(N)− f ′′′(1)] +

1

30240
[f (v)(N)− f (v)(1)] + · · · .

The error in this approximation when we truncate at the 2n + 1st
derivative can be shown to go to zero as n→ ∞. We thus have a very
practical way of summing series.
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Convergence theorems for the RS integral are similar to those for
the Riemann integral. If we have uniform convergence, then swapping
limits and integrals is valid.

Theorem 2.7. If {fn}∞n=1 is a sequence of continuous functions con-
verging uniformly to f on [a, b] and φ is monotone increasing, then

lim
n→∞

∫ b

a

fn(x)dφ(x) =

∫ b

a

f(x)dφ(x). (2.16)

Proof. Recall that if a sequence of continuous functions converges uni-
formly, then the limit is continuous. Since fn → f uniformly, f is

continuous. Next observe that φ is monotone, so A =
∫ b

a
dφ(x) exists

and A is finite. Now pick an ǫ > 0 and N ∈ N such that n ≥ N implies

|fn(x)− f(x)| < ǫ/|A|. Then
∫ b

a
f(x)dφ(x) exists and so for n ≥ N

∣∣∣∣
∫ b

a

fn(x)dφ(x)−
∫ b

a

f(x)dφ(x)

∣∣∣∣ ≤ max
x∈[a,b]

|fn(x)− f(x)|
∣∣∣∣
∫ b

a

dφ(x)

∣∣∣∣

<
ǫ

|A|

∣∣∣∣
∫ b

a

dφ(x)

∣∣∣∣
< ǫ.

So

lim
k→∞

∫ b

a

fk(x)dφ(x) =

∫ b

a

f(x)dφ(x). (2.17)

�

Example 2.3. From the previous result

lim
k→∞

∫ π/2

0

(1− x/n)nd(sin x) =

∫ π/2

0

e−xd(sin x)

=

∫ π/2

0

e−x cosxdx

= 1/2(1 + e−π/2).
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3. Measure Theory

3.1. Definition of a Measure. We saw a different type of integral in
the previous section. In this section we begin the task of introducing
the most important integral for modern analysis, namely the Lebesgue
integral. This will require the development of measure theory. Basically
a measure is a way of assigning a size to a set. More precisely:

Definition 3.1. A measure is a set function with the properties that

(i) m(∅) = 0, where ∅ is the empty set.

(ii) If {An} are pairwise disjoint then m (
⋃∞

n=1) =
∑∞

n=1m(An).

The concept of a measure was introduced by Borel in 1898, though
it builds on earlier work of Jordan. In his PhD thesis in 1900 Lebesgue
extended the idea and used it to construct a new type of integral, which
has since gone on to become the standard integral used in analysis.

The point of a measure is to assign a size to a set. For finite discrete
sets, the measure might be the number of elements in the set. For
subsets of the real numbers, such as intervals, the measure might be the
length. In this course we are interested in subsets of the real numbers.
Besides the two basic properties, a wish list for a measure on R might
consist of the following:

(i) Every set of real numbers is measurable, no matter how com-
plicated.

(ii) If A ⊆ B then m(A) ≤ m(B).

(iii) The measure of a single point {x} is zero.

(iv) m([a, b]) = b− a.

(v) m(A + x) = A, where A+ x = {y + x, y ∈ A}.
Unfortunately it turns out that no such function exists. We will see

later that there are sets of real numbers so weird that they do not have
a measure. At the moment however, we are unaware of this problem.
So we proceed as follows. First we define something called an outer
measure. We recall that the length of an interval I = (a, b) is given by
l(I) = b − a. Note that closed, and half open intervals have the same
length as the corresponding open intervals. Now we make a definition.

Definition 3.2. Let A be a set of real numbers. The Lebesgue outer
measure of A is

m∗(A) = inf

{∑

k

l(Ik) : A ⊆
⋃

k

Ik

}
, (3.1)

and the Ik are open intervals.
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The idea is to cover our set A with the smallest collection of intervals
possible and take the sum of the lengths of the intervals to be the outer
measure. We can similarly define the inner measure

Definition 3.3. Let A be a set of real numbers. The Lebesgue inner
measure of A is

m∗(A) = sup

{∑

k

l(Ik) :
⋃

k

Ik ⊆ A

}
(3.2)

and the Ik are open intervals.

Here we are filling up our set A with the biggest collection of intervals
possible, then taking the sum of the lengths of the intervals to be the
inner measure.

3.2. Measurable Sets. For arbitrary sets it will turn out that the
Lebesgue outer measure is not in general additive. The best we can
conclude in the general case is that Lebesgue outer measure is subad-
ditive. The proof of the next result is a tutorial exercise.

Lemma 3.4. For any collection of disjoint sets A1, A2, ... the Lebesgue
outer measure satisfies the inequality

m∗

( ∞⋃

n=1

An

)
≤

∞∑

n=1

m∗(An). (3.3)

In order to get additivity, we will have to restrict our attention to
certain types of sets. There are actually two different approaches to
this problem, which turn out to be completely equivalent. The original
idea of Lebesgue is to consider sets which have the same inner and
outer measure. Then in 1912 Caratheodory introduced a criterion for
measurability which has since become the standard approach.

If Ec denotes the compliment on a set E ⊆ X , that is

Ec = {x ∈ X, x 6∈ E}, Xc = ∅,
then given another set A, any set E can be decomposed into two disjoint
sets:

E = (E ∩ A) ∪ (E ∩Ac).

This suggests that the outer measure should satisfy

m∗(E) = m∗(E ∩A) +m∗(E ∩ Ac).

This forms the basis of our definition of measurability.

Definition 3.5 (Caratheodory’s Measurability Condition). A set A ⊂
R is Lebesgue measurable if and only if

m∗(E) = m∗(E ∩A) +m∗(E ∩ Ac),

for every subset E of R.
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We already know that outer measure is always sub-additive. So that

m∗(E) ≤ m∗(E ∩ A) +m∗(E ∩Ac)

is always true. To prove measurability for a given set we therefore need
to establish that the reverse inequality is true.

This definition of measurability turns out to be enough to guarantee
additivity for countable unions of disjoint sets. Lebesgue’s definition
of measurability was alluded to above.

Definition 3.6. A set A ⊂ R is measurable if m∗(A) = m∗(A). That
is, if the inner and outer measures are equal.

A result which we will not prove connects these two definitions.

Theorem 3.7. Definitions 3.5 and 3.6 are equivalent. That is, if a set
is measurable according to one definition, it is measurable according to
the other.

We will work mainly with Caratheodory’s condition for measurabil-
ity, but the second is also very useful. First we want to know what sets
are measurable.

Theorem 3.8. The empty set ∅ and R are Lebesgue measurable. If A
is measurable, then so is Ac.

Proof. If A is measurable, then for any set E,

m∗(E) = m∗(E ∩A) +m∗(E ∩ Ac)

= m∗(E ∩Ac) +m∗(E ∩A)
= m∗(E ∩ Y ) +m∗(E ∩ Y c),

where Y = Ac. So Ac is measurable. Now Rc = ∅ and it is clear that
m∗(∅) = 0 = m∗(∅), so ∅ is measurable and hence R is measurable.

�

Theorem 3.9. Intervals are Lebesgue measurable.

Proof. If I is an interval then m∗(I) = l(I) = m∗(I) and so I is mea-
surable. �

Using these basic facts we can produce many other measurable sets
if we can show that unions and intersections of measurable sets are also
measurable. This is our next result.

Theorem 3.10. If A and B are measurable then A∪B and A∩B are
also measurable.

Proof. A is measurable and so for any subset E of R we can write

m∗(E ∩ (A ∪B)) = m∗((E ∩ (A ∪B)) ∩A) +m∗((E ∩ (A ∪ B)) ∩Ac)

= m∗(E ∩ A) +m∗(E ∩B ∩Ac). (3.4)
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Now we also know that B is measurable. So we can write

m∗(E) = m∗(E ∩ A) +m∗(E ∩ Ac)

= m∗(E ∩ A) + [m∗((E ∩ Ac) ∩B) +m∗((E ∩ Ac) ∩Bc)]

= [m∗(E ∩ A) +m∗(E ∩ B ∩ Ac)] +m∗(E ∩ (A ∪ B)c)

= m∗(E ∩ (A ∪ B)) +m∗(E ∩ (E ∪ B)c).

We used the deMorgan law (A∪B)c = Ac∩Bc and (3.4) in the last step.
Thus A∪B is measurable. Now Ac and Bc are also measurable, hence
Ac ∪Bc is measurable and thus A∩B = (Ac ∪Bc)c is measurable. �

It is clear by induction that for any finite collection of measurable
sets A1, ..., AN , the union

⋃N
k=1Ak is measurable.

It turns out that we can extend the previous result to countable
unions of measurable sets. In order to establish this, we need a prelim-
inary result, the proof of which is another exercise in induction.

Theorem 3.11. Let A1, ..., AN be pairwise disjoint measurable sets. If
E is a subset of R, then

m∗

(
E ∩

(
N⋃

k=1

Ak

))
=

N∑

k=1

m∗(E ∩ Ak). (3.5)

Now we come to the major result.

Theorem 3.12. Suppose that {An}∞n=1 are pairwise disjoint measurable
sets. Then

⋃∞
n=1An is measurable and

m∗

( ∞⋃

n=1

An

)
=

∞∑

k=1

m∗(An). (3.6)

Proof. Let BN =
⋃N

k=1Ak and let B =
⋃∞

k=1Ak. We know that BN is
measurable, so for any set E ⊂ R

m∗(E) = m∗(E ∩BN ) +m∗(E ∩Bc
N )

=
N∑

n=1

m∗(E ∩ An) +m∗(E ∩Bc
N )

by (3.5). Now Bc ⊂ Bc
N so we may take the limit as N → ∞ to get

m∗(E) ≥
∞∑

n=1

m∗(E ∩An) +m∗(E ∩ Bc)

≥ m∗(E ∩ B) +m∗(E ∩ Bc),

since E ∩ B =
⋃∞

n=1E ∩ An. We know that outer measure is always
sub-additive, so m∗(E) ≤ m∗(E ∩ B) + m∗(E ∩ Bc). Because both
inequalities hold we have

m∗(E) = m∗(E ∩B) +m∗(E ∩ Bc). (3.7)
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Hence B is measurable. Now let E = B in the relation

m∗(E) =
∞∑

n=1

m∗(E ∩ An) +m∗(E ∩ Bc). (3.8)

This gives

m∗(B) =
∞∑

n=1

m∗(B ∩An) +m∗(B ∩ Bc)

=
∞∑

n=1

m∗(An) +m∗(∅)

and the result follows since m∗(∅) = 0.
�

So we see that the Caratheodory condition gives us what we need. If
we restrict our attention to sets satisfying this condition, then we get
countable additivity. In the previous result, for measurability, we do
not need the sets to be disjoint. The next result is an exercise.

Theorem 3.13. Let {An}∞n=1 be any collection of measurable sets.
Then

⋃∞
n=1An and

⋂∞
n=1An are measurable.

Henceforth we restrict our attention to sets which are measurable
according to Caratheodory’s condition, (or equivalently Lebesgue’s def-
inition).

Definition 3.14. Let A be a Lebesgue measurable set. Then the
Lebesgue measure of A ism(A) = m∗(A). Equivalently m(A) = m∗(A).

The moral of all this is it if we restrict our attention to sets satisfying
Caratheodory’s condition, then the outer measure is a measure. Are
there sets which do not satisfy Caratheodory’s condition? The answer
we will see is yes.

Lebesgue measure has many useful properties. We conclude this
section by grouping some of them together. Some we have already
proved, other are exercises or can be found in the standard references.

Theorem 3.15 (Properties of Lebesgue Measure). The following facts
hold for Lebesgue measure.

(i) Complements, countable unions and countable intersections of
measurable sets are measurable.

(ii) Any interval is measurable and its measure is its length.

(iii) Suppose that {An}∞n=1 and {Bn}∞n=1 are sequences of measurable
sets such that A ⊃ A1 ⊃ A2 ⊃ A3 ⊃ · · · and B1 ⊂ B2 ⊂ B3 ⊂
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· · · , and m(A) <∞. Then

m

( ∞⋂

n=1

An

)
= lim

n→∞
m(An)

and

m

( ∞⋃

n=1

Bn

)
= lim

n→∞
m(Bn).

(iv) Translation invariance. If A is measurable, then m(A + h) =
m(A), where A+ h = {x+ h, x ∈ A}.

(v) Open and closed subsets of R are measurable.

(vi) If A is measurable, then for any ǫ > 0 there exists a closed set
B and an open set C such that B ⊂ A ⊂ C and m(C ∩Bc) < ǫ.
In particular m(B) ≥ m(A)− ǫ and m(C) ≤ m(A)+ ǫ. If m(A)
is finite, then B can be taken to be bounded.
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4. Measure Theory II

We have established that if we restrict Lebesgue outer measure to the
sets satisfying the Caratheodory condition, then the desired properties
of a measure hold for the Lebesgue outer measure applied to these sets.
The Lebesgue measurable sets on R form a special kind of set.

Definition 4.1. Let X be a set. A σ-algebra on X is a set S of subsets
of X such that

(i) ∅ ∈ S

(ii) A ∈ S implies Ac ∈ S

(iii) An ∈ S for all n ∈ N implies ∪∞
n=1An ∈ S.

The next result follows immediately from our previous considera-
tions.

Theorem 4.2. The Lebesgue measurable sets form a σ-alegbra.

In the theory of integration we work with measure spaces.

Definition 4.3. We will define the following spaces.

(i) A measurable space is an ordered pair (X,S) where X is a set
and S is a σ-algebra on X.

(ii) A measure space is a triple (X,S, µ) where X,S are as in (i)
and µ is a measure on S.

Example 4.1. If L is the σ-algebra of Lebesgue measurable sets, m is
Lebesgue measure then (R,L, m) is a measure space.

One of the most important σ algebras is the one generated by open
sets.

Definition 4.4. We define open and closed sets as follows.

(i) Let A ⊂ R. We say that A is open if given any x0 ∈ A may find
ǫ > 0 such that the ball

Bǫ(x0) = {x ∈ R : |x0 − x| < ǫ} ⊂ A.

(ii) A point x ∈ A is said to be a limit point of A if there is a
sequence {xn} ⊂ A such that xn → x.

(iii) A set A is closed if it contains all its limit points.

Example 4.2. The interval [0, 1] is closed, whereas (0, 1) is open. Given
x ∈ (0, 1) we can choose ǫ = 1

2
min(x, 1 − x) and then it is clear that

Bǫ(x) ⊂ (0, 1). Obviously 0,1 are limit points of (0, 1), so [0, 1] is closed.

A fundamental result is that
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Theorem 4.5. A subset of R is open if and only if its compliment is
closed.

Open sets are fundamental to analysis. Now suppose that we con-
sider the set of all open sets in R. Then we form the collection

B = {A ⊂ R : A = (∪∞
n=1An) ∪ (∪∞

n=1B
c
n)}

where the An, Bn are open. In other words, B is formed by taking
countable unions and compliments of open sets.

Definition 4.6. The set B is called the Borel σ-algebra. Elements of
B are called Borel sets.

It is easy to show the following.

Theorem 4.7. Every Borel set is Lebesgue measurable.

The converse of this result is false. Not every Lebesgue measurable
set is a Borel set, though this is much harder to prove. It involves
actually constructing a Lebesgue set that is not a Borel set.

Sets whose measure is zero are commonly encountered. It is clear
that every countable set has Lebesgue measure zero. (Why?) The
converse is once again false. There are uncountable sets with measure
zero.

Theorem 4.8 (Cantor). There exists a subset C of [0, 1] which is mea-
surable, uncountable and m(C) = 0.

Note: Cantor did not state this result in terms of measures. He
showed that the total length of the sets removed from [0, 1] to make
the Cantor set is one. This obviously implies the result as we have
stated it.

We have said that not every subset of R is measurable. That is,
that not every subset of the reals satisfies Caratheodory’s condition.
In 1905 Giuseppe Vitali constructed a non-measurable set by invoking
the axiom of choice. Zermelo introduced the axiom of choice in order to
prove a result that had eluded Cantor when he established set theory in
the 19th century. The result Zermelo was looking to establish was the
so called ‘well ordering principle’ that any set of real numbers can be
well ordered. Cantor thought this to be obvious. Many mathematicians
today think it is obviously false! It actually turned out that the axiom
of choice -given any collection of non-empty sets it is possible to choose
an element from each one- is logically equivalent to the well ordering
principle. There is another result called Zorn’s lemma which is also
logically equivalent to the axiom of choice. This led one mathematician
to observe ‘the axiom of choice is obviously true. The well ordering
principle is obviously false and Zorn’s lemma, who knows?’

The point is that the axiom of choice is controversial and many do
not like what it implies. Yet the proof of the Hahn-Banach theorem,
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Tychonoff’s Theorem,1 the existence of a basis for a vector space and
many other major results rely on it.

Here is Vitali’s example. It should be clear where the axiom of choice
is used.

Theorem 4.9. There exists a nonmeasurable subset of R.

Proof. Define the equivalence relation x ∼ y if x−y ∈ Q. Now partition
R into disjoint non-empty sets Eα with x, y ∈ Eα, for some α if and
only if x ∼ y. Here α ∈ I, for some index set I.

Now x−[x] ∼ x and x−[x] ∈ [0, 1]. Here [x] is the largest integer less
than or equal to x. Now construct a set A by choosing one element from
Eα ∩ [0, 1] for each α. Let {xn} be any enumeration of the rationals in
(−1, 1). Define the sequence of sets An = A + xn. Clearly A ⊂ (0, 1).
The sets An are pairwise disjoint. To prove this, observe that if x ∈
Am ∩ An then for some points x′, x′′ in A, x = x′ + xm = x′′ + xn, so
x′ − x′′ = xm − xn ∈ Q. So x′ ∼ x′′, so xm = xn and n = m. Now

(0, 1) ⊂
∞⋃

n=1

An ⊂ (−1, 2). (4.1)

In fact, by construction, for each x ∈ (0, 1), there is a unique x′ ∈ A ⊂
[0, 1) such that x−x′ ∈ Q. Then x−x′ = xn for some n and so x ∈ An.
The other conclusion is obvious since A ⊂ [0, 1] and |xn| < 1 for all n.

We now prove that A is not measurable. Suppose that it is. Then
from (4.1) and elementary properties of Lebesgue measure,

1 = m((0, 1)) ≤ m

( ∞⋃

n=1

An

)
=

∞∑

n=1

m(An) ≤ 3 = m((−1, 2)). (4.2)

But m(An) = m(A + xn) = m(A). So we have 1 ≤ m(A) + m(A) +
m(A) + · · · ≤ 3. This is impossible. Either m(A) = 0, or m(A) > 0
and both violate the previous inequality. Consequently, m(A) does not
exist and A is not a measurable set. �

The existence of non-measurable sets is a problem that many math-
ematicians want to banish, since it leads to paradoxes. It also violates
our intuition. Imagine that we have a non-measurable set and we throw
darts at it, where the darts are of course line segments. The proba-
bility of landing in the set should be the measure of the set. Yet the
measure does not exist. So does that mean that the probability does
not exist? Our intuition seems to suggest a paradox. These sorts of
questions have lead many mathematicians to conclude that something
is not right here. There is an even stranger consequence however.

The Banach-Tarski paradox says that it is possible to decompose
the unit sphere into five segments, then rotate and translate (but not

1This is a famous result in topology: The product of any collection of compact
topological spaces is compact. See any standard textbook on toplogy for the details.
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dilate) the segments into two spheres each identical to the original.2

Hausdorff earlier showed a similar result is true in the plane. The
point is that we cut the sphere into non-measurable sets.

In the construction of a non-measurable set, we used the Axiom of
Choice, and some would like to abandon this, but there is considerable
argument about this. Solovay showed in 1970 that non-measurable
sets exist only if we accept the axiom of choice in the case where we
can make a choice from an uncountable collection of sets. If we only
allow choice for countable collections, then all sets are measurable.
However the axiom of choice in general form is so useful, that most
mathematicians just accept that there really are non-measurable sets.
We cannot actually turn one sphere into two. The theorem tells us
that the sets which are needed to transform one sphere into two exist.
It gives no method for actually constructing them.

The general view seems to be that the axiom of choice is fine, as long
as we understand that the predictions of mathematics do not always
have to correspond to our physical reality. Mathematics exists in and
of itself. The fact that it is useful for understanding the world should
not blind us to the fact that we can easily imagine things which are
mathematically possible, but physically impossible.

4.1. Measurable Functions. In order to construct the integral, we
need to consider the types of functions which will be used. We start
with a definition.

Definition 4.10. Let f : X → Y. Then

f−1(A) = {x ∈ X : f(x) ∈ A ⊆ Y }.
We call f−1(A) the inverse image of A under f.

We give an alternative definition of continuity using this.

Definition 4.11. Let f : R → R.We say that f is continuous if f−1(A)
is open, whenever A is open.

It is not hard to show that this is equivalent to the usual definition of
continuity in terms of sequences: f is continuous at x if xn → x implies
f(xn) → f(x). The new definition of continuity is easy to adapt to other
settings, since we can define open sets by fiat. (This is the subject of
topology)

Next we introduce the characteristic function.

Definition 4.12. The characteristic function of a set E is

χE(x) =

{
1 x ∈ E

0 x 6∈ E.
(4.3)

2This led students at UNSW in 1987 to propose developing the Banach potato
which could be infinitely reproduced from a single speciman and used to solve world
hunger. Sadly no funding was forthcoming.
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A simple function is one of the form f =
∑n

i=1 aiχEi
.

In order to define the Lebesgue integral, we require the sets Ei to be
measurable. This leads to the definition of a measurable function.

Definition 4.13. A real valued function f is measurable if f−1(A) is
measurable whenever A is open.

Note we do not require A to be measurable in this definition. Open
sets are measurable, but requiring measurability of A would lead to an
unnecessarily restrictive class of functions.

It is immediate that continuous functions are measurable.

Theorem 4.14. Every continuous function is measurable.

Proof. If f is continuous then f−1(A) is open whenever A is open. But
open sets are measurable. So f−1(A) is measurable whenever A is
open. �

Various operations on functions preserve measurability. To establish
the necessary results we require a more convenient characterisation of
measurability. The proof is an exercise.

Proposition 4.15. f is measurable if any of the following hold:

(i) f−1(A) is measurable whenever A is closed.

(ii) f−1(A) is measurable whenever A is an interval.

(iii) f−1(A) is measurable whenever A is an open interval

(iv) f−1(A) is measurable whenever A is an interval of the form
(a,∞) or (−∞, a).

Now we introduce operations on two functions.

Definition 4.16. If f and g are real valued functions then

(f ∧ g)(x) = min(f(x), g(x)) (4.4)

(f ∨ g)(x) = max(f(x), g(x)). (4.5)

Proposition 4.17. If c is real and f, g are measurable, then cf, f + g,
fg, |f |, f ∧ g and f ∨ g are all measurable.

Proof. We introduce the notation {f > a} = {x ∈ R : f(x) > a} =
f−1((a,∞)). Since f is measurable {f > a} is measurable. If c > 0
then {cf > a} = {f > a/c} and similarly for c ≤ 0 so cf is measurable.
Next {|f | > a} = {f > a}∪{f < −a} which is the union of measurable
sets, so |f | is measurable. Then {f ∧ g > a} = {f > a} ∩ {g > a} and
{f ∨ g > a} = {f > a} ∪ {g > a} and these are measurable.
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If f(x) > r and g(x) > a − r then f(x) + g(x) > a. Conversely, if
(f+g)(x) > a, then there is a rational r such that f(x) > r > a−g(x).
So that we can write

{f + g > a} =
⋃

r∈Q
{f > r} ∩ {g > a− r}

and this is measurable.
Next {f 2 > a} = {f > √

a}∪{f < −√
a}, so f 2 is measurable. And

finally fg = 1
4
[(f + g)2 − (f − g)2] and so fg is measurable. �

In the next section we turn to the construction of the Lebesgue
integral.
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5. The Lebesgue Integral

We saw in the previous section that measurability is preserved when
we perform certain operations on functions. It will be important to con-
sider the question of what happens when we take limits of sequences
of measurable functions. It turns out that pointwise limits are measur-
able.

Theorem 5.1. Suppose that {fn}∞n=1 is a sequence of measurable func-
tions converging pointwise to f . Then f is measurable.

Proof. Suppose that f(x) > a. If f(x) = b, then b − a > 0 and we
can find m such that 2/m < (b − a). So there exists m ∈ N such
that f(x) > a + 2/m. Now fn(x) → f(x) so given m we can find
N ∈ N so that for all n ≥ N , |fn(x) − f(x)| < 1/(m). Which implies
fn(x) > f(x)− 1/(m). Hence there is an N such that fn(x) > a+1/m
for all n ≥ N. So

{f > a} ⊂
∞⋃

m=1

∞⋃

N=1

∞⋂

n=N

{fn > a+ 1/m}. (5.1)

The right is formed from countable unions and intersections of mea-
surable sets and so is measurable. Now if x belongs to the set on the
right, then for some m and some N we have fn(x) > a + 1/m for all
n ≥ N. So in the limit f(x) ≥ a+ 1/m. Therefore

∞⋃

m=1

∞⋃

N=1

∞⋂

n=N

{fn > a+ 1/m} ⊂ {f > a}. (5.2)

So the two sets are equal and hence f is measurable. �

It is convenient to work on the extended real numbers, which we
denote by R∗. This is simply the real numbers with ±∞ included.
For the most part nothing changes when we work on the extended
reals, though we have to be careful about sums and products, since
quantities like ∞−∞ is not defined. Measurability can be recast as:
f is measurable if f−1(A) is measurable for every set A = (a,∞].

Sequences of measurable functions have other nice properties.

Theorem 5.2. Suppose that {fn}∞n=1 is a sequence of measurable func-
tions. Let

g(x) = inf
n
{fn(x)}, h(x) = sup

n
{fn(x)}. (5.3)

Then g, h are measurable.

Proof. For any a

{g < a} =
∞⋃

n=1

{fn < a}, {h > a} =
∞⋃

n=1

{fn > a}.
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These are countable unions of measurable sets and hence measurable.
�

An interesting question is how close pointwise convergence is to uni-
form convergence? Egoroff’s Theorem gives and answer. Before stating
the result we need a definition.

Definition 5.3. Suppose that f = g for all x 6∈ E where m(E) = 0.
Then we say that f = g almost everywhere, or f = g a.e. In general
a property of a function that holds except on a set of measure zero is
said to hold almost everywhere.

Theorem 5.4 (Egoroff). Suppose that {fn}∞n=1 is a sequence of mea-
surable functions that converges to a real valued function f almost ev-
erywhere on the interval [a, b]. Then for any δ > 0 there is a measurable
subset E of [a, b] such that m(E) < δ and the sequence {fn}∞n=1 con-
verges to f uniformly on [a, b]−E.

The proof of this is an exercise, and quite a hard one. The point of
the theorem is that we can make convergence uniform on “most” of the
interval [a, b]. Think about convergence. We have a sequence fn → f
on [a, b]. This means that we can make |fn(x)− f(x)| < ǫ by choosing
n large enough. The problem is that we will need in general a different
n for each x. If the convergence is uniform, then we can use the same
n for every x. What Egoroff’s Theorem tells us is that the same n will
do for all x ∈ [a, b]−E. However the smaller ǫ is, the larger n will have
to be to compensate. If the convergence is not uniform on the whole
of [a, b], then as we let ǫ→ 0, n→ ∞. Estimates of how n grows as E
shrinks exist, but we will not discuss this issue. We will use Egoroff’s
Theorem later.

Simple functions lie at the heart of the theory of integration. Recall
that a simple function is one of the form

φ =

n∑

i=1

aiχAi
,

where the sets Ai are measurable and pairwise disjoint. We first in-
troduce the integral of a simple function and then extend it to more
general functions. The key fact is that we can approximate measurable
functions by simple functions as the next result shows.

Theorem 5.5. For any non-negative measurable function f defined
on a measurable set E, there exists a sequence of simple functions
{φn}∞n=1 such that limn→∞ φn = f on E. If f is bounded on E, then
limn→∞ φn = f uniformly on E. If f is non-negative, the sequence
{φn}∞n=1 may be constructed so that it is monotonically increasing.
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Proof. For each n ≥ 1 and for each x ∈ E let

φn(x) =

{
i−1
2n

if i−1
2n

≤ f(x) < i
2n

n if f(x) ≥ n.
(5.4)

Then the φn are non-negative functions and φn+1(x) ≥ φn(x). At a
point where f(x) <∞ we have

0 ≤ f(x)− φn(x) <
1

2n

if f(x) < n. At a point where f(x) = ∞ we have φn(x) = n. This
shows that for any point x, φn(x) → f(x) as n→ ∞. Since

|f(x)− φn(x)| ≤
1

2n
(5.5)

the convergence is independent of x and so is uniform. �

We define the Lebesgue integral for simple functions first.

Definition 5.6. Let f =
∑n

i=1 aiχAi
be a simple function. Then the

Lebesgue integral of f is

∫
f =

n∑

i=1

aim(Ai),

wherem is Lebesgue measure. If
∫
f <∞ we say that f is an integrable

simple function, or ISF.

Example 5.1. Let f = χQ. Then
∫
f = m(Q) = 0.

Proposition 5.7. Let f and g be ISFs. The following properties hold.

(i) If c is a constant then cf is an ISF and
∫
cf = c

∫
f.

(ii) f + g is an ISF and
∫
(f + g) =

∫
f +

∫
g.

(iii) |
∫
f | ≤

∫
|f |.

(iv) If f ≤ g, then
∫
f ≤

∫
g.

(v) If fa(x) = f(x− a) then fa is an ISF and
∫
fa =

∫
f.

Proof. We will only prove additivity. The other properties are exercises.
Suppose that f = aχA and g = bχB. Then

f + g = aχ(A−(A∩B)) + bχ(B−(B∩A)) + (a + b)χA∩B.
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Hence

∫
(f + g) = am(A− (A ∩ B)) + bm(B − (B ∩A)) + (a + b)m(A ∩ B)

= a (m(A− (A ∩B)) +m(A ∩B)) + b(m(B − (B ∩ A))
+m(A ∩ B)) = am(A) + bm(B)

=

∫
f +

∫
g.

We made use of the decomposition (A− (A∩B))
⋃
(A∩B) = A, which

implies that m(A) = m(A− (A∩B)) +m(A∩B). Similarly for m(B).
Now let f =

∑n
i=1 aiχAi

where the Ais are disjoint and g = b1χB1 .
Then

f + g =

n∑

i=1

(
aiχ(Ai−(Ai∩B)) + (ai + b1)χAi∩B1 + b1χ(B1−∪Ai)

)
.

From this we have

∫
(f + g) =

n∑

i=1

[aim(Ai − (Ai ∩B1)) + (ai + b1)m(Ai ∩B1)

+ bm(B1 − ∪Ai)]

=
n∑

i=1

ai[m(Ai − (Ai ∩ B1)) +m(Ai ∩ B1)]

+ b1

n∑

i=1

[m(Ai ∩ B1) +m(B1 − ∪Ai)]

=

n∑

i=1

aim(Ai) + b1m(B1)

=

∫
f +

∫
g.

Observe that f+g is itself a simple function, which we call h. Now let
k = b2χB2 consider f + g + k = h+ k. Then by our previous argument

∫
(f + g + k) =

∫
(h + k) =

∫
h+

∫
k =

∫
f +

∫
g +

∫
k

=

n∑

i

aim(Ai) +

2∑

j=1

bjm(Bj).
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By induction it follows that if g =
∑m

j=1 bjχBj
with the Bjs disjoint,

then
∫

(f + g) =

n∑

i=1

aim(Ai) +

m∑

j=1

bjm(Bj)

=

∫
f +

∫
g,

so the integral is linear.
�

To define the Lebesgue integral in general, we consider the positive
case first.

Definition 5.8. If f : R → [0,∞) is a measurable function, then
∫
f = sup

{∫
φ : 0 ≤ φ ≤ f, φ is an ISF

}
. (5.6)

Note that this allows
∫
f = ∞. We will have to exclude this possi-

bility when we extend the integral to arbitrary functions.

Theorem 5.9. If f and g are non-negative and measurable, then

(i)
∫
af = a

∫
f

(ii)
∫
(f + g) =

∫
f +

∫
g.

(iii) If f ≤ g, then
∫
f ≤

∫
g.

The proof requires a lemma.

Lemma 5.10. Suppose that f is a bounded, measurable function and
A is a set with m(A) < ∞. For any ǫ > 0, there are ISFs f1, f2 such
that f1 ≤ f ≤ f2 on A and f2 − f1 < ǫ.

Proof. Choose M so that |f(x)| ≤ M for all x. Then decompose
[−M,M ] into n disjoint intervals I1, ..., In each of length less than ǫ.
So

[−M,M ] =
n⋃

k=1

Ik, Ik ∩ Ij = ∅, k 6= j, Ik = [ak, bk).

Let Ak = A ∩ f−1(Ik) and let f1 =
∑n

k=1 akχAk
and f2 =

∑n
k=1 bkχAk

.
Then the result follows. �

Now we prove Theorem 5.9.

Proof. Parts (i) and (iii) are trivial. So we only prove additivity. Sup-
pose that f and g are non-negative measurable and f1, g1 are ISFs such
that 0 ≤ f1 ≤ f and 0 ≤ g1 ≤ g. Then f1 + g1 ≤ f + g. So∫

f1 +

∫
g1 ≤

∫
(f + g).



MODERN ANALYSIS 81

Taking supremums of both sides gives
∫
f +

∫
g ≤

∫
(f + g).

Now we prove the reverse inequality.
Suppose that h is an ISF and 0 ≤ h ≤ f + g. Let A = {x : h(x) >

0}. Then m(A) < ∞ since h is an ISF, so its support must have
finite measure. Now h is bounded, so h ∧ f and h ∧ g are bounded.
We choose ISFs f1 and g1 such that 0 ≤ f1 ≤ h ∧ f ≤ f1 + ǫ and
0 ≤ g1 ≤ h ∧ g ≤ g1 + ǫ. Now h ≤ f + g, so

h ≤ h ∧ f + h ∧ g ≤ f1 + g1 + 2ǫχA.

Now ∫
h ≤

∫
f1 +

∫
g1 + 2ǫm(A) ≤

∫
f +

∫
g + 2ǫm(A).

Taking first the infimum over ǫ and then the supremum over h ≤ f + g
we find that

∫
(f + g) ≤

∫
f +

∫
g and the theorem is proved. �

We use additivity to extend to the general case.

Definition 5.11. Let f be any real valued or extended real valued
function. We define f+(x) = f(x) if f(x) > 0 and f+(x) = 0 if
f(x) < 0. Conversely, f−(x) = −f(x) if f(x) < 0 and f−(x) = 0 if
f(x) > 0.

Lemma 5.12. If f is measurable, then f+ and f− are measurable.
Any function f can be written f = f+ − f−. Further |f | = f+ + f−.

We extend the Lebesgue integral to arbitrary functions.

Definition 5.13. Ameasurable function is Lebesgue integrable if
∫
|f | <

∞. If f is Lebesgue integrable, then we define
∫
f =

∫
f+ −

∫
f−.

This definition requires
∫
f+ < ∞ and

∫
f− < ∞, since ∞ −∞ is

not defined. If we restrict our attention to positive functions then we
can allow the Lebesgue integral of a function to be infinite. However for
the more general case we must insist on finiteness, because otherwise
the integral will not be well defined.

Theorem 5.14. Suppose that f, g are Lebesgue integrable and a is real.
Then f + g is Lebesgue integrable and (i)

∫
af = a

∫
f , (ii)

∫
(f + g) =∫

f+
∫
g. (iii) |

∫
f | ≤

∫
|f |. Further if f ≤ g then

∫
f ≤

∫
g. Finally,∫

fa =
∫
f.

Proof. Observe that |f + g| ≤ |f |+ |g|. So f + g is integrable. Next

(f + g)+ − (f + g)− = f + g = (f+ − f−) + (g+ − g−).
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Therefore (f + g)+ + f− + g− = (f + g)− + f+ + g+. So
∫

(f + g)+ +

∫
f− +

∫
g− =

∫
(f + g)− +

∫
f+ +

∫
g+

Thus ∫
(f + g)+ −

∫
(f + g)− =

∫
f+ −

∫
f− +

∫
g+ −

∫
g−.

Hence
∫
(f + g) =

∫
f +

∫
g.

Next, f ≤ g implies g− f ≥ 0 so
∫
g−
∫
f =

∫
(g− f) ≥ 0. Property

(iii) follows from −|f | ≤ f ≤ |f |. And the final result follows from the
corresponding result for simple functions. �

Finally we extend the Lebesgue integral to arbitrary sets.

Definition 5.15. Let f be Lebesgue measurable. Then for A ⊂ R we
have

∫
A
f =

∫
fχA.

It is easy to establish the following very useful results.

Theorem 5.16. If f is measurable and bounded almost everywhere on
A, with m(A) < ∞, then it is Lebesgue integrable on A. If g, h are
Lebesgue integrable, f is Lebesgue measurable and g ≤ f ≤ h, then f
is Lebesgue integrable.

Proposition 5.17. If A = B∪C, where B,C are disjoint, then
∫
A
f =∫

B
f +

∫
C
f.

Proof. Since A = B ∪ C, B ∩ C = ∅, then χA = χB∪C . Hence

χA(x) =





1 x ∈ B

1 x ∈ C

0 x 6∈ B ∪ C.
(5.7)

From which we have χA = χB + χC . Then∫

A

f =

∫
χAf

=

∫
(χB + χC)f

=

∫
χBf +

∫
χCf

=

∫

B

f +

∫

C

f.

�

Before we introduce the convergence theorems which lie at the heart
of Lebesgue’s theory of integration, we should briefly discuss the be-
haviour of integrable functions at infinity. It is clearly not true that
a function which is integrable must satisfy lim|x|→∞ |f(x)| = 0. As a
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simple counter example, consider the function f(x) = 1 for x ∈ Q and
f(x) = 0 for x 6∈ Q. Then

∫
|f | = 0, since Q has measure zero. Thus f

is integrable, but lim|x|→∞ |f(x)| 6= 0.
However, suppose that there is an ǫ > 0 and an X > 0 such that

|f(x)| ≥ ǫ for all x > X. It is then clear that∫ ∞

−∞
|f(x)|dx ≥

∫ ∞

X

|f(x)|dx ≥
∫ ∞

X

ǫdx = ∞.

Thus, given ǫ > 0 the set of points for which |f | > ǫ, must have finite
measure. That is, if f is integrable, then given ǫ > 0, there must be
an X such that |f(x)| < ǫ for all x > X , except possibly for a set of
measure zero.

When we evaluate Fourier transforms in what follows, we will typi-
cally be dealing with smooth, integrable functions and it will be safe to
assume that the function decays to zero at infinity. But for functions
which are not continuous, some caution may be needed. Typically we
will explicitly state that we are assuming that the functions we work
with satisfy lim|x|→∞ |f(x)| = 0.
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6. The Convergence Theorems and Differentiation

One of the great strengths of the Lebesgue integral is that it has
stronger convergence properties than the Riemann integral. Recall that
in order to interchange the order of integration and a limit, we require
uniform convergence, if we use the Riemann integral. This is very
restrictive, since establishing uniform convergence can be very difficult,
and we often do not have it all. For the Lebesgue integral the situation
is much better. We only need to be able to bound the sequence by a
constant if we are integrating over a finite set. This make the Lebesgue
integral far more suited to problems in analysis than the Riemann
integral.

In this section we detail the main results. The most important is the
Dominated convergence Theorem. We begin with a Lemma.

Lemma 6.1. Suppose that g is a non-negative ISF, and suppose that
{fn}∞n=1 is a sequence of measurable functions such that

g ≥ f1 ≥ f2 ≥ fn · · · ≥ 0 (6.1)

and limn→∞ fn(x) = 0 a.e. Then

lim
n→∞

∫
fn = 0. (6.2)

Proof. Since g is an ISF, the set A = {x : g(x) > 0} has finite measure
and g is bounded. Say 0 ≤ g(x) ≤ M for all x. Given any ǫ > 0, let
An = {x : fn(x) > ǫ}. Our assumptions imply that

A ⊃ A1 ⊃ A2 ⊃ · · ·
and ∩∞

n=1An = ∅. Therefore, by Theorem 3.15 limn→∞m(An) = 0.
Choose N so that m(An) < ǫ for all n ≥ N. Then n ≥ N implies
fn = 0 on Ac and fn ≤ ǫ on A ∩Ac

n. Also, fn ≤ M. So

0 ≤
∫
fn =

∫

An

fn +

∫

A∩Ac
n

fn

≤Mm(An) + ǫm(A ∩ Ac
n)

< ǫ(M +m(A)),

and the result follows. �

We use this result to prove

Theorem 6.2 (Lebesgue’s Dominated Convergence Theorem). Sup-
pose that {fn}∞n=1 is a sequence of measurable functions, such that for
almost all real x, limn→∞ fn(x) = f(x) pointwise. Suppose further that
there exists a Lebesgue integrable function g such that |fn(x)| ≤ g(x)
for all x. Then

lim
n→∞

∫
fn =

∫
f. (6.3)
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Proof. We consider three cases.
Case 1

Suppose that f = 0 and {fn} is a non-increasing sequence. Given
ǫ > 0 choose an ISF with 0 ≤ g1 ≤ g and

∫
g ≤

∫
g1 + ǫ. Now we can

write

fn = fn ∧ g1 + [fn − fn ∧ g1] ≤ fn ∧ g1 + (g − g1). (6.4)

The functions fn ∧ g1 satisfy the conditions of the previous lemma,
since they are dominated by the ISF g1. Thus for n sufficiently large,∫
fn ∧ g1 < ǫ, hence

∫
fn ≤

∫
fn ∧ g1 +

∫
(g − g1) < ǫ+ ǫ (6.5)

and so
∫
fn → 0.

Case 2

Let f = 0 and fn ≥ 0 for all n. Let

g = sup{fn, fn+1, fn+2, ...}.
Then the gn’s decrease to 0 and Case 1 applies to the gn. So we have

0 ≤
∫
fn ≤

∫
gn → 0. (6.6)

Case 3

From the preceding, we establish the general case. Let gn = |fn −
f |. Then gn is non-negative, measurable and converges to 0 pointwise
almost everywhere. Further gn ≤ |fn| + |f | ≤ 2g. We thus apply case
2 to the gn. Hence

0 ≤
∣∣∣∣
∫
fn −

∫
f

∣∣∣∣ ≤
∫

|fn − f | ≤
∫
gn → 0. (6.7)

�

This is the most important result in the theory of integration. It is
one of the most important tools of modern analysis. Swapping limits
and integrals is so common. that much of modern analysis would be
impossible without this result. We present an immediate consequence.

Theorem 6.3 (Monotone Convergence theorem). Suppose that {fn}∞n=1

is a nondecreasing sequence of measurable functions with 0 ≤ f1 ≤ f2 ≤
f3 ≤ · · · . Let fn → f pointwise. Then

lim
n→∞

∫
fn =

∫
f.

Proof. Clearly f is measurable, since it is the limit of a sequence of
measurable functions. Let h be an ISF such that 0 ≤ h ≤ f , then the
Dominated Convergence Theorem implies that∫

h = lim
n→∞

∫
h ∧ fn ≤ lim

n→∞

∫
fn. (6.8)
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Taking the supremum over all h’s gives
∫
f ≤ limn→∞

∫
fn. But it is

also clear that
∫
fn ≤ f and so the reverse inequality also holds. �

Let us consider another way of proving the Dominated Convergence
Theorem, or rather a simpler version of it. This makes use of Ego-
roff’s Theorem and illustrates Littlewood’s three principles of measure
theory.

(1) Measurable sets are nearly open sets.

(2) Measurable functions are nearly continuous functions.

(3) Pointwise convergence is nearly uniform convergence.

We will discuss this further after the next result and its proof. The
proof illustrates Littlewood’s idea.

Theorem 6.4. If {fn} is a uniformly bounded sequence of Lebesgue
measurable functions converging pointwise almost everywhere to f on
[a, b] then

lim
n→∞

∫ b

a

fn =

∫ b

a

f. (6.9)

Proof. Define f to be zero where lim fn 6= f. Sets of measure zero do
not effect the Lebesgue integral, so it does not matter what the limit
is on such a set. Because |fn| ≤ B on [a, b] and limits of measurable
functions are measurable, we can conclude that f is measurable and

bounded and hence Lebesgue integrable. So
∫ b

a
f exists.

Let ǫ > 0 be given. By Egoroff’s Theorem there is a subset E of [a, b]
such that the sequence {fn}∞n=1 converges uniformly to f on [a, b]− E
and m(E) < ǫ. By the triangle inequality |f − fn| ≤ 2B. So

∣∣∣∣
∫ b

a

fn −
∫ b

a

f

∣∣∣∣ ≤
∫ b

a

|fn − f |

=

∫

E

|fn − f |+
∫

[a,b]−E

|fn − f |

≤ 2Bm(E) +

∫

[a,b]−E

|fn − f |

< 2Bǫ+

∫

[a,b]−E

|fn − f |.

Now on [a, b] − E |fn − f | → 0 uniformly. So we can choose N such
that for n ≥ N, |fn − f | < ǫ on [a, b]− E. So for n ≥ N we have

∣∣∣∣
∫ b

a

fn −
∫ b

a

f

∣∣∣∣ ≤ 2Bǫ+ ǫm([a, b]− E)

< 2Bǫ+ ǫ(b− a).
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This holds for all ǫ > 0 so we conclude |
∫ b

a
fn −

∫ b

a
f | → 0. �

The crux of the problem is to be able to swap limits and integrals.
We can do this if we have uniform convergence, because we can make
|fn− f | uniformly small over the region of integration. That is, we can
choose n large enough so that

sup
x∈[a,b]

|fn(x)− f(x)| < ǫ.

The choice of n is independent of x. This is the value of uniform

convergence. So we have
∫ b

a
|fn(x)−f(x)|dx ≤ ǫ(b−a). If we needed a

different n to do this for each x, then this argument just doesn’t work.
Uniformity is nice. In the proof of the bounded convergence theorem

just given, we use the fact that pointwise convergence is nearly uniform
convergence, (Egoroff’s Theorem says exactly this). Split the region of
integration into the part where the convergence is uniform and the part
where it is not. The part where we have uniform convergence we don’t
need to worry about. All we have to do is take care of the small part
of the domain where the convergence is not uniform, and the argument
above does this.

It is also true that measurable functions are nearly continuous func-
tions. This is the content of the following result.

Theorem 6.5 (Lusin). Let f be a measurable function on a set E and
let ǫ > 0. Then there is a set F such that f is continuous on F and
m(E − F ) <∞.

Proof. We sketch the idea for the case m(E) <∞. The case m(E) = ∞
can be obtained as a modification of this argument.

We can approximate f by a sequence of simple functions {φn}. It
is possible to prove that given a simple function φn on a set E there
is a continuous function gn and a closed set Fn ⊆ E, such that φn =
gn on Fn and m(E − Fn) < ǫ/2n+1. Egoroff’s Theorem tells us that
there is a closed set F0 ⊆ E such that φn → f uniformly on F0 and
m(E −F0) < ǫ/2. Let F = ∩∞

n=0Fn. Then it is straightforward to show
that m(E − F ) < ǫ. Now φn = gn on Fn and since φn → f uniformly
on F , gn → f uniformly on F . Now the uniform limit of a sequence of
continuous functions is continuous. So f must be continuous on F . �

We now have an explicit statement of what it means to say that
measurable functions are nearly continuous. When we deal with mea-
surable functions, we can use continuity arguments on the set where
the function is continuous, then worry about what happens on the
small (measure less than ǫ) part of the domain where it is not continu-
ous. This approach to measure theoretical problems has proved to be
enormously effective over the years.
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Another useful result is Fatou’s Lemma. This is the strongest state-
ment that can in general be made if we do not have dominated conver-
gence and impose no other conditions.

Theorem 6.6 (Fatou’s Lemma). If {fn}∞n=1 is a sequence of non-
negative integrable functions, converging pointwise almost everywhere
to f on [a, b], then

∫ b

a

f ≤ lim inf

∫ b

a

fn. (6.10)

Fatou’s lemma is used extensively in applications of the Lebesgue
integral. Some proofs of the dominated convergence theorem make use
of it. We will not have any further use for it, however.

Next we turn to the relationship between the Lebesgue and Riemann
integrals.

Theorem 6.7. If f is Riemann integrable on [a, b], then f is also
Lebesgue integrable on [a, b] and

L
∫ b

a

f = R
∫ b

a

f. (6.11)

Proof. Since f is Riemann integrable on [a, b] it is bounded. Consider
the partition P = {x0, x1, ..., xn} of [a, b[ and let

mi = inf{f(x) : x ∈ [xi−1, xi)}
and

Mi = sup{f(x) : x ∈ [xi−1, xi)}.
Then introduce the simple functions

φn =

n∑

i=1

miχ[xi−1,xi)

ψn =
n∑

i=1

Miχ[xi−1,xi),

which satisfy φn ≤ f ≤ ψn. Since φn ↑ f and ψn ↓ f , then f is
measurable and Lebesgue integrable, since it is the limit of sequences
of simple functions. Now by the Riemann integrability of f we have
that the lower sum

L(f,P) =
n∑

i=1

mi(xi − xi−1)

= L
∫
φn.
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The sequence {φn}∞n=1 is montone increasing, so by the fact that f is
Riemann integrable and the monotone convergence theorem

L
∫ b

a

f = lim
n→∞

L
∫
φn

= L
∫

lim
n→∞

φn

= R
∫ b

a

f(x)dx.

�

The result means that we can use standard results about Riemann
integrals to evaluate Lebesgue integrals. The converse is of course false.
There are many Lebesgue integrable functions that are not Riemann
integrable.

However with the Riemann approach, we have the concept of an
improper Riemann integral. Specifically, in Riemann’s sense, we define

∫ ∞

−∞
f(x)dx = lim

T→∞

∫ 0

−T

f(x)dx+ lim
R→∞

∫ R

0

f(x)dx. (6.12)

A consequence of this is that there are functions which are not Lebesgue
integrable for which the improper Riemann integral does exist. For

example let f(x) =
sin x

x
, x 6= 0, f(0) = 1. This function is not

Lebesgue integrable on R. But the improper Riemann integral does
exist and equals

∫ ∞

0

sin x

x
dx =

π

2
. (6.13)

For f to be Lebesgue integrable, we require
∫
|f | <∞. Whereas the

improper Riemann integral is simply given by
∫ ∞

0

sin x

x
dx = lim

R→∞

∫ R

0

sin x

x
dx. (6.14)

Of course the integrals
∫ R

0
f(x)dx exist in the Lebesgue sense and are

equal to the Riemann integral. So it is true that

lim
R→∞

L

∫ R

0

f(x)dx = π/2. (6.15)

But the limit is not a Lebesgue integral. We can of course define it
to be the improper Lebesgue integral of f . That is, if f is Lebesgue
integrable on [0, n] for each n and

lim
n→∞

∫
fχ[0,n] = I, <∞. (6.16)
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Then we can say that the improper Lebesgue integral

Imp

∫

[0,∞)

f = I.

Obviously if
∫
[0,∞)

|f | <∞, then we must have
∫
[0,∞)

f = I. That is the

Lebesgue integral and the improper Lebesgue integral will coincide.
This is perfectly fine. However, we must be careful because in these

situations it is not clear that we can use the convergence theorems, or
other useful properties of the Lebesgue integral. For example, suppose
that the improper Lebesgue integral of fk on R+ exists for each k =
0, 1, 2, ... and that fk → f . Are there conditions under which it is true
that

lim
k→∞

Imp

∫

[0,∞)

fk = Imp

∫

[0,∞)

f, ? (6.17)

In fact there are, but we will not discuss them in this subject. One
must however be careful to not simply assume that every nice property
of the Lebesgue integral can be assumed about the improper version.

Nevertheless, despite this caveat, the Lebesgue approach to the in-
tegral is the standard one for modern analysis. And we shall use it for
now on. As we shall see, the DCT is a result that is essential to a great
deal of modern mathematics.

There is a fundamental theorem of calculus for the Lebesgue integral,
which we state without proof. First, a definition.

Definition 6.8. A function f is said to be absolutely continuous on
the interval [a, b] if, given any ǫ > 0, we can find a δ > 0 such that for
any finite collection of pairwise disjoint intervals (ak, bk) ⊂ [a, b], k =
1, 2..., n with

∑n
k=1(bk − ak) < δ we have

n∑

k=1

|f(bk)− f(ak)| < ǫ.

This is a very strong form of continuity. Even differentiable func-
tions are not necessarily absolutely continuous, though the converse is
(essentially) true. Naturally, absolutely continuous functions are also
continuous. The following is also true.

Proposition 6.9. Every absolutely continuous function is uniformly
continuous.

Proof. Just check the definition. �

The Lebesgue integral returns absolutely continuous functions.

Theorem 6.10 (Lebesgue, 1904). Given that f is Lebesgue integrable
on [a, b], define a function F on [a, b] by F (x) =

∫ x

a
f(t)dt. Then F is

absolutely continuous on [a, b]. Further F ′ = f almost everywhere on
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[a, b]. Moreover, if F ′ exists and is bounded on [a, b] then F ′ is Lebesgue
integrable and ∫ x

a

F ′ = F (x)− F (a)

for x ∈ [a, b].

Actually, we can say more. The next result of Lebesgue tells us more
than the 1904 result.

Theorem 6.11 (Lebesgue). Let F (x) =
∫ x

a
f(t)dt.

(i) If f is bounded on [a, b] then F is Lipschitz continuous on [a, b].

(ii) Given an ǫ > 0, there is a δ > 0 such that if E is any measur-
able subset of [a, b] with m(E) < δ, then

∫
E
|f | < ǫ.

(iii) If F (x) = 0 for all x ∈ [a, b] then f = a.e.

(iv) If f ≥ 0 then F is non-decreasing,

(v) If f is bounded on [a, b], then F ′(x) = f(x) a.e.

The proof of this result is an exercise.
One of the fundamental unanswered problems about the Riemann

integral was the following. Can one explicitly describe a class of func-
tions R, with the property that every function f ∈ R is Riemann
integrable, but if f 6∈ R, then it is not Riemann integrable? Certainly
every continuous function is Riemann integrable, but there are func-
tions that are Riemann integrable, but not continuous. Lebesgue gave
the following answer to this question.

Theorem 6.12 (Lebesgue). A bounded function f : [a, b] → R is
Riemann integrable if and only if it is continuous almost everywhere.

6.1. Differentiation. Let us briefly consider a few facts about the
derivative. We will keep the proofs to a minimum. The rest would
take us too far away from the main thrust of the course.

Definition 6.13. A function f is said to have bounded variation on
[a, b] if for every partition P = {x0, x1, ..., xn} of [a, b] the quantity

variation(f) =

n∑

i=1

|f(xi)− f(xi−1)|,

is bounded.

Example 6.1. We list some examples.

(i) The function f(x) = x sin(π/x) for x 6= 0 and f(0) = 0 is not of
bounded variation. (To see this, take the points xk = 2/(2k+1)
and consider the resulting sum. It is unbounded by comparison
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with the harmonic series).

(ii) If f is monotone, then f has bounded variation. This follows
from the inequality

∑
P |f(xk) − f(xk−1)| ≤ |f(b) − f(a)| for

any partition P of [a, b].

(iii) Brownian motion has unbounded variation. (However it has
bounded quadratic variation3).

(iv) Absolutely continuous functions have bounded variation.

(v) If f is continuously differentiable it has bounded variation.

To see the last one, observe that F (x) =
∫ x

a
F ′(y)dy+F (a), and this

is absolutely continuous and hence has bounded variation.
In 1894 Jordan proved an important result about functions of bounded

variation.

Theorem 6.14 (Jordan). Every function of bounded variation can be
written as the difference of two monotone functions.

Proof. Monotone functions are of bounded variation and by the triangle
inequality, the difference of two functions of bounded variation has
bounded variation. To prove the result we construct the necessary
monotone functions. Let f be of bounded variation on [a, b]. Define

V (x) = sup
∑

P
|f(xk)− f(xk−1)|,

where the supremum is taken over all partition of [a, x], a ≤ x ≤ b.
Then V is monotone increasing. Obviously f = V −(V −f). So we show
that V − f is monotone increasing. Suppose x < y. Now the variation
of f on [x, y] is no smaller than |f(x)− f(y)|, since this is variation for
a trivial partition. We thus have V (y) − V (x) ≥ f(y)− f(x). Which
is the same as V (x) − f(x) ≤ V (y) − f(y). So V − f is monotone
increasing. �

Absolutely continuous functions have another very important prop-
erty.

Theorem 6.15. An absolutely continuous function is differentiable al-
most everywhere.

We have already seen that convex functions can be differentiated
almost everywhere, in fact except possibly at a countable number of
points. We can actually say more. Lebesgue proved the following
famous result. The proof, using the so called Dini derivatives is very
involved, so we omit it.

3the quadratic variation of f is QV (f) =
∑

n

i=1
|f(xi)− f(xi−1)|2.
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Theorem 6.16 (Lebesgue). If f is non-decreasing, then it is differen-
tiable almost everywhere.

Corollary 6.17. Functions of bounded variation are differentiable al-
most everywhere.

Proof. A function of bounded variation is the difference of two mono-
tone functions. �

Since we are talking about sets of measure zero, we need to answer an
important question. Suppose that f ′ = 0. We know that f is constant.
What if f ′ = 0 a.e.?

Theorem 6.18. If f is absolutely continuous on [a, b] and f ′ = 0 a.e.
on [a, b] then f is constant on [a, b].

Proof. Given ǫ > 0 we can find δ > 0 such that if (ak, bk) is a pairwise
disjoint collection of subintervals of length

∑
k(bk − ak) < δ, we have∑

k |f(bk)− f(ck)| < ǫ. Now consider the set E = {x ∈ (a, c) : f ′(x) =
0}. Then E is equal to [a, c] except possibly for a set of measure zero.
Now given x ∈ E, f ′(x) = 0, so from the definition of the derivative,
on a small interval [x, x+ h] we have |f(x+ h)− f(x)| < ǫh.

We can form a finite collection of disjoint closed intervals [x1, x1 +
h1], [x2, x2 + h2], ..., [xn, xn + hn], where a < x1 < x1 + h1 < x2 <
x− 2 + h2 < · · · < xn + hn < c. This gives us a decomposition of (a, c)
as

(a, c) = (a, x1) ∪ [x1, x1 + h1] ∪ (x+h1, x2) ∪ · · · (xn + hn, c).

and

m(E − ∪[xk, xk + hk]) = m(a1, x1) +m(x1 + h1, x2) + · · ·
+m(xn + hn, c)

< δ,

since f is absolutely continuous. Thus

|f(c)− f(a)| = |f(c)− f(xn + hn)|+ |f(xn + hn)− f(xn)|+
· · ·+ |f(x1 + h1)− f(x1)|+ |f(x1)− f(a)|
≤ |f(c)− f(xn + hn)|+ · · ·+ |f(x1)− f(a)|
+ |f(x1 + h1)− f(x1)|+ · · ·+ |f(xn + hn)− f(xn)|
< ǫ+ ǫ(h1 + · · ·+ hn) = ǫ(1 + c− a).

This holds for every ǫ > 0, so that f(c) = f(a) for every c. Thus f is
constant. �

If we remove the requirement that f be absolutely continuous, the
result is false. There is a function, constructed by Cantor, which has
the property that C ′(x) = 0 a.e. on [0, 1] but C(0) = 0, C(1) = 1.
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7. Applications of Lebesgue’s Integral

We start with yet another version of the Dominated Convergence
Theorem.

Theorem 7.1. Let (X,S, µ) be a measure space, J an interval in R and
f : X × J → R a measurable function such that f(·, t) is a measurable
function for each t ∈ J . Assume also that there exists an integrable
function g such that |f(x, t)| ≤ g(x) holds for almost all x and t ∈ J .
If for some limit point t0 (including possibly ±∞) of J there exists a
function h such that limt→t0 f(x, t) = h(x) holds for almost all x, then

(i) h is an integrable function, and
(ii) limt→t0

∫
f(x, t)dx =

∫
limt→t0 f(x, t)dx =

∫
hdx.

The proof of this is an exercise. This is a very useful form of the
Dominated Convergence Theorem, which has an immediate applica-
tion.

Theorem 7.2. Let (X,S,m) be a measure space and let f : X ×
(a, b) → R be a function such that f(·, t) is Lebesgue integrable for
each t ∈ (a, b). Assume that for some t0 ∈ (a, b) the partial deriva-
tives ∂f

∂t
(x, t0) exists for almost all x. Assume also that there exists an

integrable function g and a neighbourhood V of t0 such that

|Dt0(x, t)| =
∣∣∣∣
f(x, t)− f(x, t0)

t− t0

∣∣∣∣ ≤ g(x) (7.1)

holds for almost all x, t ∈ V. Then

(i) ∂f
∂t
(·, t0) defines an integrable function and

(ii) The function F : (a, b) → R defined by
∫
f(x, t)dx is differen-

tiable at t0 and

F ′(t0) =

∫
∂f

∂t
(x, t0)dx.

Proof. Clearly limt→t0 Dt0(x, t0) =
∂f
∂t
(x, t0) holds for almost all x. Thus

by Theorem 7.1, ∂f
∂t
(·, t0) defines an integrable function and

F (t)− F (t0)

t− t0
=

∫
f(x, t)− f(x, t0)

t− t0
dx

=

∫
Dt0(x, t0)dx→

∫
∂f

∂t
(x, t0)dx

as t→ t0. �

Now suppose that f(x, t) is integrable and g(x, t) = ∂f
∂t
(x, t) exists

for all t ∈ (a, b) and is also integrable. By Taylor’s Theorem for each
x we can write

f(x, t) = f(x, t0) +
∂f

∂t
(x, T )(t− t0), t0 ∈ (a, b), (7.2)
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for some T ∈ [a, b]. We can then say that

f(x, t)− f(x, t0)

t− t0
= g(x, T )

≤ sup
T

|g(x, T )|.

So if supt∈[a,b] |g(x, t)| is integrable then the conditions of the Theorem
are met and we can differentiate under the integral sign.

The process of differentiating under the integral sign is used exten-
sively (and often without regard to whether the technical conditions we
need are actually satisfied). We will have cause to use it a great deal.
Let us present a couple of applications to the calculation of integrals.

Example 7.1. Let us show that
∫∞
0
e−x2

dx =
√
π/2. To proceed, let

f(t) =

(∫ t

0

e−x2

dx

)2

and

g(t) =

∫ 1

0

e−t2(x2+1)

x2 + 1
dx, t ≥ 0.

Notice that

∂

∂t

e−t2(x2+1)

x2 + 1
= −2te−t2(x2+1), (7.3)

which is an integrable function for all t. This allows us to differen-
tiate under the integral sign in the integral defining g. Now f ′(t) =

2e−t2
∫ t

0
e−x2

dx and

g′(t) =

∫ 1

0

∂

∂t

(
e−t(x2+1)

x2 + 1

)
dx = −2e−t2

∫ 1

0

te−x2t2dx.

by differentiating under the integral sign. Now let u = xt to give

g′(t) = −2e−t2
∫ t

0

e−u2

du (7.4)

so that f ′(t) + g′(t) = 0. Integrating gives f(t) + g(t) = c a constant.
Observe that

f(0) + g(0) =

∫ 1

0

dx

x2 + 1
=
π

4
.

Next, limt→∞
e−t2(x2+1)

x2+1
= 0 for each x. Also
∣∣∣∣∣
e−t2(x2+1)

x2 + 1

∣∣∣∣∣ ≤
1

x2 + 1
,

for each t ≥ 0. So by the DCT limt→∞ g(t) = 0. Thus

π

4
= lim

t→∞
(g(t) + f(t)) =

(∫ ∞

0

e−x2

dx

)2

, (7.5)
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so
∫∞
0
e−x2

dx =
√
π
2
.

Example 7.2. Show that
∫∞
0
e−x2

cos(2xt)dx =
√
π
2
e−t2 .

To do this, we set F (t) =
∫∞
0
e−x2

cos(2xt)dx. Then observe that

|e−x2
cos(2xt)| ≤ e−x2

which is integrable. Further |2xe−x2
sin(2xt)| ≤

xe−x2
and xe−x2

is integrable. So we differentiate under the integral
sign to obtain

F ′(t) =

∫ ∞

0

∂

∂t

(
e−x2

cos(2xt)
)
dx = −2

∫ ∞

0

xe−x2

sin(2xt)dx

= e−x2

sin(2xt)]∞0

− 2t

∫ ∞

0

e−x2

cos(2xt)dx

= −2tF (t).

So that F ′(t) + 2tF (t) = 0. Solving the ODE gives F (t) = F (0)e−t2 .
Finally F (0) =

∫∞
0
e−x2

dx =
√

π
2
.

Now we present a more theoretical application of differentiation un-
der the integral. We prove uniqueness of solutions of the heat equation
for certain problems.

Theorem 7.3. Suppose that u satisfies

(1) u is continuous on R× [0,∞).

(2) ut = uxx for t > 0

(3) u(x, 0) = 0

(4) sup |x|k
∣∣∣ ∂k

∂xku(x, t)
∣∣∣ <∞ for all k, 0 < t < T , all T > 0.

Then u = 0.

Proof. Introduce E(t) =
∫∞
−∞ |u(x, t)|2dx. Clearly E(0) = 0. We will

show that E is zero for all t. We differentiate under the integral sign
and use condition (4) to guarantee convergence of the integrals. We
have

d

dt
E(t) =

∫ ∞

−∞

∂

∂t
u(x, t)u(x, t)dx

=

∫ ∞

−∞
(ut(x, t)u(x, t) + u(x, t)ut(x, t))dx

=

∫ ∞

−∞
(uxx(x, t)u(x, t) + u(x, t)uxx(x, t))dx
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so that

d

dt
E(t) = ux(x, t)u(x, t) + u(x, t)ux(x, t)]

∞
−∞

−
∫ ∞

−∞
(ux(x, t)ux(x, t) + ux(x, t)ux(x, t))dx

= −2

∫ ∞

−∞
|ux(x, t)|2dx,

since the boundary terms must be zero by condition (4). Hence E ′(t) ≤
0 for all t. So E is decreasing or constant. Since it starts at zero and
is always non-negative, it must be constant. So E(t) = 0 for all t ≥ 0.
Hence u = 0.

�

Corollary 7.4. Suppose that u, w both satisfy

(1) u and w are continuous on R× [0,∞).

(2) ut = uxx and wt = wxx

(3) u and w both satisfy 4 above.

(4) u(x, 0) = w(x, 0) = f(x).

Then u = w.

Proof. We consider the function v = u−w. This satisfies the conditions
of Theorem 7.3. So v = 0. Hence u = w. �

The integral used in the proof is called an energy integral. Using
similar methods we can prove uniqueness for solutions of other equa-
tions, such as the wave equation. This is a large area of research. It
is important to know under what conditions the solutions of a partial
differential equation are unique. However this is beyond the scope of
our subject.

We also consider an application of the monotone convergence theo-
rem.

Example 7.3. Show that
∫ 1

0
dx√
x
= 2.

To do this, we set fn(x) = x−1/2χ[1/n,1]. Plainly, fn → x−1/2 on [0, 1]
pointwise. Now

∫ 1

0

fn(x)dx =

∫ 1

1/n

x−1/2dx = 2x1/2]11/n

= 2− 2√
n
→ 2,

as n→ ∞. The result follows by the monotone convergence theorem.
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7.1. Introduction to the Fourier Transform. Next we begin our
study of the Fourier transform. This is one of the most important tools
in mathematics and we will examine it in considerable detail.

Definition 7.5. Let f be an integrable function. The Fourier trans-
form of f is defined to be

(Ff)(y) = f̂(y) =

∫ ∞

−∞
f(x)e−iyxdx. (7.6)

There are variants of this definition. Some authors will set

f̂(y) =

∫ ∞

−∞
f(x)e−2πiyxdx. (7.7)

At a couple of points we will use this because it happens to be more
convenient. There are other conventions, but they are all equivalent
under a change of variables.

The Fourier transform of an integrable function is not necessarily
itself an integrable function. For arbitrary f , the best we can say is

Theorem 7.6 (Riemann-Lebesgue lemma). Suppose that f is Lebges-

gue integrable. Then lim|y|→∞ |f̂(y)| = 0.

The proof is an exercise. The most important result about the
Fourier transform is the inversion theorem. This will be proved in
the tutorial exercises.

Theorem 7.7 (Fourier inversion). Suppose that f is an integrable func-

tion. Suppose also that f̂ is Lebesgue integrable. Then

f(x) =
1

2π

∫ ∞

−∞
f̂(y)eiyxdy. (7.8)

A proof of this result will be given in the tutorials. This is the
simplest form of the inversion theorem. With additional hypotheses,
we can formulate others. For example, if we suppose that f ′, f ′′ exist
and are integrable, then it follows that f̂ is integrable. This is another
tutorial exercise.

We remarked that the Fourier transform of an integrable function is
not necessarily itself an integrable function. This is not an example of
a situation where one needs to cook up some strange counterexample,
as the following demonstrates.

Example 7.4. We compute the Fourier transform of χ[−1,1]. To do this
we have
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χ̂[−1,1] =

∫ 1

−1

e−iyxdx

=
1

−iy e
−iyx]1−1

=
1

−iy
(
e−iy − eiy

)

=
2 sin y

y
.

As we have seen before, the Fourier transform is not a Lebesgue
integrable function.

There is another interesting feature of this example. First, the sup-
port of a function is defined to be the set of points on which the function
value is nonzero. In this example, the support of the original func-
tion is bounded. However the support of the Fourier transform is not
bounded. This is a general property of Fourier transforms. If f has
bounded support, its Fourier transform cannot have bounded support.

There exist large tables of Fourier transforms and the calculation
of Fourier transforms is of enormous practicaly importance. A Nobel
prize in physics was awarded for work that essentially involves methods
for accurate and rapid inversion of certain types of Fourier transform.

The most important example is probably that of the Gaussian.

Example 7.5. Compute the Fourier transform of f(x) = e−x2
.

There are various ways of doing this. The direct approach requires
Cauchy’s Theorem from complex analysis and the integral

∫ ∞

−∞
e−x2

dx =
√
π.

We have

f̂(y) =

∫ ∞

−∞
e−x2−ixydx

=

∫ ∞

−∞
e−(x+ 1

2
iy)2− 1

4
y2dx

= e−
1
4
y2
∫ ∞

−∞
e−(x+ 1

2
iy)2dx

= e−
1
4
y2
∫ ∞+ 1

2
iy

−∞+ 1
2
iy

e−z2dz

= e−
1
4
y2
∫ ∞

−∞
e−z2dz

=
√
πe−

1
4
y2 .
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To show that
∫∞+ 1

2
iy

−∞+ 1
2
iy
e−z2dz =

∫∞
−∞ e−z2dz we integrate e−z2 around

the contour γ = γ1 + γ2 − γ3 − γ4. Here, γ1(t) = t, −R ≤ t ≤ R,
γ2(t) = R + it, 0 ≤ t ≤ 1

2
y, γ3(t) = t + 1

2
iy, −R ≤ t ≤ R, γ4(t) =

−R + it, 0 ≤ t ≤ 1
2
y. By Cauchy’s Theorem

∫
γ
e−z2dz = 0. Thus

∫

γ1

f +

∫

γ2

f =

∫

γ3

f +

∫

γ4

f.

Now
∣∣∣∣
∫

γ2

f

∣∣∣∣ =
∣∣∣∣∣

∫ 1
2
y

0

e−(R+it)2dt

∣∣∣∣∣

≤ 1

2
ye

1
4
y2e−R2 → 0,

as R → ∞ for each fixed y. Similarly for the integral along γ4. We
therefore conclude that for every finite y,

∫ ∞+ 1
2
iy

−∞+ 1
2
iy

e−z2dz =

∫ ∞

−∞
e−z2dz =

√
π.

Here we have a function whose Fourier transform decays fast enough
for it to be integrable. Is there some kind of rule? Without mak-
ing further restrictions than integrability, the best we can say is the
Riemann-Lebesgue Lemma. This tells us that a Fourier transform de-
cays to zero at infinity. It does not tell us that the Fourier transform
is integrable. So what additional conditions do we need in order to get
invertibility of the Fourier transform? Reframing this, we can ask is
there a space of function V with the property that F : V → V ?

In order to proceed further, we need to introduce some new con-
cepts. In particular we have to make clear what we mean by a ‘space
of functions.’ What properties must V have in order for the Fourier
transform to take functions in V and return functions in V ? This will
require us to study normed spaces. First however we have to define the
concept of a metric space.

7.2. Metric Spaces.

Definition 7.8. Let X be a non-empty set. A metric on X is a map-
ping d : X ×X → R such that

(i) d(x, x) = 0 all x ∈ X.

(ii) d(x, y) = d(y, x) > 0 for all x, y ∈ X and x 6= y.

(iii) d(x, y) ≤ d(x, z) + d(z, y) all x, y, z ∈ X. This is the triangle
inequality.

The pair (X, d) is said to be a metric space.
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Metric spaces generalise Rn and the Euclidean distance. We have
seen how important the triangle inequality is, so we want it to be
retained in any measure of ‘distance’.

Example 7.6. Let X = R and d(x, y) = |x−y|. Then (R, | · |) is a metric
space.

Example 7.7. Take X = Rd and

d(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

This defines a metric. The proof is an exercise. The triangle inequality
can be proved using the Cauchy-Schwartz inequality, which we will
introduce later.

Example 7.8. An important, though artificial example is the following.
Let X be any set. Define d(x, x) = 0 and d(x, y) = 1 for x 6= y. This
is also a metric. The proof is easy. The only thing we need to check is
the triangle inequality. This is trivial.

d(x, y) = 1 < d(x, z) + d(z, x) = 1 + 1 = 2.

Our final example points to the future.

Example 7.9. Let C([a, b]) be the space of continuous functions on [a, b].

Then d(f, g) =
∫ b

a
|f(t) − g(t)|dt is a metric space. Here we use the

Riemann integral. As usual, the only thing we need to prove is the
triangle inequality. We have

d(f, g) =

∫ b

a

|f(t)− g(t)|dt =
∫ b

a

|f(t)− h(t) + h(t)− g(t)|dt

≤
∫ b

a

|f(t)− h(t)|dt+
∫ b

a

|h(t)− g(t)|dt

= d(f, h) + d(h, g).

We have the usual definitions.

Definition 7.9. Let {xn} be a sequence in X and d a metric on X .
We say that xn → x if for any ǫ > 0, there exists N ∈ N such that
d(xn, x) < ǫ whenever n ≥ N .

Convergence is an important property of sequences. Of course it
possible to have sequences which converge to points not in X. The
simplest example is X = Q. Consider the sequence x1 = 1.4, x2 =
1.41, x3 = 1.414, ... These are the first three terms of a sequence of
rational numbers which converge to the

√
2. However

√
2 is irrational,

so the limit is not in X . This means that, Q is not complete.

Definition 7.10. Let (X, d) be a metric space. We say that X is
complete if every convergent sequence has a limit in X .

Example 7.10. (R, | · |) is complete.
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Complete metric spaces are the most useful ones for analysis. The
reason for this is that we want to know that the properties that define
the metric space are preserved when we take limits. If (X, d) is a metric
space and {fn}∞n=1 ⊂ X is a sequence, we want the limit function f to
have the same basic metric properties that the terms of the sequence
do. We will see more in the next lecture. In particular we will be
interested in so called Banach spaces. Recall that we wanted a space
of functions V for which F : V → V . The desired space V will turn
out to be a Banach space of a particular type.

Definition 7.11. Let (X, d) be a metric space. We say that A ⊂ X is
dense in X if for every x ∈ X there is a sequence {xn} ⊂ A such that
xn → x.

Most of the ideas of analysis on R can easily be extended to metric
spaces. The rule of thumb is to simply replace |x−y| with d(x, y) wher-
ever it occurs. There are of course important caveats. For example,
addition of elements is not generally defined on a metric space. We
further have to assume that X is also a vector space, so we need to be
mindful of whether or not our real analysis concept involves addition
or multiplication in some way.

The notion of a Cauchy sequence is important on R and it is also
important in a general metric space setting.

Definition 7.12. Let (X, d) be a metric space. We say that {xn} is a
Cauchy sequence in (X, d) if for every ǫ > 0 there exists N ∈ N such
that d(xm, xn) < ǫ whenever m,n ≥ N.

Of course the following is true.

Theorem 7.13. Every convergent sequence in a metric space is Cauchy.

The proof is an exercise. It is similar to the case on R. We can
formulate convergence in terms of Cauchy sequences.

Definition 7.14. A metric space (X, d) is complete if and only if every
Cauchy sequence is convergent and has limit in X.

Similarly we can formulate the classical ideas about continuous func-
tions.

Definition 7.15. Let f : X → Y be a function between two met-
ric space (X, d1) and (Y, d2). We say that f is continuous at x, if
d1(xn, x) → 0 as n→ ∞ implies d2(f(xn), f(x)) → 0.

As an exercise, formulate the definition of continuity in terms of
inverse images of open sets.

The most important metric spaces are complete, and their metrics
are given by norms. We will discuss these next.
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8. Normed Linear Spaces

In these notes we will be concerned with vector spaces (equivalently
linear spaces) which also possess a norm. On a general metric space we
do not have addition and multiplication by constants defined. Metric
spaces which are also vector spaces are therefore of more importance
than arbitrary vector spaces. In such a situation the metric is often
defined by a norm.

Definition 8.1. Let V be a vector space. A norm on V is a function
‖ · ‖ : V → [0,∞) such that

(i) ‖v‖ ≥ 0 for all v ∈ V.

(ii) ‖v‖ = 0 if and only if v = 0.

(iii) ‖v + w‖ ≤ ‖v‖+ ‖w‖ all v, w ∈ V

(iv) ‖λv‖ = |λ|‖v‖ for all scalars λ and all v ∈ V.

A pair (V, ‖ · ‖) is called a normed linear space or a normed vector
space. (Both terms are used). The most basic example is Rn. There
are several possible norms.

Example 8.1. Take the linear space to be Rn. Let v ∈ Rn. The following
are norms.

(i) ‖v‖2 =
√
v21 + · · ·+ v2n

(ii) ‖v‖1 = |v1|+ · · ·+ |vn|

(iii) ‖v‖∞ = max{|v1|, ..., |vn|}

(iv) ‖v‖a = ((v1/a1)
2 + · · ·+ (vn/an)

2)
1/2

, for ai > 0, i = 1, ..., n.

As in the metric case, the fact that (i) is a norm follows from the
Cauchy-Shchwartz inequality.

Any norm automatically gives rise to a metric.

Lemma 8.2. Let V be a vector space and ‖ · ‖ a norm on V . Then
d(u, v) = ‖u− v‖ is a metric on V .

The proof of this is trivial. All properties of a metric are easily
verified. Note that the converse of the result is false. Not every metric
gives a norm. Convergence of sequences in normed spaces is defined as
we would expect.

Definition 8.3. Let (V, ‖ · ‖) be a normed vector space. We say that
a sequence {xn} ⊂ V converges to x if given any ǫ > 0 we can find
an N ∈ N such that n ≥ N implies ‖xn − x‖ < ǫ. As usual we write
xn → x.
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As with metric spaces, we wish to have a notion of completeness.

Definition 8.4. A normed vector space X = (V, ‖ · ‖) is complete if
for every convergent sequence {xn} ⊂ V with xn → x, we have x ∈ V.
Equivalently, every Cauchy sequence in X converges to a limit in X.

8.1. Banach Spaces. The complete normed vector spaces are among
the most important structures in mathematics. The real numbers are of
course the bedrock of all mathematics. Mimicking important properties
of the real number system in a more abstract setting is one of the major
pastimes indulged in by mathematicians. The real numbers R form a
complete vector space with the metric d(x, y) = |x− y|. We would like
to study vector spaces which are also complete with respect to their
norm.

Definition 8.5. A complete normed vector space is said to be a Banach
space. (Named after Stefan Banach (1892-1945)).

The space Rn under any of the norms given above is a Banach space.
The most important Banach spaces (besides Rn), are the Lp spaces to
be discussed in detail in the next lecture. Here are some more examples
of Banach spaces.

Example 8.2. Let X be a nonempty set and B(X) the vector space of
all bounded, real valued functions on X. Let the infinity norm be given
by

‖f‖∞ = sup{|f(x)| : x ∈ X}
Then ‖ · ‖∞ is a norm and (B(X), ‖ · ‖∞) is a Banach space. This
follows because a convergent sequence is bounded, so the limit function
is bounded.

The space C(X) is also a Banach space with this norm. To prove
this, note that under this norm, convergence of sequences is uniform
convergence. Since the limit of a sequence of continuous uniformly
convergent functions is continuous,it follows that if {fn}∞n=1 ⊂ C(X)
and fn → f , then f is continuous so f ∈ C(X). Therefore C(X) is
complete.

Interestingly, if we change the norm, we might lose completeness.
Define ‖f‖ = R

∫
X
|f(x)|dx. So now convergence means

∫
X
|fn−f | → 0.

But
∫
X
|fn − f | → 0 does not imply that f ∈ C(X). The limit f may

not be continuous. So completeness of a vector space generally depends
on the norm we choose.

As another example, we introduce the (so called little) l1 space.

Example 8.3. Let

l1(R) =

{
x = (x1, x2, ....), xi ∈ R :

∞∑

i=1

|xi| <∞
}
.
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Then l1 is a Banach space with the norm ‖x‖1 =
∑∞

i=1 |xi|.
Proof. That l1 is a vector space and ‖ · ‖1 is a norm is an easy exercise.
We wish to show completeness. We use the completeness of R. Let
{xk} be a Cauchy sequence in l1. Then by definition

‖xk − xm‖1 =
∞∑

i=1

|xki − xmi | → 0

as m, k → ∞. This is only possible if for each i |xki − xmi | → 0. Thus
{xki } is a Cauchy sequence in R and hence it is convergent by the
completeness of R. Now suppose that xki → xi for each i. Now every
Cauchy sequence is bounded. Let us assume that ‖xk‖ ≤M . We wish
to show that

∑∞
i=1 |xi| < ∞, so that x = (x1, x2, x3, ....) ∈ l1. Observe

that
p∑

i=1

|xi| =
p∑

i=1

|xi − xki + xki |

≤
p∑

i=1

(|xi − xki |+ |xki |)

= lim
m→∞

(
p∑

i=1

(|xmi − xki |+ |xki |)
)

≤ ǫ+M

for all p. So
∑∞

i=1 |xi| <∞ and l1 is complete. �

We can also define the little lp(R) spaces by

lp(R) =



x = (x1, x2, ....) :

( ∞∑

i=1

|xi|p
)1/p



 ,

with norm ‖x‖p = (
∑∞

i=1 |xi|p)
1/p

< ∞. These are also Banach spaces.
Note some authors write lp instead of lp.

Familiar concepts from real analysis carry over to the Banach space
setting. Let us consider the convergence of series first.

Definition 8.6. A series
∑∞

n=1 vn, vn ∈ V on a normed vector space

is said to be convergent if the sequence of partial sums SN =
∑N

n=1 vn
is convergent. If {SN} is convergent with limit S, we say the series is
convergent and write

∞∑

n=1

vn = S.

If the series is not convergent, we say that it is divergent.

Absolute convergence can also be defined.
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Definition 8.7. Let (V, ‖ · ‖) be a normed vector space. The series∑∞
n=1 vn is absolutely convergent if the series

∑∞
n=1 ‖vn‖ is convergent

on R.

As in the real analysis case, absolute convergence on a Banach space
implies convergence.

Theorem 8.8. Let (V, ‖ · ‖) be a Banach space. Then every absolutely
convergent series is convergent.

Proof. Suppose that
∑∞

n=1 vn is absolutely convergent. Define Sn =∑n
k=1 vk, Tn =

∑n
k=1 ‖vk‖. Now Tn → T ∈ R by our assumption of

absolute convergence. Let ǫ > 0. Then there exists N ∈ N such that
n,m ≥ N implies |Tm−Tn| < ǫ. Assume m > n. Observe that Tm > Tn.
Then

‖Sm − Sn‖ = ‖
m∑

i=n+1

vi‖ ≤
m∑

i=n+1

‖vi‖

= Tm − Tn = |Tm − Tn| < ǫ.

So {Sn} is a Cauchy sequence and because we are in a Banach space,
it is convergent. �

The converse of this result is also true. The proof requires a few
preliminary facts.

Proposition 8.9. Let (X, d) be a metric space. If {xn} is a Cauchy
sequence in (X, d) with a convergent subsequence, then {xn} is itself
convergent.

Proof. Suppose that the convergent subsequence is xnk
and xnk

→ x ∈
X as nk → ∞. Now let ǫ > 0 and choose N so that m,n ≥ N im-
plies d(xm, xn) < ǫ/2. Now choose K1 ∈ N so that k ≥ K1 implies
d(xnk

, x) < ǫ/2. Pick K2 ∈ N such that nK2 ≥ N . Then choose
K = max{K1, K2}. Then n ≥ K implies

d(xn, x) ≤ d(xn, xnk
) + d(xnk

, x)

< ǫ/2 + ǫ/2 = ǫ.

So xn → x ∈ X. �

The next result will be used in the proof of the Riesz-Fischer Theo-
rem.

Theorem 8.10. Let (V, ‖ · ‖) be a normed vector space in which every
absolutely convergent series is convergent. Then (V, ‖ · ‖) is a Banach
space.

Proof. Let {vn} ⊂ V be a Cauchy sequence. Choose N1 ∈ N such
that n,m ≥ N1 implies ‖vm − vn‖ < 1/2 and let n1 = N1. Next
choose N2 ∈ N such that m,n ≥ N2 implies ‖vm − vn‖ < 1/22 and
let n2 = max{n1 + 1, N2}. Then choose N3 ∈ N such that m,n ≥ N3
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implies ‖vm−vn‖ < 1/23 and let n3 = max{n2+1, N3}. Continuing this
process, we have a sequence of integers n1 < n2 < n3 < · · · . Clearly
{vnk

} is a subsequence of {vn}. Now we consider the series

vn1 + (vn2 − vn1) + (vn3 − vn2) + · · · .
Note that Sk = vn1 + (vn2 − vn1) + · · ·+ (vnk

− vnk−1
) = vnk

. Now the
series of norms

‖vn1‖+ ‖vn2 − vn1‖+ · · · < ‖vn1‖+ 1/2 + 1/22 + · · · <∞.

Thus the series vn1 + (vn2 − vn1) + (vn3 − vn2) + · · · is absolutely con-
vergent. By assumption the series is therefore convergent. And the se-
quence of partial sums {vnk

} must also be convergent. But this means
that {vnk

} is a convergent subsequence of the Cauchy sequence {vn}.
So by Proposition 8.9, {vn} is convergent and (V, ‖ · ‖) is complete. �

Note, when the norm is understood,we will simply write V for the
Banach space.

8.2. Hilbert Spaces. An important type of Banach space arises when
the norm is given by an inner product. Inner products generalise the
dot product on Euclidean space.

Definition 8.11. Let V be a vector space over R or C. An inner
product on V is a function (·, ·) : V × V → R (or C) such that

(i) (v, v) ≥ 0 all v ∈ V and (v, v) = 0 only if v = 0.

(ii) (v, w) = (w, v).

(iii) (av, w) = a(v, w), (v, aw) = a(v, w) for all v, w ∈ V and scalars
a.

(iv) (v + w, u) = (v, u) + (w, u) all v, w, u ∈ V.

An inner product space is a pair (V, (·, ·)). The bar denotes the complex
conjugate.

Inner products give rise to norms in the following way. It will turn
out that

‖v‖ =
√

(v, v),

is a norm. This requires proof. Some of the properties are obvious.
For example

‖av‖ =
√

(av, av) =
√
aa(v, v) = |a|‖v‖.

For the triangle inequality we require the Cauchy-Schwarz inequality.

Proposition 8.12. Let V be an inner product and ‖v‖ =
√

(v, v).
Then |(v, w)| ≤ ‖v‖‖w‖.
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Proof. Suppose w 6= 0 and set u = w
‖w‖ . Then ‖u‖ = 1. So (u, u) = 1

and

0 ≤ ‖v − (v, u)u‖2 = (v − (v, u)u, v − (v, u)u)

= (v, v)− (v, (v, u)u)− ((v, u)u, u) + ((v, u)u, (v, u)u)

= (v, v)− (v, u)(v, u)− (v, u)(u, v)

+ (v, u)(v, u)(u, u)

= (v, v)− (v, u)(v, u)− (v, u)(v, u) + (v, u)(v, u)

= (v, v)− |(v, u)|2

= ‖v‖2 − |(v, u)|2.
Thus |(v, w)|2 = |(v, ‖w‖u)|2 = ‖w‖2|(v, u)|2 ≤ ‖v‖2‖w‖2. Now take
square roots. �

We have an immediate consequence of this useful inequality.

Proposition 8.13. Let (V, (·, ·)) be an inner product space. Then

‖v‖ =
√
(v, v) is a norm.

Proof. We only check the triangle inequality. We have

‖v + w‖2 = (v + w, v + w) = (v, v) + (v, w) + (w, v) + (w,w)

= ‖v‖2 + ‖w‖2 + (v, w) + (v, w)

= ‖v‖2 + 2ℜ(v, w) + ‖w‖2

≤ ‖v‖2 + 2|(v, w)|+ ‖w‖2

≤ ‖v‖2 + 2‖v‖‖w‖+ ‖w‖2 = (‖v‖+ ‖w‖)2.
�

We can immediately deduce from this that for x ∈ Rn setting

‖x‖2 =

√√√√
n∑

k=1

x2k,

will produce a norm. This is because the dot product is an inner
product and ‖x‖2 =

√
x · x.

An important example on an inner product (in fact the most impor-
tant apart from the dot product) is the inner product on the space of

functions with
∫ b

a
|f(x)|2dx <∞. This is defined by

(f, g) =

∫ b

a

f(x)g(x)dx.

This is the L2 inner product and we will have a lot to say about it
later.
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Definition 8.14. An inner product space which is complete with re-
spect to the norm defined by the inner product is a Hilbert space.

Hilbert spaces are obviously Banach spaces, but because they possess
an inner product, they have more structure and are often more useful.
They are named for David Hilbert (1862-1943).

Proposition 8.15 (The parallelogram law). Let (V, (·, ·)) be an inner
product space and let v, w ∈ V. Then

‖v + w‖2 + ‖v − w‖2 = 2‖v‖2 + 2‖w‖2.
Proof. The proof is an easy exercise.

‖x− y‖2 + ‖x+ y‖2 = (x− y, x− y) + (x+ y, x+ y)

= (x, x)− (x, y)− (y, x) + (y, y)

+ (x, x) + (x, y) + (y, x) + (y, y)

= 2(x, y) + 2(y, y)

= 2‖x‖2 + 2‖y‖2.
�

Although elementary, this result is quite useful. It must be satisfied
by any inner product space. So if we are given a norm and we wish to
know whether or not it is given by an inner product, we check to see
if the parallelogram law for the norm holds. If it does not, then the
norm does not arise from an inner product.

Every vector space has a basis. This is a fundamental fact of linear
algebra. It means that any element of the vector space can be written as
a linear combination of basis elements. It turns out that every Hilbert
spaces has orthogonal basis.

Theorem 8.16. Every Hilbert space has a basis {en} with the property
that (en, em) = δnm, where δnm is the Kronecker delta: δnm = 0 if
n 6= m and δnn = 1. If the basis is countable, the Hilbert space is
separable.

We will prove this result after we have introduced Zorn’s Lemma,
later in the notes. Most Hilbert spaces encountered in practice are
countable. Certainly the Hilbert spaces we will see are separable. Non-
separable Hilbert spaces exist, but typically arise in highly specialised
circumstances. Actually infinite dimensional separable Hilbert spaces
are essentially the same.

Definition 8.17. Let V,W be vector spaces of the same dimension.
We say that V,W are isomorphic if there is a one to one and onto linear
map T : V →W.

The following result is of importance.
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Theorem 8.18. Let K be an orthonormal set in a Hilbert space H.
Then the following conditions are equivalent.

(a) K is complete;

(b) The closed linear subspace spanned by K is H;

(c) K is an orthonormal basis;

(d) For any x ∈ H, Parseval’s formula holds:

‖x‖2 =
∑

y∈Kx

|(x, y)|2.

The proof of this is not difficult, but we will not give it.

Theorem 8.19. Any two infinite dimensional separable Hilbert spaces
are isometrically isomorphic. That is, if H1 and H2 are infinite di-
mensional separable Hilbert spaces, then there is a linear mapping T :
H1 → H2 such that T is one to one and ‖Tx‖22 = ‖x‖21. Here ‖x‖2 is
the norm of x in H2 and ‖ · ‖1 is the norm in H1.

Proof. Let {xn} and yn be orthonormal bases ofH1 andH2 respectively.
Define a linear map T : H1 → H2 by T (xn) = yn. In other words, if
x =

∑∞
n=1 cnxn and y =

∑∞
n=1 dnyn, then Tx = y if and only if cn = dn

for all n ≥ 1. By the last part of Theorem 8.18 it follows that

‖Tx‖22 =
∞∑

n=1

|dn|2 =
∞∑

n=1

|cn|2 = ‖x‖21.

�

Obtaining minima in Hilbert spaces is not as straightforward as one
might hope. This is because of the fact that the Bolzano-Weierstrass
Theorem, which says that closed and bounded subsets of R are com-
pact, has no equivalent in an infinite dimensional space.

Definition 8.20. A metric space is said to be compact if every se-
quence has a convergent subsequence.

Subsequence arguments are essential in real analysis. As we saw
earlier, there are many proofs which require us to use a convergent
subsequence, such as when we showed that every Cauchy sequence is
convergent. But this method fails in Hilbert and other infinite dimen-
sional spaces.

Example 8.4. The unit ball in a Hilbert space is not compact. To
see this, just take an orthonormal basis {en}∞n=1. Then for all n,m,
‖en − em‖ =

√
2. So this sequence has no convergent subsequence.

Thus bounded sequences in infinite dimensional spaces do not neces-
sarily have convergent subsequences, so the kinds of arguments that we
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use in elementary analysis, whereby we pick a convergent subsequence
and work with that, do not work in the infinite dimensional case. To
get around this obstacle, the projection theorem is used. We need a
Lemma that we will not prove. This result is sometimes called the
Projection Lemma.

Theorem 8.21. Let M be a closed convex set in a Hilbert space H.
For every point x0 ∈ H, there exists a unique y0 ∈M such that

‖x0 − y0‖ = inf
y∈M

‖x0 − y‖.

As an application we establish the following result.

Theorem 8.22 (The Projection Theorem ). Let M be a closed linear
subspace of a Hilbert space H. Any x ∈ H can be written in the form
x = y0 + z0, where x ∈ M and z0 ∈ M⊥. The elements y0, z0 are
uniquely determined.

Proof. If x ∈ M then we take y0 = x and z0 = 0. If x 6∈ M , let y0 be
such that ‖x − y0‖ = infy∈M ‖x − y0‖. This exists and is unique by
the Projection Theorem. Now take any point y ∈M and any scalar λ.
Then y0 + λy ∈ M, since M is a subspace. Thus

‖x− y0‖2 ≤ ‖x− y0 − λy‖2 = ‖x− y0‖2 − 2ℜ(λ(y, x− x0)) + |λ|2‖y‖2.
Hence −2ℜ(λ(y, x − x0)) + |λ|2‖y‖2 ≥ 0. Taking λ = ǫ and letting
ǫ → 0 we have ℜ(y, x − y0) ≤ 0. If we take λ = −iǫ, ǫ > 0 we obtain
ℑ(y, x − y0) ≤ 0. Since the two inequalities obtained for y hold also
for the point −y (since −y ∈ M) we conclude (y, x − y0) = 0 for any
y ∈M. Thus z0 = x− y0 ∈M⊥.

To prove uniqueness, suppose that x = y1 + z1, y1 ∈ M, z1 ∈ M⊥.
Then y0−y1 = z1−z0 lies in bothM andM⊥ by the subspace property.
Thus y0 − y1 = z1 − z0 = 0. �

If x = y+ z, y ∈M, z ∈ m⊥, the point y is called the projection of x
in M and the operator Px = y is called a projection operator. These
ideas come up in functional analysis and optimisation theory, but we
will not pursue them further.

We finish with a major consequence of the previous theorem.

Theorem 8.23. Let H be a Hilbert space and let V be a closed subspace
of H. Then H may be decomposed as the direct sum

H = V ⊕ V ⊥. (8.1)

This result lies at the heart of Fourier analysis. A Fourier series
breaks down a function into a sum of parts which are orthogonal to
one another. If H is a Hilbert space of functions, it is often possible to
write it (via continued use of the previous theorem), as

H = V1 ⊕ V2 ⊕ V3 · · · (8.2)
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where the subspaces Vi and Vj are orthogonal to each other for each i
and j. In this way, an element of H can be written as a sum of elements
from subspaces. This is what happens when we write a function as a
Fourier series. sin(nx) and cos(nx) are orthogonal on [−π, π] with
respect to the inner product (f, g) =

∫ π

π
f(x)g(x)dx. A function in

L2[−π, π] (to be defined in the next chapter), can be written as a sum of
sines and cosines and this provides us a with an effective decomposition
of the Hilbert space into subspaces. Each subspace is spanned by a
single element, sin(nx) or cos(mx). We will discuss Fourier series later.
Now we turn to a very important class of Banach space.
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9. Lp Spaces

In the previous lecture we introduced the L2 inner product. In this
lecture we generalise this and show that it actually gives a norm.

Definition 9.1. Let p ≥ 1. Suppose that f : R → R is such that |f |p
is integrable. Then we define the Lp norm of f by

‖f‖p =
(∫ ∞

−∞
|f(x)|pdx

)1/p

. (9.1)

It is not immediately clear that this is a norm. Actually, it is not a
norm at all, as we have defined it. The first problem is that ‖f‖p = 0
does not imply that f = 0 only that f = 0 a.e. To get around this, we
introduce the idea of an equivalence class.

An equivalence relation ∼ on a set S must satisfy the following three
properties, for all A,B,C ∈ S.

(i) A ∼ A,

(ii) A ∼ B implies B ∼ A

(iii) A ∼ B and B ∼ C implies A ∼ C.

The simplest example is = on the set of real numbers. However we
can also think of equivalent matrices. Two matrices A,B are similar if
there is an invertible matrix P such that A = P−1AP. As an exercise,
you can show that this is an equivalence relation.

The idea is to introduce an equivalence relation for integrable func-
tions.

Definition 9.2. Two measurable functions f, g are equivalent if they
are equal almost everywhere. We write f ∼ g.

As an example f(x) = x and g(x) = x + χQ are equivalent because
they are equal almost everywhere.

We divide the space of measurable functions up into equivalence
classes, which we write [f ]. Two functions f1 and f2 are in the equiva-
lence class if and only if they are equal almost everywhere. We can add
equivalence classes together according to the rule a[f ]+b[g] = [af +bg]
and similarly [f ][g] = [fg].

Definition 9.3. We let

Lp(R) =

{
[f ] : R → C :

∫ ∞

−∞
|f(x)|pdx <∞ for each f ∈ [f ]

}
(9.2)

In practice we only work with a representative of an equivalence class.
So when we say e−x2 ∈ Lp(R) we mean that every function equivalent
to this function is also pth power integrable. We can define

∫
[f ] =

∫
f .

Notice that ‖[f ]‖p = 0 if and only if the functions in the class are equal
almost everywhere to zero. That is, [f ] = [0], where [0] is the zero
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equivalance class. One has [g] + [0] = [g + 0] = [g] [g][0] = [g.0] = [0],
etc.

Now we prove that the Lp norm is actually a norm for these equiva-
lence classes of functions. Under this norm, we will show that Lp(R) is
also a Banach space. We will actually establish two extremely impor-
tant inequalities satisfied by the Lp norm. First we need a fact about
real numbers due to Young.

Theorem 9.4 (Young, 1912). Let a, b ≥ 0. For p > 1 and q such that
1/p+ 1/q = 1 we have

ab ≤ 1

p
ap +

1

q
bq. (9.3)

Proof. The proof is an elementary application of calculus. Introduce
f : [0,∞) → R where

f(t) =
1

p
tp +

1

q
− t.

Then f ′(t) = tp−1− 1 and f ′′(t) = (p− 1)tp−2. Note that f ′(1) = 0 and
this is the only stationary point and it is a minimum by the second
derivative test. Also, f(1) = 0. So f increases from zero. Thus

1

p
tp +

1

q
≥ t.

Now take t = a
bq−1 . This gives

1

p

ap

bpq−p
+

1

q
≥ ab

bq
.

But pq − p = q, so cross multiplying gives

1

p
ap +

1

q
bq ≥ ab.

�

We use this to prove one of the most important of all inequalities in
the subject. The case p = 2 is basically the Cauchy-Schwartz inequal-
ity. We will use this result to prove the triangle inequality, but it is of
real significance in its own right.

Theorem 9.5 (Hölder’s inequality). Let p > 1 and q be such that
1/p + 1/q = 1. Suppose that f, g are measurable functions and that
‖f‖p <∞, ‖g‖q <∞. Then ‖fg‖1 <∞ and

‖fg‖1 ≤ ‖f‖p‖g‖q.
Proof. The proof uses Young’s inequality. Observe that fg is measur-
able. Now if ‖f‖p = 0 then f = 0 a.e., which gives

∫
|fg| = 0 = ‖f‖p‖g‖q.
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Now suppose that ‖f‖p > 0 and ‖g‖q > 0. Let

h =
|f |
‖f‖p

, k =
|g|
‖g‖q

.

Then by Young’s inequality we have

hk ≤ 1

p

|f |p
‖f‖pp

+
1

q

|g|q
‖g‖qq

So
∫
hk ≤ 1

p

1

‖f‖pp

∫
|f |p + 1

q

1

‖g‖qq

∫
|g|q

=
1

p
+

1

q
= 1.

From the definition of h, k we then conclude ‖fg‖ ≤ ‖f‖p‖g‖q. �

There are many applications of this inequality. The simplest and
one of the most useful is when p = q = 2. Then ‖f‖1 ≤ ‖f‖2‖g‖2.
So that the product of two square integrable functions is integrable.
Another major application is the proof of the triangle inequality for
the Lp norm.

Theorem 9.6 (Minkowski’s inequality). Let f, g be measurable func-
tions. Suppose that p ≥ 1 and ‖f‖p <∞ and ‖g‖p <∞. Then

‖f + g‖p ≤ ‖f‖p + ‖g‖p <∞.

Proof. The case p = 1 is trivial. So assume p > 1. f + g is clearly
measurable and so |f + g|p is measurable. Then

|f + g|p ≤ (|f |+ |g|)p ≤ (2max{|f |, |g|})p

≤ 2pmax{|f |p, |g|p} ≤ 2p(|f |p + |g|p).

This allows us to conclude that
∫

|f + g|p ≤ 2p
(∫

|f |p +
∫

|g|p
)
<∞. (9.4)

Hence ‖f + g‖p <∞.
Next we observe that if ‖f + g‖p = 0 the result is trivial. Assume

not. Choose p, q to satisfy the conditions of the theorem. Then

∫
||f + g|p−1|q =

∫
|f + g|pq−q =

∫
|f + g|p <∞. (9.5)
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This tells us that |f + g|p−1 ∈ Lq(R). Thus
∫

|f + g|p =
∫

|f + g||f + g|p−1

≤
∫

(|f |+ |g|)|f + g|p−1

=

∫
|f ||f + q|p−1 +

∫
|g||f + g|p−1

≤ ‖f‖p‖|f + g|p−1‖q + ‖g‖p‖|f + g|p−1‖q

= (‖f‖p + ‖g‖p)
(∫

(|f + g|p−1)q
)1/q

= (‖f‖p + ‖g‖p)
(∫

|f + g|p
)1/q

.

Thus
(∫

|f + g|p
)1−1/q ≤ ‖f‖p+ ‖g‖p. But 1− 1/q = 1/p. So the result

is proved. �

It follows from this result that the Lp norm is a genuine norm. Which
gives the following:

Corollary 9.7. The space Lp(R), p ≥ 1 is a normed vector space.

Actually these spaces are very important in analysis because of the
following major result. This is one of a number of theorems due to
Riesz and Fischer.

Theorem 9.8 (Riesz-Fischer). For p ≥ 1 the space Lp(R) is a Banach
space.

Proof. We show that every absolutely convergent series is convergent,
which will imply completeness. So suppose that

∑∞
n=1 Fn is absolutely

convergent in Lp and that
∑∞

n=1 ‖Fn‖p =M. Here Fn is an equivalence
class of functions equal almost everywhere. For each n pick a represen-
tative of the class fn ∈ Fn. Let gn =

∑n
k=1 |fk| and g =

∑∞
k=1 |fk|. Note

that g, gn are both measurable. Since gn → g monotonically, gpn → gp

monotonically. These functions are positive and so by the monotone
convergence theorem

∫
gp = lim

n→∞

∫
gpn = lim

n→∞
‖gn‖pp. (9.6)

But

‖gn‖p ≤
n∑

k=1

‖fk‖p ≤
∞∑

k=1

‖fk‖p =
∞∑

k=1

‖Fk‖p =M.

So we have
∫
gp ≤ Mp < ∞. So that gp < ∞ a.e. and hence g < ∞

a.e.
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Now let A = {x ∈ R : g(x) < ∞}. The set A is measurable and
m(Ac) = 0, since g is finite almost everywhere. On A the series

∑∞
k=1 fk

is absolutely convergent and convergent in R. The series
∑∞

k=1 fkχA is
also convergent on R. Let its pointwise sum be f. The measurability of
A and fk shows that f is measurable. Next we write

|f | ≤
∞∑

k=1

|fkχA| ≤
∞∑

k=1

|fk|χA = gχA. (9.7)

So it follows that
∫
|f |p ≤

∫
gpχA ≤

∫
gp. Thus f ∈ Lp. In addition

gχA ∈ Lp. Now let F = [f ] and we see that F ∈ Lp. Now for any
n ∈ N ,

‖F −
n∑

k=1

Fk‖pp = ‖f −
n∑

k=1

fk‖pp

=

∫ ∣∣∣∣∣f −
n∑

k=1

fk

∣∣∣∣∣

p

=

∫ ∣∣∣∣∣f −
n∑

k=1

fkχA

∣∣∣∣∣

p

.

Now limn→∞ |f −∑n
k=1 fk|

p
= 0 pointwise and one can show that

∣∣∣∣∣f −
n∑

k=1

fk

∣∣∣∣∣

p

≤ (2gχA)
p,

which is integrable. So we can apply the dominated convergence theo-
rem to conclude

lim
n→∞

∫ ∣∣∣∣∣f −
n∑

k=1

fkχA

∣∣∣∣∣

p

= 0. (9.8)

Thus limn→∞ ‖F−∑n
k=1 Fk‖pp = 0 and hence limn→∞ ‖F−∑n

k=1 Fk‖p =
0 is convergent. So

∑∞
n=1 Fn is convergent and so completeness follows.

�

As a consequence of this L1, L2 are Banach spaces. In fact L2(R) is
a Hilbert space and it is the only Lp space which is a Hilbert space.
Actually we can say more. Lp([a, b]) is a Banach space for a, b possibly
infinite. The natural setting for Fourier series is actually L2([−π, π])
and this is a Hilbert space, just as L2(R) is.

It is also worth noting that this result is not true if we use the Rie-
mann integral. The point is that we needed the convergence theorems
to prove the Riesz-Fischer Theorem and so no theory of Lp spaces
is possible with the Riemann integral. The space {f : [a, b] → R :

R
∫ b

a
|f(x)|dx < ∞} is perfectly well defined, but it is not a Banach

space. A sequence of Riemann integrable functions converging point-
wise or in norm on [a, b] does not have to have a Riemann integrable
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limit. So this space is not complete. This is one of the major reasons
why we use the Lebesgue integral. Lp spaces are immensely important
in modern analysis and with the Lebesgue integral they are Banach
spaces4.

A basis for L2(R) is actually quite easy to obtain. In fact there is
more than one, but the best known is given by the Hermite functions.

Consider the differential equation y′′−2xy′+2ny = 0, n = 0, 1, 2, 3....
These have polynomial solutions Hn(x) which are known as Hermite
polynomials. They can be found by Rodriguez’s formula.

Theorem 9.9. The nth Hermite polynomial is given by

Hn(x) = (−1)nex
2 dn

dxn
(e−x2

). (9.9)

From these we have the following.

Theorem 9.10. An orthogonal basis for the Hilbert space L2(R) is
given by the Hermite functions

h(x) = e−x2/2Hn(x). (9.10)

These satisfy the relation∫ ∞

−∞
hn(x)hm(x)dx = 2nn!

√
πδnm. (9.11)

Further, the Fourier transform of hn satisfies ĥn(y) = (−i)n
√
2πhn(y).

This gives us a means of defining the Fourier transform of a function
in L2 (the integral transform may not exist in the classical sense for
such a function). We set

f(x) =

∞∑

n=0

cnhn(x). (9.12)

Then

f̂(y) =
√
2π

∞∑

n=0

(−i)ncnhn(y). (9.13)

4Actually we can use some of the modern extensions of Lebesgue’s theory, such
as the Henstock integral and we still have a Banach space. But these integrals are
not widely used and are even more technical in their construction.



MODERN ANALYSIS 119

10. Measure Theory and Fourier Analysis

Before proceeding we need a little more measure theory to allow us
to handle multiple integrals. The ideas and proofs are essentially as in
the one dimensional case, so we will only give the results.

As in the one dimensional case we define measurability using the
Caratheodory condition. We introduce outer measure in the obvious
way. We let Qi denote a rectangle in R2. If A ⊂ R2, then the outer
measure of A is given by

m∗(A) = inf

{∑

i

|Qi| : A ⊆ ∪iQi

}
, (10.1)

and |Qi| is the area of Qi. We then state Caratheodory’s criterion in
precisely the same way as in the one dimensional case. A set A ⊂ R2

is measurable if and only if for every E ⊂ R2,

m∗(E) = m∗(E ∩A) +m∗(E ∩ Ac). (10.2)

Clearly we can extend this definition to Rn and we leave this to the
reader.

Using Caratheodory’s condition for measurability, we can prove that
the union of two measurable sets is measurable, the compliment of a
measurable set is measurable and so on. The proofs are essentially the
same as on R.

It turns out that because the area of a rectangle is length times
height, we can define Lebesgue measure on R2 in terms of the product
of two one dimensional measures.

Definition 10.1. Let (X,S, µ) and (Y,Σ, ν) be measure spaces and
S,Σ are σ algebras. The product σ algebra S × Σ of subset of X × Y
is defined by

S × Σ = {A× B : A ∈ S,B ∈ Σ}. (10.3)

The product measure µ× ν is the set function

m(A× B) = µ× ν(A×B) = µ(A)ν(B). (10.4)

It is not hard to prove the following. (This is a tutorial exercise).

Theorem 10.2. The set function m = µ × ν : S × Σ → [0,∞) of
Definition 10.1 is a measure.

Some basic facts follow.

Theorem 10.3. If A is a µ measurable subset of X and B is a ν
measurable subset of Y , then A × B is a µ × ν measurable subset of
X × Y.

Now we define measurable functions.

Definition 10.4. We say that f : X×Y → R is measurable if for each
open set K ⊂ X × Y , f−1(K) is measurable.
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The same results on measurability from the one dimensional case
also hold in the two dimensional case. For the integral we have a result
which does require proof, but we will instead refer the reader to a
text on measure theory. In fact we can reformulate the definition of
measurability for a function to state that f is measurable if and only if
{f > a} is a measurable set for every a. So one can see why essentially
the same proofs work.

To develop a theory of integration for functions of two variables, we
procede by analogy with the one dimensional case. We let

φ =
∑

i,j

ai,jχAi×Bj

be a simple function. We suppose Ai, Bj are measurable. We can then
define the Lebesgue integral of φ to be∫

X×Y

φd(µ× ν) =
∑

i,j

ai,jm(Ai × Bj) =
∑

i,j

ai,jµ(Ai)ν(Bj). (10.5)

We can prove that this integral is linear and has the properties that we
expect.

So next we let f > 0 and consider all non-negative integrable simple
functions φ with the property that 0 ≤ φ ≤ f and define

∫

X×Y

fd(µ× ν) = sup

{∫

X×Y

φ, 0 ≤ φ ≤ f

}
. (10.6)

Of course we then prove linearity etc. The integral of a general function
is defined by decomposing a function into its positive and negative
parts. That is we let f = f+ − f− as before and define∫

fX×Y d(µ× ν) =

∫
f+d(µ× ν)−

∫
f−d(µ× ν). (10.7)

A measurable function f is said to be Lebesgue integrable if and only
if ∫

X×Y

|f |d(µ× ν) <∞.

In practice Lebesgue integrals in two dimensions are handled as it-
erated single integrals. The idea should be familiar from multivariable
calculus. The key observation is that we can write

χAi×Bj
= χAi

χBj
.

So that∫

X×Y

χAi×Bj
d(µ× ν) =

∫

Y

∫

X

χAi
χBj

dµdν =

∫

Y

(∫

X

χAi
χBj

dµ

)
dν.

One can then prove that for any integrable simple function we have
∫

X×Y

φd(µ× ν) =

∫

Y

(∫

X

φdµ

)
dν. (10.8)
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Now since measurable functions can be approximated to arbitary pre-
cision by simple functions, this allows us to conclude that for Lebesgue
integrable f we have

∫

X×Y

fd(µ× ν) =

∫

Y

(∫

X

fdµ

)
dν. (10.9)

We now flesh this out a bit more and address a fundamental question:
Does it matter what order we perform the integration in? Intuitively
the answer should be no. Indeed this is the case.

Proposition 10.5. Suppose that f is measurable and for each fixed x,
the function f(x, y) is ν integrable. Then

F (x) =

∫

Y

f(x, y)dν(y) (10.10)

is µ measurable.

From this we can define the double integral. Let x be fixed and
define fx = f(x, y) for each fixed y ∈ Y and let f y(x) = f(x, y) for
each fixed x ∈ X.

Definition 10.6. Suppose that f is µ × ν measurable and f(x, y) is
ν measurable for each x ∈ X. Then

∫
X×Y

fd(µ × ν) is said to exist
if f y is an integrable function over X for ν almost all y and g(y) =∫
X
f(x, y)dµ(x) defines an integrable function over Y .

The most important result for double integrals is Fubini’s Theorem.

Theorem 10.7 (Fubini). Let f : X × Y → R be a µ × ν integrable
function. Then both iterated integrals exist and

∫

X×Y

fd(µ× ν) =

∫

Y

(∫

X

f(x, y)dµ(x)

)
dν(y)

=

∫

X

(∫

Y

f(x, y)dν(y)

)
dµ(x).

That is, we may reverse the order of integration.

The condition of integrability is important and cannot be omitted.
If
∫
|f |d(µ×ν) is not finite, then reversing the order of integration may

not be valid.
Now let us move on and consider the Fourier transform in some more

detail.

10.1. More on Fourier Transforms. In this section we consider
some of the more important properties of the Fourier transform. The
first is a result about continuity.

Theorem 10.8. Let f ∈ L1(R) and f̂(y) =
∫∞
−∞ f(x)e−iyxdx. Then f̂

is uniformly continuous.
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Proof. We can write

f̂(y + η)− f̂(y) =

∫ ∞

−∞
f(x)(e−ix(y+η) − e−iyx)dx

=

∫ ∞

−∞
f(x)e−iyx(e−ixη − 1)dx.

We therefore have

|f̂(y + η)− f̂(y)| ≤
∫ ∞

−∞
|f(x)||e−ixη − 1|dx.

Since |f(x)||e−ixη − 1| ≤ 2|f(x)| which is Lebesgue integrable, we may
use the dominated convergence theorem to conclude that

lim
|η|→0

|f̂(y + η)− f̂(y)| =
∫ ∞

−∞
lim
|η|→0

|f(x)||e−ixη − 1|dx = 0,

and the convergence is independent of y. Thus given ǫ > 0 we can find

δ > 0, independent of y such that for all |η| < δ, |f̂(y+ η)− f̂(y)| < ǫ.

So f̂ is uniformly continuous. �

Next we present some of the basic operational rules. Proofs of the
following are easy exercises.

Theorem 10.9. Let f ∈ L1(R), a ∈ R and b > 0. Define fa(x) =
f(x− a), (Mbf)(x) = f(bx) and (Saf)(x) = eixaf(x). Then

(i) f̂a(y) = e−iayf̂(y)

(ii) (̂Saf)(y) = f̂(y − a)

(iii) (̂Mbf)(y) =
1
b
f̂
(
y
b

)
.

The next result is extremely useful.

Proposition 10.10. Let f, g ∈ L1(R). Then
∫ ∞

−∞
f̂(y)g(y)dy =

∫ ∞

−∞
f(y)ĝ(y)dy. (10.11)

Proof. Note that f̂ is uniformly continuous and by the Riemann-Lebesgue

Lemma |f̂(y)| → 0 as |y| → ∞. So f̂ is bounded by some constant, say

M and thus |f̂(y)g(y)| ≤M |g(y)| ∈ L1(R).
We then have∫ ∞

−∞
f̂(y)g(y)dy =

∫ ∞

−∞

∫ ∞

−∞
f(x)e−iyxg(y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
f(x)g(y)e−iyxdydx

=

∫ ∞

−∞
f(x)ĝ(x)dx,
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where we used Fubini’s Theorem to reverse the order of integration.
Fubini’s Theorem applies because

∫∞
−∞
∫∞
−∞ |f(x)g(y)|dxdy <∞. �

10.1.1. Convolution.

Definition 10.11. Let f, g ∈ L1(R). The convolution of f and g is the
function defined by

(f ∗ g)(x) =
∫ ∞

−∞
f(y)g(x− y)dy =

∫ ∞

−∞
f(x− y)g(y)dy. (10.12)

It is not hard to show that the convolution of two L1 functions is
itself L1.

Proposition 10.12. Let f, g ∈ L1(R). Then f ∗ g ∈ L1(R).

Proof. Let h(x) =
∫∞
−∞ f(y)g(x− y)dy. Then by Fubini’s Theorem

∫ ∞

−∞
|h(x)|dx ≤

∫ ∞

−∞

∫ ∞

−∞
|f(y)g(x− y)|dydx

=

∫ ∞

−∞

∫ ∞

−∞
|f(y)g(x− y)|dxdy = ‖g‖1‖f‖1 <∞.

So h ∈ L1(R). �

The most important fact here is what the Fourier transform does to
a convolution.

Theorem 10.13. If f, g ∈ L1(R) then

f̂ ∗ g(y) = f̂(y)ĝ(y).

Proof. The proof is another application of Fubini’s Theorem. We have

f̂ ∗ g(y) =
∫ ∞

−∞

∫ ∞

−∞
f(x− r)g(r)e−iyxdrdx

=

∫ ∞

−∞

∫ ∞

−∞
f(x− r)g(r)e−iyxdxdr

=

∫ ∞

−∞

∫ ∞

−∞
f(s)g(r)e−iy(s+r)dsdr

=

∫ ∞

−∞
f(s)e−iysds

∫ ∞

−∞
g(r)e−iyrdr,

where we made the substitution x− r = s. The application of Fubini’s
Theorem follows from the fact that f, g ∈ L1(R). �

10.2. Applications of the Fourier Transform. Let us now consider
some of the applications of Fourier analysis. We will begin by solv-
ing some of the partial differential equations of classical mathematical
physics. We start with the heat equation.
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Example 10.1. Suppose that we wish to solve ut = uxx, x ∈ R, t > 0,
subject to the initial condition u(x, 0) = f(x), with f ∈ L1(R) and
|u(x, t)|, |ux(x, t)| → 0 as |x| → ∞. We take the Fourier transform in
x. So that

û(y, t) =

∫ ∞

−∞
u(x, t)e−iyxdx.

Differentiating under the integral sign gives

ût(y, t) =

∫ ∞

−∞
ut(x, t)e

−iyxdx,

and we also have using integration by parts

∫ ∞

−∞
uxx(x, t)e

−iyxdx = ux(x, t)e
−iyx|∞−∞ + iy

∫ ∞

−∞
ux(x, t)e

−iyxdx

= u(x, t)|∞−∞ − y2
∫ ∞

−∞
u(x, t)e−iyxdx

= −y2û(y, t).

Our assumptions show that [ux(x, t)e
−iyx]∞−∞ = 0 and similarly for the

other boundary terms.
Now we have been a little loose here, so let us do the first line of the

previous calculation more precisely.

∫ ∞

−∞
uxxe

−iyxdx = lim
R→∞

∫ R

0

uxxe
−iyxdx+ lim

T→∞

∫ 0

−T

uxxe
−iyxdx

= lim
R→∞

[uxe
−iyx]R0 + lim

T→∞
[uxe

−iyx]0−T + iy

∫ ∞

−∞
uxe

−iyxdx.

Now

lim
R→∞

[uxe
−iyx]R0 + lim

T→∞
[uxe

−iyx]0−T

= lim
R→∞

ux(R, t)e
−iyR − ux(0, t) + ux(0, t)− lim

T→∞
ux(−T, t)eiyT

= 0,

since |ux(x, t)| → 0 as |x| → ∞. A similar calculation holds for the
next integration by parts. However for brevity, we will not spell out
every detail when we do these sorts of calculations.

Thus the heat equation becomes the ODE ût(y, t) = −y2û(y, t). We
solve this to find

û(y, t) = û(y, 0)e−y2t.
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But û(y, 0) = f̂(y). By the Fourier inversion Theorem we get

u(x, t) =
1

2π

∫ ∞

−∞
f̂(y)e−y2t+iyxdy

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(z)e−y2t+iy(x−z)dzdy.

To proceed we have to evaluate the integral
∫∞
−∞ e−y2t+iy(x−z)dy. We

complete the square to obtain

∫ ∞

−∞
e−t(y2+iy(x−z

t ))dy =

∫ ∞

−∞
e
−t

[

(y+i
(x−z)

2t
)2+

(x−z)2

4t2

]

dy

= e−
(x−z)2

4t

∫ ∞

−∞
e−t(y+i (x−z)

2t
)2dy

= e−
(x−z)2

4t

∫ ∞+ix−z
2t

−∞+ix−z
2t

e−tu2

du

= e−
(x−z)2

4t

∫ ∞

−∞
e−tu2

du

=
1√
4πt

e−
(x−z)2

4t .

The fact that ∫ ∞+ix−z
2t

−∞+ix−z
2t

e−tu2

du =

∫ ∞

−∞
e−tu2

du.

follows from an application of Cauchy’s integral theorem to the differen-
tiable function f(z) = e−tz2 and was essentially established previously.
This leads to the solution

u(x, t) =

∫ ∞

−∞
f(z)K(x− z, t)dz, (10.13)

in which K(x, t) = 1√
4πt
e−

x2

4t . This last expression is known as the

fundamental solution of the heat equation, or the heat kernel. It plays
a major role in many areas of mathematics, not just in the theory of
heat conduction.

Example 10.2. We solve a problem for the Laplace equation. Specifi-
cally we find u such that

∆u = uxx + uyy = 0, x ∈ R, y > 0

u(x, 0) = f(x), lim
y→∞

u(x, y), finite, uxx integrable.

Also u, ux satisfy the same condition as |x| → ∞ as in the heat equation
case.
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As in the heat equation example we set û(ξ, y) =
∫∞
−∞ u(x, y)e−ixξdx.

Then the Laplace equation becomes

d2û

dy2
− ξ2û = 0.

The solution of this second order ODE is

û(ξ, y) = A(ξ)e−|ξ|y +B(ξ)e|ξ|y. (10.14)

We take B = 0. To see why, observe that e|ξ|y ≥ 1 + |ξ|y. So that if B
is non-zero on a set of positive measure we can state∫ ∞

−∞
B(ξ)e|ξ|y cos(xξ)dξ ≥

∫ ∞

−∞
B(ξ) cos(xξ)dξ + y

∫ ∞

−∞
|ξ|B(ξ) cos(xξ)dξ,

and∫ ∞

−∞
B(ξ)e|ξ|y sin(xξ)dξ ≥

∫ ∞

−∞
B(ξ) sin(xξ)dξ + y

∫ ∞

−∞
|ξ|B(ξ) sin(xξ)dξ.

So we have ∣∣∣∣
∫ ∞

−∞
B(ξ)e|ξ|y+iξxdξ

∣∣∣∣
2

≥ g1(x) + y2g2(x).

Here

g1(x) =

(∫ ∞

−∞
B(ξ) cos(xξ)dξ

)2

+

(∫ ∞

−∞
B(ξ) sin(xξ)dξ

)2

,

and

g2(x) =

(∫ ∞

−∞
|ξ|B(ξ) cos(xξ)dξ

)2

+

(∫ ∞

−∞
|ξ|B(ξ) sin(xξ)dξ

)2

.

Hence
∫∞
−∞B(ξ)e|ξ|y+iξxdξ is unbounded in y if B is nonzero . Thus we

must have B = 0.
We also know that û(ξ, 0) = f̂(ξ) so A(ξ) = f̂(ξ). The solution is

then

u(x, y) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(z)e−izξe−|ξ|y+ixξdzdξ. (10.15)

Using Fubini’s Theorem we have

u(x, y) =

∫ ∞

−∞

1

2π
f(η)

(∫ ∞

−∞
e−|ξ|y+iξ(x−η)dξ

)
dη,

and∫ ∞

−∞
e−|ξ|y+iξ(x−η)dξ =

∫ 0

−∞
eξy+iξ(x−η)dξ +

∫ ∞

0

e−ξ(y−i(x−η))dξ

=
eξ(y+i(x−η))

y + i(x− η)

]0

−∞
+] +

e−ξ(y−i(x−η))

y − i(x− η)

]∞

0

=
1

y + i(x− η)
+

1

y − i(x− η)
=

2y

(x− η)2 + y2
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Hence

u(x, y) =
1

π

∫ ∞

−∞

yf(η)

(x− η)2 + y2
dη, (10.16)

is a solution of this equation. Notice that if f ∈ L1(R) then we may
use the dominated convergence theorem to take the limit as y → ∞
inside the integral and conclude that u(x, y) → 0 as y → ∞, so the
condition on u as y → ∞ is satisfied.

Note also that we say is a solution, not the solution. The reason for
this is that problems of this type for the Laplace equation do not in
general have unique solutions. To obtain uniqueness, we really need to
consider additional boundary conditions, but we will not address this
question in these notes. We refer the reader to the literature on the
Laplace equation for more.

10.3. The Fourier Transform on L2. For f ∈ L1(R), the Fourier
transform is defined by the integral formula introduced earlier. For
a function which is not integrable, but is square integrable, we can
also define the Fourier transform using Hermite functions. There is an
equivalent way of defining the Fourier transform on L2(R) which we
present here.

Theorem 10.14. The set A(R) = L1(R) ∩ L2(R) is dense in L2(R).

Proof. Since the Hermite functions are in A(R) and we know these are
dense in L2(R) the result follows. �

If f ∈ A(R) then its Fourier transform exists. For such functions,
we have the following major result.

Theorem 10.15 (Plancherel). Let f ∈ A(R). Then ‖f̂‖2 =
√
2π‖f‖2.

Proof. We let g(x) =
∫∞
−∞ f(y − x)f(y)dy and it is clear that

g(0) =

∫ ∞

−∞
f(y)f(y)dy = ‖f‖22.

The idea is to take the Fourier transform of g. So

ĝ(t) =

∫ ∞

−∞

∫ ∞

−∞
f(y − x)f(y)e−ixtdydx

=

∫ ∞

−∞

∫ ∞

−∞
f(y)f(y − x)e−ixtdxdy

=

∫ ∞

−∞

∫ ∞

−∞
f(y)f(r)e−i(y−r)tdrdy

=

∫ ∞

−∞
f(y)e−iytdy

∫ ∞

−∞
f(r)eirtdr

= f̂(t)f̂(t) = |f̂(t)|2.
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Now ĝ(t) =
∫∞
−∞ g(x)e−ixtdx, g(x) = 1

2π

∫∞
−∞ ĝ(t)eixtdt and it is clear

that

g(0) =
1

2π

∫ ∞

−∞
|f̂(t)|2dt.

Hence

‖f‖22 = g(0) =
1

2π

∫ ∞

−∞
|f̂(t)|2dt = 1

2π
‖f̂‖22.

And the result follows from this.
�

We have therefore established that the Fourier transform is a bounded
operator on A(R) under the L2 norm. Since A(R) is dense in L2(R) we
can extend the Fourier transform to L2(R) by the following construc-
tion. We pick f ∈ L2(R) and a sequence fn ∈ A(R) such that fn → f
in the sense of L2. By which we mean ‖f − fn‖2 → 0 as n → ∞. We

then define f̂ to be the L2 limit of the sequence f̂n. The full details
we will omit, as they require some results on the extension of bounded
operators from a dense subspace of a vector space to the whole space.
The result is one of the most important in Fourier analysis.

Recall that we wanted a space of functions V with the property that
F : V → V . The following result solves this problem.

Theorem 10.16 (Plancherel). The Fourier transform can be extended
from A(R) to the whole of L2(R) and for each f ∈ L2(R) we have

‖f̂‖2 =
√
2π‖f‖2. (10.17)

Further, the extension is unique. Thus

F : L2(R) → L2(R).

It is worth noting that if we define the Fourier transform by

f̂(y) =

∫ ∞

−∞
f(x)e−2πixydx, (10.18)

then Plancherel’s relation becomes ‖f‖2 = ‖f̂‖2. It is for this reason
that many mathematicians prefer this to be the definition of the Fourier
transform. On the other hand, with this definition, the Fourier trans-

form of a derivative will be f̂ (n)(y) = (2πiy)nf̂(y). The moral is that
the 2π has to go somewhere. No matter how we define the Fourier
transform, a factor of 2π will appear in some formula, somewhere. It
is just a matter of taste where we choose the factor to go.

10.4. The Multi-Dimensional Fourier Transform. We can extend
the Fourier transform to act on functions in L1(Rn). We simply take
the one dimensional Fourier transform in each variable. This results in
the following definition.
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Definition 10.17. Let f ∈ L1(Rn). The Fourier transform of f is
defined by

f̂(y) =

∫

Rn

f(x)e−ix·ydx, (10.19)

where x, y ∈ Rn and x · y is the usual dot product.

Fourier inversion is carried out as follows.

Theorem 10.18. Let f̂ be the Fourier transform of f ∈ L1(Rn). Sup-

pose that f̂ is integrable. Then

f(x) =
1

(2π)n

∫

Rn

f̂(y)eix·ydy. (10.20)

The multi-dimensional Fourier transform has properties which are
essentially the same as the one dimensional case, though there are
obviously some differences. For example we may prove the following
by a method which is an obvious extension of the one-dimensional case.

Theorem 10.19. Let f ∈ L1(Rn). Then lim|y|→∞ |f̂(y)| = 0.

We may establish connections between the Fourier transform and
other transforms. As an illustration, consider the Fourier transform on
R2 of a radial function. That is, one of the form F (x, y) = f(

√
x2 + y2),

where f is a function of a single variable. The Fourier transform of F
is

F̂ (ξ, η) =

∫

R2

f(
√
x2 + y2)e−ixξ−iyηdxdy.

Now we let x = r cos θ, y = r sin θ and ξ = ρ cosφ, η = ρ sinφ. Then

F̂ (ρ, φ) =

∫ ∞

0

∫ 2π

0

f(r)e−irρ cos(θ−φ)rdrdθ,

in which we used the trigonometric expansion of cos(θ − φ). Next ob-
serve that

∂

∂φ

∫ ∞

0

∫ 2π

0

f(r)e−irρ cos(θ−φ)rdθdr

= −irρ
∫ ∞

0

∫ 2π

0

f(r) sin(θ − φ)e−irρ cos(θ−φ)dθrdr

= −
∫ ∞

0

f(r)
[
e−irρ cos(θ−φ)

]2π
0
rdr = 0.

Hence the Fourier transform is independent of φ. Thus we can set φ = 0
in the integral. Actually this holds in higher dimensions as well. The
proof is an elementary exercise.

Proposition 10.20. The Fourier transform of a radial function is
radial.
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Next observe that
∫ 2π

0

e−irρ cos θdθ = 2πJ0(rρ) (10.21)

where J0 is the zeroth order Bessel function of the first kind. This
means that

F̂ (ρ) = 2π

∫ ∞

0

rf(r)J0(rρ)dr. (10.22)

This is essentially a Hankel transform. We discard the factor of 2π.

Definition 10.21. The zeroth order Hankel transform of a suitable
function f : R+ → R is

f̂(ρ) =

∫ ∞

0

f(r)rJ0(rρ)dr. (10.23)

Hankel transforms have the nice property that the inversion is the
same as the original transform. (Why?)

Theorem 10.22. Let f̂ be the zeroth order Hankel transform of f.
Then

f(r) =

∫ ∞

0

f̂(ρ)ρJ0(rρ)dρ, (10.24)

provided the integral converges.

More generally we can define a kth order Hankel transform. The
condition on f given first is a sufficient but not necessary condition for
the Hankel transform to exist.

Definition 10.23. Let f satisfy
∫∞
0
f(r)

√
rdr <∞. Then if k > −1/2,

the kth order Hankel transform of f is

f̂(ρ) =

∫ ∞

0

f(r)rJk(rρ)dr (10.25)

Inversion is again given by the same integral.

Theorem 10.24. Let f̂ be the kth order Hankel transform of f. Then

f(r) =

∫ ∞

0

f̂(ρ)ρJk(rρ)dρ, (10.26)

provided the integral converges.

Extension to values of k less than −1/2 are possible, but we will not
discuss them. There are extensive tables of Hankel transforms available
as there are for the Laplace and Fourier transforms.
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Remark 10.25. Another common definition of the Hankel transform is

Fk(ρ) =

∫ ∞

0

√
rρf(r)Jk(rρ)dr. (10.27)

It is possible to convert between the two definitions by making a simple
change of variables in the integral.

The Hankel transform is used in many areas, notably the solution
of PDES on domains involving circular symmetry. The key is the fol-
lowing observation. Now the kth order Bessel functions satisfy the
differential equation x2y′′ + xy′ + (x2 − k2)y = 0. This leads to the
following result.

Proposition 10.26. Let Fk denote the kth order Hankel transform of
f . Suppose that f is twice differentiable and f ′′ + 1

r
f ′ − k2

r2
f possesses

a Hankel transform. Then

Hk

[
f ′′ +

1

r
f ′ − k2

r2
f

]
(ρ) = −ρ2Fk(ρ). (10.28)

Here Hk is the Hankel transform operator.

The proof of this is a straightforward exercise. We use integration
by part, integrating f ′′ twice and f ′ once and rewriting the expression
in terms of the derivatives of the Bessel function. We then use the fact
that Bessel functions satisfy Bessel’s equation in order to simplify the
resulting expression.

Example 10.3. Let us solve the axially symmetric wave equation

utt = urr +
1

r
ur,

subject to the conditions u(r, 0) = f(r) and ut(r, 0) = 0. We apply the
zeroth order Hankel transform to obtain the equation

Utt = −ρ2U,
where U denotes the zeroth order Hankel transform of u. This has the
solution

U(ρ, t) = A(ρ) cos(ρt) +B(ρ) sin(ρt).

The initial conditions become U(ρ, 0) = F (ρ) and Ut(ρ, 0) = 0. Apply-
ing we obtain U(ρ, t) = F (ρ) cos(ρt) and hence the solution is

u(r, t) =

∫ ∞

0

F (ρ) cos(ρt)J0(rρ)r dρ. (10.29)

For different choices of f we can evaluate the integral and hence obtain
the explicit solution.
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11. Fourier Series

Fourier series allow us to expand arbitrary periodic functions on an
interval [−L, L) in terms of sines and cosines. The natural setting
for Fourier series is L2(I) where I = [−π, π) (or equivalently [0, 2π).)
Throughout we will assume that on R, f is 2π periodic. This is related
to a question that bothered Euler. The trigonometric series expansion
of a function f will be periodic, therefore f must all be periodic. So
we assume throughout that f(x+ 2π) = f(x) for all x ∈ R.

We start with a simple lemma.

Lemma 11.1. Suppose that f ∈ L2(I). Then f ∈ L1(I).

Proof. This is an application of Hölder’s inequality. It is obvious that
1 ∈ L2(I). So we have

∫ π

−π

|1f | ≤ ‖f‖2‖1‖2 =
√
2π‖f‖2 <∞.

�

Note that this result only works because m(I) = 2π < ∞. On a
space of infinite measure, this result is false. There are functions in
L2(R) which are not in L1(R) and vice versa.

Definition 11.2. Let f ∈ L1(I). We define the nth Fourier coefficient
of f to be

f̂(n) =
1

2π

∫ π

−π

f(x)e−inxdx. (11.1)

The Fourier coefficients of a function can be used to recover a great
deal of information about the function itself. In fact we hope to recover
the function from its Fourier coefficients by introducing the concept of
a Fourier series.

Definition 11.3. The Fourier series of a function f is the infinite sum

∞∑

n=−∞
f̂(n)einx. (11.2)

We write

f(x) ∼
∞∑

n=−∞
f̂(n)einx. (11.3)

At this stage we are not claiming that the Fourier series of f is equal
to f. In fact for an arbitrary continuous function, this is false. We
would like to know under which conditions the result is true. We will
turn to that question shortly. Now however, we present some useful
properties of Fourier coefficients.
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Proposition 11.4. Suppose that f is an integrable function. Then

|f̂(n)| ≤ 1

2π
‖f‖1, n ∈ Z. (11.4)

Proof. Suppose that f ∈ L1(I). Then

|f̂(n)| = 1

2π

∣∣∣∣
∫ π

−π

f(x)e−inxdx

∣∣∣∣ (11.5)

≤ 1

2π

∫ π

−π

|f(x)|dx =
1

2π
‖f‖1, (11.6)

as |e−inx| = 1. �

Proposition 11.5. Suppose that f ∈ L1(I) is 2π periodic. Given

a ∈ R define fa(x) = f(x− a). Then f̂a(n) = e−inaf̂(n), n ∈ Z.

Proof. Observe that

f̂a(n) =
1

2π

∫ π

−π

fa(x)e
−inxdx

=
1

2π

∫ π

−π

f(x− a)e−inxdx

=
1

2π
e−ina

∫ π−a

−π−a

f(y)e−inydy

=
1

2π
e−ina

∫ π

−π

f(y)e−inydy = e−inaf̂(n).

Where in the last line we used the periodicity of f and e−iny. �

Next we see what Fourier coefficients do to derivatives.

Proposition 11.6. Suppose that f is a continuously differentiable 2π

periodic function. Then f̂ ′(n) = inf̂(n).

This is an exercise in integration by parts. Essential to our proof of
Dirichlet’s Theorem on the convergence of Fourier series is the Riemann-
Lebesgue Lemma.

Theorem 11.7 (The Riemann-Lebesgue Lemma). Suppose that f ∈
L1(I). Then lim|n|→∞ |f̂(n)| = 0.

This is a tutorial exercise. Now we come to an important inequality.

Theorem 11.8 (Bessel’s Inequality). If f ∈ L2(I) and is periodic,
then

∞∑

n=−∞
|f̂(n)|2 ≤ ‖f‖2,

where we define the norm by ‖f‖2 = 1
2π

∫ π

−π
|f(x)|2dx.



134 MARK CRADDOCK

Proof. Let (SNf)(x) =
∑N

n=−N f̂(n)e
inx and g = f − SNf. Define

en(x) = einx and (h, en) =
1
2π

∫ π

−π
h(x)en(x)dx. Observe that (en, em) =

δnm, the Kroneckor delta defined by δnm = 1 if n = m and 0 otherwise.
Now

‖f‖2 = (SNf + g, SNf + g)

= (SNf, SNf) + (SNf, g) + (g, SNf) + (g, g)

= ‖SNf‖2 + (SNf, g) + (g, SNf) + ‖g‖2.
Notice that

(g, en) =
1

2π

(∫ π

−π

f(x)e−inxdx−
N∑

m=−N

f̂(m)

∫ π

−π

e−i(n−m)xdx

)

=
1

2π

∫ π

−π

f(x)e−inxdx− f̂(n) = 0

for all |n| ≤ N. Now

(SNf, g) = (SNf, f − SNf)

= (SNf, f)− (SNf, SNf) =

(
N∑

n=−N

f̂(n)einx, f

)
− (SNf, SNf)

=
N∑

n=−N

f̂(n)(einx, f)− (SNf, SNf)

=
N∑

n=−N

|f̂(n)|2 − (SNf, SNf).

Next observe that

(SNf, SNf) = ‖SNf‖2 =
(

N∑

k=−N

f̂(k)eikx,

N∑

m=−N

f̂(m)eimx

)

=
N∑

k=−N

f̂(k)

(
eikx,

N∑

m=−N

f̂(m)eimx

)
.

But (
eikx,

N∑

m=−N

f̂(m)eimx

)
= f̂(k),

since (
eikx, f̂(m)eimx

)
= f̂(m)

(
eikx, eimx

)

= f̂(k)δkm.
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Thus (SNf, SNf) =
∑N

n=−N |f̂(n)|2. So (SNf, g) = 0 = (g, SNf). Con-
sequently

‖f‖2 = ‖SNf‖2 + (SNf, g) + (g, SNf) + ‖g‖2

= ‖SNf‖2 + ‖g‖2

≥ ‖SNf‖2 =
N∑

n=−N

|f̂(n)|2.

�

In fact, if f ∈ L2(I) then Bessel’s inequality is an equality. This is a
theorem of Riesz and Fischer, which we will state without proof below.

Now we turn to some of the convergence theorems of Fourier series.
The first task will be to prove a version of Dirichlet’s Theorem. We
first introduce the Dirichlet kernel.

Lemma 11.9. The Dirichlet kernel is defined by DN (x) =
∑N

n=−N e
inx

and satisfies

DN(x) =
N∑

n=−N

einx =
sin([N + 1/2]x)

sin(x/2)
.

Proof. We use
∑N

n=−N e
inx = 1 +

∑N
n=1 e

inx +
∑−1

n=−N e
inx. This is the

sum of two geometric sums. �

Now observe the following.

SNf(x) =

N∑

n=−N

f̂(n)einx

=
1

2π

N∑

n=−N

einx
∫ π

−π

f(y)e−inydy

=
1

2π

∫ π

−π

N∑

n=−N

ein(x−y)f(y)dy

=
1

2π

∫ π

−π

f(y)DN(x− y)dy.

We can rewrite this if f is periodic.

Theorem 11.10. Suppose that f is periodic and integrable. Then the
N th partial sum of its Fourier series SNf is given by

(SNf)(x) =
1

2π

∫ π

−π

f(y)DN(x− y)dy =
1

2π

∫ π

−π

f(x− y)DN(y)dy.

The proof is an exercise. We also have

Lemma 11.11. The Dirichlet kernel satisfies
∫ π

−π
DN(y) = 2π.
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Again this is an easy calculation. Now we can prove Dirichlet’s
Theorem.

Theorem 11.12 (Dirichlet). Suppose that f ∈ L1(I) and that f ′(x0)
exists. Then limN→∞(SNf)(x0) = f(x0). That is, the Fourier series
for f converges to f at a point where f is differentiable.

Proof. We have

(SNf)(x0)− f(x0) =
1

2π

∫ π

−π

DN(y)f(x0 − y)dy − f(x0)

2π

∫ π

−π

DN(y)dy

=
1

2π

∫ π

−π

DN(y)[f(x0 − y)− f(x0)]dy

=
1

2π

∫ π

−π

sin([N + 1/2]y)g(y)dy

where g(y) =
f(x0 − y)− f(x0)

y

y

sin(y/2)
. It is not hard to see that

limy→0 g(y) = 2f ′(x0). This tells us that g is continuous and hence
integrable on I. Now we extend g to (−2π, 2π) by letting it equal zero
outside of I. Then

1

2π

∫ π

−π

sin([N + 1/2]y)g(y)dy =
1

2π

∫ 2π

−2π

sin([N + 1/2]y)g(y)dy

(11.7)

=
1

2π

∫ π

−π

2 sin([2N + 1]y)g(2y)dy

(11.8)

=
1

2i
[ĥ(2N + 1)− ĥ(−2N − 1)] (11.9)

where h(x) = 2g(2x). By the Riemann-Lebesgue Lemma,

1

2i
[ĥ(2N + 1)− ĥ(−2N − 1)] → 0

as N → ∞. So we conclude that (SNf)(x0) → f(x0) as required. �

Dirichlet’s Theorem was the first result on the convergence of Fourier
series to ever be established. It can be extended to show that if f is
piecewise differentiable at x0 then

(SNf)(x0) →
1

2

[
f(x+0 ) + f(x−0 )

]
.

If f is continuous but not differentiable, then it does not follow that the
Fourier series for f converges to f. There exist examples of continuous
functions with divergent Fourier series. However we can recover f from
its Fourier coefficients by a construction due to Fejer.



MODERN ANALYSIS 137

Definition 11.13. The Fejer kernel is defined by

FN(x) =
1

N

N−1∑

n=0

Dn(x)

=
1

N

N−1∑

n=0

sin([n + 1/2]x)

sin(x/2)
. (11.10)

Lemma 11.14. The Fejer kernel is given by

FN(x) =
sin2

(
N
2
x
)

N sin2(x/2)
. (11.11)

Proof. This is similar to the corresponding result for the Dirichlet ker-
nel. We write

FN(x) =
1

N

N−1∑

n=0

Dn(x)

=
1

N sin(1
2
x)

N−1∑

n=0

sin[(n +
1

2
)x)]

=
1

N sin(1
2
x)

N−1∑

n=0

ei(n+
1
2
)x − e−i(n+ 1

2
)x

2i

=
1

N sin(1
2
x)

(
N−1∑

n=0

eix/2

2i
einx −

N−1∑

n=0

e−ix/2

2i
e−inx

)

=
1

N sin(1
2
x)

(
eix/2

2i

eiNx − 1

eix − 1
− e−ix/2

2i

e−iNx − 1

e−ix − 1

)

=
1

N sin(1
2
x)

(
eiNx − 1

2i(eix/2 − e−ix/2)
− e−iNx − 1

2i(e−ix/2 − eix/2)

)

=
1

N sin(1
2
x)

eiNX − 2 + e−iNx

(2i)2 sin(x/2)

=
1

N sin(1
2
x)

(eiNx/2 − e−iNx/2)2

(2i)2 sin(x/2)

=
1

N sin(1
2
x)

(2i)2 sin2(Nx/2)

(2i)2 sin(x/2)

�

With some work we can establish the following useful properties of
the Fejer kernel.

Theorem 11.15. Let FN be the Fejer kernel. Then

(i) FN (x) ≥ 0
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(ii)
∫ π

−π
FN(x)dx = 2π.

(iii) limN→∞
∫
δ<|x|<π

FN(x)dx = 0 if 0 < δ < π.

(iv) If TNf = 1
N

∑N−1
n=0 Snf, then

(TNf)(x) =
1

2π

∫ π

−π

FN(x− y)f(y)dy =
1

2π

∫ π

−π

FN (y)f(x− y)dy.

Proof. The first part is obvious. For the second,

∫ π

−π

FN(x)dx =
1

N

N−1∑

n=0

∫ π

−π

Dn(x)dx =
1

N
2πN.

The proof of (iv) is similar to the corresponding result for the Dirichlet
kernel. The proof of (iii) follows from the estimate

FN (x) ≤
1

N sin2(δ/2)
,

for δ < |x| < π.
�

The Fejer kernel is an example of a summability kernel. It allows us
to recover f from its Fourier coefficients, even if the Fourier series does
not itself converge.

Theorem 11.16 (Fejer). If f is continuous and periodic, then TNf →
f uniformly.

Proof. By the same reasoning as in the proof of Dirichlet’s Theorem,
we can write

(TNf)(x)− f(x) =
1

2π

∫ π

−π

FN(y)[f(x− y)− f(x)]dy

=
1

2π

∫

|y|<δ

FN (y)[f(x− y)− f(x)]dy

+
1

2π

∫

δ<|y|<π

FN(y)[f(x− y)− f(x)dy.

Now f is continuous and periodic and is therefore uniformly continuous
on I. Also

|f(x− y)− f(x)| ≤ 2 sup |f(y)| = C.

So∣∣∣∣
1

2π

∫

δ<|y|<π

FN (y)[f(x− y)− f(x)]dy

∣∣∣∣ ≤
C

2π

∫

δ<|y|<π

FN(y)dy → 0

as N → ∞. So we can choose N large enough to make this less than
ǫ/2. To estimate the first integral, we use properties of the Fejer Kernel
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(specifically
∫ π

π
FN(y)dy = 2π ) to give

∣∣∣∣
1

2π

∫

|y|<δ

FN(y)[f(x− y)− f(x)]dy

∣∣∣∣ ≤ sup{|f(x− y)− f(x)| : |y| < δ}

× 1

2π

∫

|y|<δ

|FN(y)|dy

≤ sup{|f(x− y)− f(x)| : |y| < δ}.
Since f is uniformly continuous, we choose δ > 0 such that

sup{|f(x− y)− f(x)| : |y| < δ} < ǫ/2.

So we can conclude that for all N large enough

|(TNf)(x)− f(x)| < ǫ (11.12)

for all x ∈ I. Thus TNf → f uniformly. �

Fourier series for f ∈ L2(I) are very well behaved. The most impor-
tant result is due to Riesz and Fischer. We will not prove this result.

Theorem 11.17 (Riesz-Fischer). Suppose that f ∈ L2(I). Then

lim
N→∞

‖SNf − f‖2 = 0.

Further, if we define ‖f‖2 = 1
2π

∫ π

−π
|f(x)|2dx, then

∞∑

n=−∞
|f̂(n)|2 = ‖f‖2. (11.13)

Conversely, suppose that {an}∞n=−∞ is a two sided sequence of complex
numbers such that

∑∞
n=−∞ |an|2 <∞. Then there is a unique f ∈ L2(I)

such that an = f̂(n) for each n.

An interesting question about trigonometric series is this: If the
series

a0/2 +

∞∑

n=1

(an cos(nx) + bn sin(nx))

is convergent, is it automatically a Fourier series? That is, does there
always exist f with Fourier coefficients an, bn which is given by the sum
of this series? The answer is no. There are convergent trigonometric
series which are not Fourier series. We might think that we can simply
define f to be the sum of the series, and then the Fourier coefficients
will be given by

an =
1

π

∫ π

−π

f(x) cos(nx)dx, bn =
1

π

∫ π

−π

f(x) sin(nx)dx.

However this assumes that we can reverse the order of integration and
summation and this is not always true. Indeed much of this course has
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been devoted to the problem of exactly when we can switch integrals
and limits. As an example, the series

g(x) =
∞∑

n=2

sin(nx)

lnn

is a convergent trigonometric series, but it is not a Fourier series. This
means that the function g is given by a series of sines, but is not a
Fourier series expansion, which is a decidedly odd fact.

11.1. More on the Inversion of Fourier Transforms. Can we
learn any lessons from Fejer’s Theorem which can be applied to the
recovery of a function from its Fourier transform? Consider the func-
tion

K̂λ(y) = λ

(
sin
(
λy
2

)
1
2
λy

)2

. (11.14)

This may be regarded as Fejer’s Kernel on R. It is not hard to show
that

1

2π

∫ ∞

−∞
f(x− y)K̂λ(y)dy =

1

2π

∫ λ

−λ

f̂(y)

(
1− |y|

λ

)
eiyxdy. (11.15)

As we let λ → ∞, we might hope that the integrals in (11.15) will
converge to f , at least in some sense, because the resulting integral on
the right looks like the Fourier inversion integral.

Indeed there is a version of Fejer summation for the Fourier transform
which shows that our hope is justified. We only state the result.

Theorem 11.18. Let f ∈ Lp(R), 1 ≤ p ≤ 2. Then

f(x) = lim
λ→∞

1

2π

∫ λ

−λ

f̂(y)

(
1− |y|

λ

)
eiyxdy. (11.16)

where convergence is in the Lp norm.

This result says that if we set

fλ(x) =
1

2π

∫ λ

−λ

f̂(y)

(
1− |y|

λ

)
eiyxdy,

then limλ→∞ ‖f − fλ‖p = 0, which implies that fλ converges to f al-
most everywhere, not pointwise. Obtaining pointwise convergence is
extremely difficult.

What about on Rn, n > 1? We might consider the integrals

1

(2π)n

∫

Bλ

f̂(y)

(
1− |y|

λ

)ǫ

eix·ydy, (11.17)

where ǫ > 0 and Bλ is the ball of radius λ in Rn. Then we ask if this
converges to f for each ǫ > 0 for f ∈ Lp(Rn) for 2n

n+1
< p < 2n

n−1
? This

is known as the Bochner-Riesz conjecture. For other values of p we
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need ǫ > n|1
p
− 1

2
|− 1

2
. However though it is known to be true for n = 2

(a result of L. Carleson and P. Sjolin from 1972), the answer for n > 2
is not known.

There are other approaches which turn out rather surprisingly not
to work. For example, one might consider the operator T defined by

(̂TRf)(x) = χBR
f̂(x) (11.18)

in which χBR
is a ball of radius R. We then consider

1

(2π)n

∫

Rn

χBR
f̂(y)eiy·xdy

and hope that this converges to f in Lp(Rn) for some range of p de-
pending on n. But Charlie Fefferman proved that this is false in 1971
for all n > 1 except for p = 2 when convergence is not hard to prove.
More precisely, Fefferman proved that T1 is not a bounded operator.
Meaning there is no C > 0 with the property that ‖T1f‖p ≤ C‖f‖p for
all f ∈ Lp(Rn). This implies our previous statement. This was a star-
tling discovery since it was generally believed that T1 was a bounded
operator on the disc, at least for p in some interval containing 2. Feffer-
man stated that his result was ‘unfortunate’. It is a warning however
that just because we think that a result seems eminently plausible, that
does not mean that is true.
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12. Fourier Analysis and Probability Theory

We continue with some applications of Fourier analysis by introduc-
ing the famous Poisson summation formula. Let f : R → R decay
rapidly so that the series

(Pf)(x) =
∞∑

n=−∞
f(x+ 2πn) (12.1)

converges. Observe that Pf is 2π periodic, so we can expand it in a
Fourier series. In other words we can write

(Pf)(x) =
∞∑

k=−∞
cke

ikx (12.2)

where the Fourier coefficients are given by

ck =
1

2π

∫ π

−π

(Pf)(x)e−ikxdx

=
1

2π

∫ π

−π

∞∑

n=−∞
f(x+ 2πn)e−ikxdx.

Now (Pf)(0) =
∑∞

k=−∞ f(2πk) =
∑∞

k=−∞ ck. But

ck =
1

2π

∞∑

n=−∞

∫ π

−π

f(x+ 2πn)e−ikxdx

=
1

2π

∞∑

n=−∞

∫ π+2πn

−π+2πn

f(y)e−iky+2πinkdy

=
1

2π

∫ ∞

−∞
f(y)e−ikydy =

1

2π
f̂(k).

This implies that

∞∑

k=−∞
f(2πk) =

1

2π

∞∑

k=−∞
f̂(k). (12.3)

This is called the Poisson summation formula. There are different
formulations. For example, there is an n dimensional version, but we
will not consider it.

Theorem 12.1. Suppose that f is a bounded, piecewise differentiable

L1 function with Fourier transform f̂ . Then

∞∑

k=−∞
f(2πk) =

1

2π

∞∑

k=−∞
f̂(k). (12.4)
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Example 12.1. Let f(x) = e−a|x| where a > 0. Then f̂(y) =
2a

a2 + y2
.

So we have
∞∑

k=−∞

2a

a2 + k2
= 2π

∞∑

k=−∞
e−2πa|k|

= 2π

(
1 +

−1∑

k=−∞
e2πak +

∞∑

k=1

e−2πak

)

= 2π

(
1 +

1

e2πa − 1
+

1

e2πa − 1

)

= 2πcoth(πa).

It is worth noting that if we define the Fourier transform by

f̂(y) =

∫ ∞

−∞
f(x)e−2πixydx,

then the Poisson summation formula is the nicely symmetric expression
∞∑

n=−∞
f(n) =

∞∑

n=−∞
f̂(n).

12.1. The Shannon Sampling Theorem. A remarkable result due
to Shannon in 1948 is essential to much of modern signal processing.
This result allows us to recover a continuous, band limited signal by
sampling it at discrete points.

Definition 12.2. A function f ∈ L2(R) is said to be band limited if
there exists a positive number S such that

suppf̂ = {x ∈ R : f̂(x) 6= 0} ⊆ [−S, S].
For ease of presentation, we will use a slightly different definition of

the Fourier transform. We will set

f̂(y) =

∫ ∞

−∞
f(x)e−2πixydx. (12.5)

In this case the inverse Fourier transform is

f(x) =

∫ ∞

−∞
f̂(y)e2πixydy. (12.6)

Theorem 12.3 (The Shannon Sampling Theorem). Suppose that f ∈
L2(R) is band limited, with support contained in [−S, S]. Then we may

reconstruct f by sampling at the points,
{ n

2S

}
, by the formula

f(x) =
∑

n∈Z
dn(x)f

( n
2S

)
, (12.7)
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where

dn(x) = kS

(
x− n

2S

)
=

1

2S

∫ S

−S

e2πi(x−
n
2S

)ydy. (12.8)

Proof. Suppose that f : R → C with Fourier transform f̂(y) = 0 all
|y| > S. Then by the Fourier inversion theorem, if

f̂(y) =

∫ ∞

−∞
f(x)e−2πiyxdx (12.9)

then we have

f(x) =

∫ ∞

−∞
f̂(y)e2πiyxdx =

∫ S

−S

f̂(y)e2πiyxdx. (12.10)

The idea is to expand the Fourier transform of f in a Fourier series on
[−S, S]. We have

f̂(y) =
∞∑

n=−∞
cne

iπny/S , (12.11)

where

cn =
1

2S

∫ S

−S

f̂(ξ)e−inπξ/Sdξ

=
1

2S

∫ ∞

−∞
f̂(ξ)e2inπξ/(−2S)dξ

=
1

2S
f

(−n
2S

)
.

So

f(x) =

∫ ∞

−∞
e2πiyx

∞∑

n=−∞

1

2S
f

(−n
2S

)
einπy/Sdy

=

∫ S

−S

∞∑

n=−∞

1

2S
f

(−n
2S

)
e2πiy(x+

n
2S

)dy

=
1

2S

∫ S

−S

∞∑

n=−∞
f

(−n
2S

)
e2πiy(x+

n
2S

)dy

=
1

2S

∫ ∞

−∞

∞∑

n=−∞
f
( n
2S

)
e2πiy(x−

n
2S

)dy

=

∞∑

n=−∞
f
( n
2S

)
dn(x).

�

Thus if a signal is band limited, then we can recover it completely if
we only know it at equally spaced points. This remarkably fact (and the
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further developments stemming from it) is the basis for much of the
modern theory of telecommunications. These kinds of mathematical
techniques are what makes your mobile phone work!

12.2. Applications in Probability. Measure theory is fundamental
to the modern theory of probability. We define a probability space
using the concept of a measure.

Definition 12.4. A probability space (Ω,F , P ) is a measure space
where P (Ω) = 1 and P is a Borel measure. Here P is called a proba-
bility measure.

Definition 12.5. Let (Ω,F , P ) be a probability space. A random
variable on Ω is a Borel measurable function X : Ω → R.

The elements of the σ algebra are called events and we usually asso-
ciate the outcome of observations with them. Naturally we are inter-
ested in integrable random variables.

Definition 12.6. Let (Ω,F , P ) be a probability space andX a random
variable on Ω. We say that

(i) X is an Lr(Ω) random variable if
∫
Ω
|X|rdP <∞

(ii) If X ∈ L1(Ω), then the expectation of X is E(X) =
∫
Ω
XdP.

(iii) If X is an L2(Ω) random variable, then the variance of X is
σ2(X) = E

(
(X − E(X))2

)
.

To any random variable we can associate the probability

Pr(X ≤ x) = Probability(X ≤ x). (12.12)

Definition 12.7. Let X be a random variable on (Ω,F , P ). Then
Pr(X ≤ x) = P (X−1{(−∞, x]}).

If Pr(X ≤ x) = F (x) is differentiable, then F ′(x) = f(x) is called the
probability density of X.

Computing expected values is accomplished by integration. We will
not prove the next result.

Theorem 12.8. Suppose that X is a random variable on (Ω,F , P ) and
that h ∈ L1(Ω) and that X has probability density f. Then

E(h(X)) =

∫

Ω

h(x)f(x)dx. (12.13)

There is a very important example.

Definition 12.9. Let X be a random variable on R with probability
density f . Then the characteristic function of X is

E
(
e−itX

)
=

∫ ∞

−∞
e−itxf(x)dx = ϕX(t). (12.14)
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This is of course the Fourier transform of f.One can use it to compute
moments. The next result is a simple exercise.

Proposition 12.10. Let X ∈ Lr(R) have characteristic function ϕX(t).
Then

E (Xr) = (i)r
dr

dtr
ϕX(t)

∣∣∣∣
t=0

.

Example 12.2. Let X be a random variable with probability density
function

f(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
. (12.15)

Then

ϕX(t) =
1√
2πσ

∫ ∞

−∞
exp

(
−(x− µ)2

2σ2
− itx

)

= e−
1
2
σ2t2−iµt. (12.16)

Thus

ϕ′
X(0) = −iµ, (12.17)

so E(X) = µ.

Definition 12.11. Two random variables X, Y are said to be inde-
pendent if E (h(X)g(Y )) = E (h(X))E (g(Y )) for all Borel functions
X and Y .

A result which we will not prove follows.

Theorem 12.12. Let X be a continuous random variable on R. Then
the characteristic function of X is unique and completely characterises
Pr(X ≤ x).

An easy applications of characteristic functions follows.

Theorem 12.13. Let X, Y be independent random variables on R with
probability densities fX , fY respectively. Then the probability density of
Z = X + Y is given by

fZ(x) =

∫ ∞

−∞
fX(y)fY (x− y)dy.

Proof. Let Z = X + Y . By independence

E
(
e−itZ

)
= E

(
e−it(X+Y )

)

= E
(
e−itX

)
E
(
e−itY

)
.

The result follows from the convolution theorem. �

We can also define
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Definition 12.14. Let X be a continuous random variable. The mo-
ment generating function MX(s) is defined by

MX(s) = E
(
e−sX

)
. (12.18)

Some authors prefer to work with E
(
esX
)
. Notice that if X ≥ 0,

then MX(s) =
∫∞
0
f(x)e−sxdx is the Laplace transform of the proba-

bility density f . The moment generating function gives us quite a bit
of information. In fact its very existence tells us something important.

Theorem 12.15. If the integral defining the moment generating func-
tion converges for s ∈ (−γ, γ), γ > 0 then E(Xr) <∞ for all r ≥ 0.

Proof. Suppose that X has denisty f . Then

MX(s) =

∫ ∞

−∞
e−sxf(x)dx =

∫ ∞

0

e−sxf(x)dx+

∫ 0

−∞
e−sxf(x)dx,

(12.19)

converges for −γ < s < γ. Thus
∫ ∞

0

e−sxf(x)dx <∞, −γ < s, (12.20)

and
∫ 0

−∞
e−sxf(x)dx <∞, (12.21)

for γ > s. Now choose s0 > 0 such that −γ < −s0 < 0. Then

MX(−s0) ≥
∫ ∞

0

es0yf(y)dy

≥
∫ ∞

x

es0yf(y)dy, x > 0

≥ es0x
∫ ∞

x

f(y)dy = es0xPr(X ≥ x).

Thus

Pr(X ≥ x) ≤ MX(−s0)e−s0x

and for every r > 0
∫ ∞

0

xr−1Pr(X > x)dx ≤MX(−s0)
∫ ∞

0

e−s0xxr−1dx <∞. (12.22)

Similarly, choose s1 ∈ (0, γ). Then we arrive at

MX(s1) ≥
∫ 0

−∞
e−s1yf(y)dy ≥ e−s1xPr(X < x), (12.23)
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and so for x < 0 we have Pr(X < x) ≤ es1xMX(s1). Thus∫ 0

−∞
|x|r−1Pr(X < x)dx ≤MX(s1)

∫ 0

−∞
es1x|x|r−1dx

=MX(s1)

∫ ∞

0

e−s1yf(y)dy.

Thus for r > 0

∫ ∞

−∞
|x|r−1Pr(|X| > x)dx =

∫ ∞

0

xr−1Pr(X > x)dx

+

∫ 0

−∞
|x|r−1Pr(X < x)dx <∞.

And the result follows. �
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13. Some Functional Analysis

We begin with one of the major tools of analysis, the Radon-Nikodym
theorem, which is fundamental to many areas. It allows us to change
from one measure to another, as in for example Girsanov’s Theorem.
Suppose that (X,F , µ) is a measure space. We can define a new mea-
sure as follows.

Theorem 13.1. Let (X,F , µ) be a measure space and suppose that f
is a non-negative, measurable function. Then

ν(E) =

∫

E

fdµ (13.1)

is a measure on X.

Proof. It is clear that ν is positive and if ∅ is the empty set that

ν(∅) =
∫

∅
fdµ = 0.

Now let A = ∪∞
n=1An where the An are disjoint. If x ∈ A, then x is in

exactly one An. So

χA(x) = 1 =

∞∑

n=1

χAn
. (13.2)

So that

ν(A) =

∫

A

fdµ =

∫

X

fχAdµ

=
∞∑

n=1

∫

X

fχAn
dµ

=
∞∑

n=1

∫

An

fdµ

=
∞∑

n=1

ν(An).

�

Thus we can obtain infinitely many measures from a given measure.

Example 13.1. Let µ be Lebesgue measure on R. Then

P (E) =

∫

E

1√
2π
e−x2/2dx (13.3)

is also a measure on R.

Definition 13.2. Given two measures µ and ν on (X,F), we say that
ν is absolutely continuous with respect to µ if µ(A) = 0 implies that
ν(A) = 0. We write ν ≪ µ.
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Before proceeding we need an important concept. A measure µ is
σ-finite if the underlying space X can be written as a countable union
of sets Xn and µ(Xn) <∞ for all n. Thus Lebesgue measure is σ-finite,
but it is not finite: m([0,∞)) = ∞, but [0,∞) = [0, 1]∪ [1, 2]∪ [2, 3] · · ·
and m([n, n+ 1]) = 1.

It is clear that if we define two measures as in Theorem 13.1, then
they are absolutely continuous with respect to each other. The Radon-
Nikodym theorem says that all absolutely continuous measures arise
this way. The next result is of great importance, but we will not prove
it.

Theorem 13.3 (Radon,Nikodym). Let (X,F) be a measurable space
and let µ and ν be σ-finite measures on F with ν ≪ µ. Then there is
a unique, non-negative, measurable function f such that

ν(E) =

∫

E

fdµ, (13.4)

all E ∈ F .
The proof of this result requires some more measure theory. In par-

ticular a result known as the Hahn Decomposition Theorem which in
turn requires the concept of a signed measure. These are really beyond
the scope of the subject. Nevertheless the Radon-Nikodym theorem is a
major tool in modern analysis and it is worthwhile to see it. It is par-
ticularly important in stochastic calculus where the Radon-Nikodym
derivative of two measures can play a major role.

Definition 13.4. Let ν ≪ µ and suppose that ν(E) =
∫
E
fdµ. Then

we write
dν

dµ
= f

and call f the Radon-Nikodym derivative of ν with respect to µ.

Radon-Nikodym derivatives have properties similar to the regular
derivative. The following is a simple exercise.

Theorem 13.5. Assume that λ, ν, µ are finite measures, such that λ≪
µ and ν ≪ µ. Then

(i) With φ = λ+ ν,
dφ

dµ
=
dλ

dµ
+
dν

dµ
, a.e.

(ii) If λ≪ ν then
dλ

dµ
=
dλ

dν

dν

dµ
, a.e.

Of course there will be measures µ, ν with the property that µ(E) =
0 6= ν(E). For example, Lebesgue measure and the point measure
µx(E) = 1 if x ∈ E and µx(E) = 0 if x 6∈ E.

In stochastic calculus, the Radon-Nikodym derivative appears when
we change from one Brownian motion to another using Girsanov’s The-
orem. That is well outside the scope of this subject however.
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The Radon-Nikodym theorem has numerous applications in advanced
analysis. We will present one below.

13.1. Representation Theorems.

Definition 13.6. Let X be a vector space. A linear functional on X
is a linear mapping

µ : X → C. (13.5)

If µ(xn) → µ(x) whenever xn → x we say that µ is a continuous linear
functional.

Example 13.2. Let X = C([a, b]). Then µ(f) =
∫ b

a
f(x)dx is a linear

functional on X .

So integration is a linear functional. Actually, it is in a sense the
only one. To see this, we first consider the Hilbert space case. We first
note that a transformation T : X → Y where X, Y are normed vector
spaces is bounded if there is a constant C such that ‖Tx‖Y ≤ C‖x‖X .
Theorem 13.7 (The Riesz Representation Theorem I). Let H be a
Hilbert space and F : H → C a bounded linear functional on H. Then
there is a unique element z ∈ H such that for all x ∈ H, F (x) = (x, z).

Proof. Denote by N = {x ∈ H : F (x) = 0}. Then N is clearly a
closed linear subspace of H . To see that it is a subspace notice that if
x, y ∈ N , and λ, µ are scalars, then

F (λx+ µy) = λF (x) + µF (y) = 0,

so that λx + µy ∈ N . Plainly F (0) = F (0.0) = 0F (0) = 0. Thus
we also have 0 ∈ N , so N is a subspace. To show that it is closed
let {xn}∞n=1 ⊂ N. Then F (xn) = 0 for all n. Suppose xn → x. Then
|F (xn) − F (x)| = |F (xn − x)| ≤ C‖xn − x‖H → 0 as xn → x in H.
Thus F (xn) → F (x) (which implies F is continuous). Since F (xn) = 0
for all x we have F (x) = 0, so x ∈ N and N is closed.

If H = N , then F (x) = 0 for all x. So we can take z = 0. If N 6= H ,
then let

z0 ∈ N⊥ = {y ∈ H : (x, y) = 0, x ∈ N, y 6= 0}.
Suppose α = F (z0) 6= 0. Now

x− F (x)z0/α ∈ N (13.6)

since

F
(
x− F (x)

z0
α

)
= F (x)− F (x)

F (z0)

F (z0)
= 0. (13.7)

Thus by definition of N⊥,
(
x− F (x)z0

α
, z0

)
= 0.
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Hence

F (x)

α
(z0, z0) = (x, z0).

Thus F (x) = (x, z) where z =
αz0

(z0, z0)
.

Now suppose that there is a z′ ∈ H such that (x, z) = (x, z′) for all
x ∈ H. Then (x, z − z′) = 0 for all x. Take x = z − z′. Then we have
(z − z′, z − z′) = ‖z − z′‖2 = 0, but this implies that z = z′ by a basic
property of norms. �

If we take H = L2(R), then every linear functional is given by

F (f) =

∫ ∞

−∞
f(x)g(x)dx, (13.8)

for some g ∈ L2(R). So this linear functional is given by an integral.
In fact the following is true.

Theorem 13.8 (The Riesz Representation Theorem II). Let (X, s, µ)
be a measure space and F a continuous linear functional on Lp(X, µ), p >
1. Let q be such that 1/p+ 1/q = 1. Then there is a g ∈ Lq(X, µ) such
that for all f ∈ Lp(X, µ)

F (f) =

∫

X

fgdµ

and ‖F (f)‖ ≤ ‖f‖p‖g‖q.
The proof is involved, but the basic idea is to define a measure ν(A) =

F (χA) for every finite set A. It is not hard to establish that this is a
measure, and ν ≪ µ. So by the Radon-Nikodym theorem we have the
existence of a g such that

ν(A) =

∫

A

gdµ. (13.9)

By linearity, if φ =
∑

i aiχAi
, then F (φ) =

∫
φgdµ. Now given φ ∈ Lp,

we may find an increasing sequence of step functions φn → f . Using
the Dominated Convergence Theorem we have

F (f) = lim
n→∞

∫

X

φngdµ

=

∫

X

lim
n→∞

φngdµ

=

∫

X

fgdµ.

One then establishes that g ∈ Lq and the final result is an application
of Hölder’s inequality.

Actually we can say even more.
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Theorem 13.9 (The Riesz Representation Theorem III). Let X = Rn

or Cn. Let Cc(X) be the space of all compactly supported functions on
X. Then for every continuous linear functional F on Cc(X), there is a
measure µ such that

F (f) =

∫

X

fdµ.

Thus linear functionals are essentially given by measures.
The role that linear functionals play is absolutely fundamental in

many branches of analysis. Let us give some examples, to see how they
arise.

Example 13.3 (The Bergman kernel). In the study of functions of a
single complex variable, a crucial result is the Cauchy integral formula.
This says that if f is an analytic function in a doman D ⊆ C and γ is
a simple, smooth closed curve bounding D, then

f(z) =
1

2πi

∫

γ

f(ξ)

ξ − z
dξ. (13.10)

The Cauchy kernel

K(z, ξ) =
1

2πi

1

ξ − z
is an example of a reproducing kernel. That is, if one integrate a
function against the kernel, the function is returned.

What happens if we move from C to Cn? Is there an analogue of
the Cauchy integral formula? Actually there are several, but explicit
descriptions are hard except in some special cases. One such special
case is due to Stefan Bergman. For Ω ⊆ Cn, define for some positive
function V

A2(Ω) =

{
f : Ω → C :

(∫

Ω

|f(z)|2dV (z)
)1/2

}
, (13.11)

and each f is analytic in Ω. One can prove that if

(f, g) =

∫

Ω

f(z)g(z)dV (z),

then A2(Ω) is a Hilbert space.
Now we define a continuus linear function on A2(Ω) by setting

lzf = f(z). (13.12)

That is, lz evaluates f at the point z ∈ Ω. The Riesz representation
theorem says that there is an element kz of A2(Ω), such that for all
f ∈ A2(Ω)

lzf = f(z) = (f, kz)

=

∫

Ω

f(ζ)K(z, ζ)dV (ζ),
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where K(z, ζ) = kz(ζ). K is called the Bergman kernel. Thus the Riesz
representation tells us that a reproducing kernel exists. This is a higher
dimensional analogue of the Cauchy integral formula. However actually
computing the form of the kernel is currently impossible, except for
some special cases. For example, if Ω = Bn = {z ∈ Cn : |z| ≤ 1} then
the kernel can be shown to be

KB(z, ζ) =
n!

πn(1− z · ζ̄)n+1
. (13.13)

Here z · ζ̄ = z1ζ̄1 + · · ·+ znζ̄n.

Example 13.4 (The Dirac delta function). While studying problems in
Quantum mechanics, Dirac discovered that he needed a function δ with
the property that for every f ,∫

R

f(x)δ(x− a)dx = f(a).

Unlike the situation in complex variable theory, on the real line one
can prove that there is no such function.

However we can regard the mapping f → f(z) as a linear functional,
in which case there is a measure µa with the property that for each f∫

R

f(x)dµa = f(a).

This is the basis for the theory of distributions, developed by Laurent
Schwartz. In the next section we will consider distributions in detail.
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14. Distributions

The theory of distributions was invented to extend the range of func-
tions for which the Fourier transform is defined. Distributions are also
called generalised functions. Originally, distributions arose in physics.
In the 1930’s Paul Adrian Maurice (PAM) Dirac was studying prob-
lems in quantum mechanics. In order to make one of his calculations
work, he introduced a “function” which he called the delta function.
The delta function had the following property. Let δ(x) be the delta
function. For every function f ,

∫ ∞

−∞
f(x)δ(x)dx = f(0)

or more generally,
∫ ∞

−∞
f(x)δ(x− a)dx = f(a)

Such a function would be a tremendously useful thing to have. Un-
fortunately, no such functions exists. What δ(x) would look like if it
did exist, is not hard to imagine. If we were to plot the graph of such
a beast, we would see an infinite mass concentrated at a single point
a and zero everywhere else. This would be a very strange function
indeed.

The fact that no such function exists should not hinder us. We have
seen behaviour similar to the desired behavior of the delta function
already. Approximate identities do a very similar job to the one that
Dirac was interested in.

Remember our solution of the heat equation derived in a previous
chapter. Notice that for any f ∈ L1(R),

lim
t−→0

∫ ∞

−∞
f(y)

1√
4πt

e
−(x−y)2

4t dy = f(x). (14.1)

So in some sense we must have

lim
t−→0

1√
4πt

e
−(x−y)2

4t = δ(x− y) (14.2)

This is tantalisingly close to what Dirac wanted. Can we make sense
of the connection? In other words, is there some way to make the
statement in equation (14.2) precise? The answer is yes. There are
several, equivalent ways of doing it. In fact one can build up an entire
Calculus for the delta function and related “functions” ie distributions.
The theory is due mainly to Laurent Schwartz. Our aim is to develop
a theory of distributions which will include things like the Dirac delta
function in a rigorous way.

For our study of distributions, we will be concerned with the space
D(Ω). Let Ω ⊂ Rn. Let K ⊂ Ω be a compact set and define,



156 MARK CRADDOCK

DK = {f ⊂ C∞(Ω)|suppf ⊂ K} (14.3)

Then

D(Ω) =
⋃

K⊂Ω

DK .

Now we introduce the dual D′(Ω) of D(Ω).

Definition 14.1. The dual of D(Ω), denoted D′(Ω), is the space of
linear functionals on D(Ω). That is, D′(Ω) consists of linear functionals
I defined on D(Ω). So if I ∈ D′(Ω), then I(φ) ∈ C for all φ ∈ D(Ω).

We will need multi-index notation. A multi-index α is an n-tuple of
non-negative integers. If α = (α1, α2, . . . , αn), then

Dα =
∂|α|

∂xα1
1 ∂x

α2
2 . . . ∂xαn

n

.

Here |α| = α1 + · · ·+ αn.

Example 14.1. Take α = (1, 1) and let the variables be x and y. Then

Dα = ∂2

∂x∂y
. If instead we take α = (2, 0) then Dα = ∂2

∂x2 .

To define a distribution we need a semi-norm on D(Ω).

Definition 14.2. For N = 0, 1, 2, . . . and φ ∈ D(Ω). We set

||φ||N = sup
Ω
{|Dαφ| : |α| ≤ N}.

A semi-norm has all the properties of a norm, except that some
non-zero elements may have zero semi-norm.

It is not hard to prove that ||φ||N ≤ ||φ||N+1. A distribution is essen-
tially a linear functional. However, to make the technical details work,
we need to be a little more precise. The definition of a distribution is
as follows.

Definition 14.3. A distribution is a linear map Λ : D −→ C such
that for all compact sets K ⊆ Ω there is an integer N and a constant
c <∞ such that,

|Λ(φ)| ≤ c||φ||N ∀φ ∈ DK

Functions φ for which Λφ is defined are called test functions.

Remark 14.4. Λ is a bounded linear functional. The constant c and N
may depend on K

If the same N will do for all K and is the smallest integer with this
property, we say Λ has order N . However c might still vary with K. If
there is no smallest N, we say that Λ has infinite order.
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Example 14.2. Let x ∈ Ω and set δx(φ) = φ(x) and φ ∈ D. Then δx is
a distribution of order 0 since

|δx(φ)| = |φ(x)| ≤ sup
y∈Ω

|φ(y)|

This is the Dirac delta.

Example 14.3. Let f be a locally integrable function on Ω. (i.e. for
all K compact,

∫
K
|f(x)|dx < ∞). We define a distribution in the

following way.

Λf(φ) =

∫

Ω

f(x)φ(x)dx, for all test functions φ ∈ D (14.4)

Then this is a linear mapping from D(Ω) −→ C and for φ ∈ DK we
have the estimate

|Λf(φ)| = |
∫
f(x)φ(x)dx| ≤

∫

Ω

|f(x)||φ(x)|dx

≤ sup
y∈Ω

|φ(y)|
∫

K

|f(x)|dx

= c||φ||0.
Where c =

∫
K
|f(x)|dx. Therefore Λf is a distribution of order 0.

Example 14.4. Let µ be a measure on Ω such that |µ|(k) < ∞ for all
compact K. Then Λµφ =

∫
φdµ is a distribution of order 0.

We conclude this section with a theorem due to Schwartz, the creator
of the theory of distributions. This theorem tells us precisely what a
distribution is. Essentially it says that the space of distributions D is
exactly equal to the set of linear functionals on D and that D′ is a
vector space, but it cannot be made into a metric space. We will not
prove this result.

Theorem 14.5 (L Schwartz). There is a topology on D(Ω) which
makes it into a locally convex topological vector space, and such that
D′(Ω) is precisely the set of continuous linear functionals on D(Ω). D
is complete in this topology but not metrizable.

Proof. See Rudin. �

14.1. Calculus with distributions. We have so far presented a cou-
ple of examples of distributions. One of the advantages of distributions
is that one can do calculus with them, as we shall see below. Let us
look at the problem of how we would define a derivative for a special
class of distributions.

Let Λf be as in (14.4), where f is locally integrable. Let α be a
multi-index. We define the α-th derivative of Λf by

DαΛf(φ) = (−1)|α|Λf(D
αφ).
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This is a distribution of order |α|, since
|DαΛfφ| = |ΛfD

αφ| ≤ c||Dαφ||0 ≤ c||φ|||α|
Why is this the natural way to define DαΛf? It is simply the inte-

gration by parts formula in disguise. This requires a bit of explanation.
Remember what the integration by parts formula says. If h and g

are two differentiable functions, then

∫

K

h′g = −
∫

K

hg′ (14.5)

assuming g has compact support contained in K. If you do not quite
understand this formula, think of the one dimensional case.

We know that

∫ b

a

h′(x)g(x)dx = [h(x)g(x)]ba −
∫ b

a

h(x)g′(x)dx. (14.6)

However, if h and g are zero at x = a and x = b, then this reduces to

∫ b

a

h′(x)g(x)dx = −
∫ b

a

h(x)g′(x)dx.

This is the same as (14.5). The point is that if h and g are zero on the
boundary of the region of integration, which is exactly what happens
in the case where they have compact support, then the first term on
the right hand side of (14.6) will equal zero. This justifies (14.5).

In general if we integrate by parts |α| times, we will have
∫

K

(Dαh)g = (−1)|α|
∫

K

hDαg.

What does this do for us? It is actually a very powerful idea. Notice
that the function f which defines our distribution Λf is simply any
locally integrable function. We never claimed that it was differentiable,
let along |α| times differentiable.

What we want to do is define the derivative of the distribution Λf .
Since Λf(φ) =

∫
fφ we ought to define the derivatives of Λf , D

αΛf

according to the rule

DαΛfφ =

∫
(Dαf)φ.

The problem with this is that Dαf may not exist, since we have not
assumed that f is differentiable. However Dαφ exists, since the test
function φ ∈ C∞(Ω). The integration by parts formula says that if
Dαf exists and φ has compact support, then

∫

k

(Dαf)φ(x)dx = (−1)|α|
∫

k

fDαφdx (14.7)
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But the integral on the right hand side of (14.7) exists even if Dαf
does not. Hence it is logical to define the derivative of a distribution
Λf according to the rule

(DαΛf)(φ) = (−1)|α|Λf(D
αφ). (14.8)

Define L1
loc(Ω) to be the space of locally integrable functions in Ω.

That is, there is a space K ⊆ Ω such that
∫
K
f <∞.

We know that if f ∈ L1
loc(Ω), then Λf is a distribution, and its

derivative is defined by (14.8). It is not hard to extend this definition
to a more general distribution.

For a general distribution Λ ∈ D′ we define

(DαΛ)(φ) = (−1)|α|Λ(Dαφ). (14.9)

Example 14.5. By the Riesz representation theorem we think of distri-
butions as coming from integration against a measure. The standard
notation for the Dirac measure δx is to write it as an integral. Let us
calculate δ′(x) on Ω. Let f ∈ D(Ω), and let a ∈ Ω. Let δa be the Dirac
function with mass concentrated at x = a. In other words∫

Ω

δa(x)f(x)dx = f(a).

Note that it is often the case that we prefer to write this as

∫

Ω

δa(x)f(x)dx =

∫

Ω

δ(x− a)f(x)dx = f(a).

In order to calculate the derivative of δa, we apply the formula (14.9).
This gives us

∫

Ω

δ
′

a(x)f(x)dx = −
∫

Ω

f ′(x)δa(x)dx = −f ′(a)

In general it is not hard to show that
∫

Ω

δ(n)a (x)f(x)dx = (−1)nf (n)(a).

Example 14.6. The Heaviside step function at a is defined by.

Ha(x) =

{
1 : x ≥ a
0 : x < a

It turns out that the derivative of the distribution defined by Ha is the
Dirac delta function.

To see this, let φ ∈ D(R). Define

ΛH(φ) =

∫ ∞

−∞
Ha(x)φ(x)dx =

∫ ∞

a

φ(x)dx.
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Now,

(DΛHa
)(φ) = −ΛHa

(Dφ) = −
∫ ∞

a

φ′(x)dx = − [φ(x)]∞a = φ(a),

since limx→∞ φ(x) = 0. So DΛHa
= δa.

Let us now present a few rules for dealing with distributions.

14.1.1. Multiplication by functions. Let Λ ∈ D′(Ω), f ∈ C∞(Ω). Then
fΛ is defined by

(fΛ)(φ) = Λ(fφ). (14.10)

It is not hard to show that fΛ is a distribution in D(Ω).

14.1.2. Limits. The weak * topology on D′, is defined as follows. We
say the sequence {Λi}, Λi ∈ D converges (in the weak * topology) to a
distribution Λ ∈ D′(Ω) if,

Λiφ −→ Λφ

for all φ ∈ D(Ω). We write Λi −→ Λ.

Example 14.7. If {fi} is a sequence of locally integrable functions, we
say fi −→ Λ in the sense of distributions, if for all φ ∈ D(Ω)

∫
fiφ −→ Λφ

If fn(x) =
√
nπe

−x2

n . Then fn −→ δ0(x), the Dirac delta function, in
the sense of distributions.

Remark 14.6. The family {fi} is an approximation of the identity. So
what we are saying is that for any φ ∈ D(Ω), with 0 ∈ Ω,

lim
n→∞

∫

Ω

φ(x)
√
nπe

−x2

n dx =

∫

Ω

δ0(x)φ(x)dx = φ(0). (14.11)

Taking limits of distributions works better than taking limits of ordi-
nary sequences of functions. Basically all the properties that we would
like to hold, do in fact hold. That is the content of the next result.

Theorem 14.7. Suppose Λi ∈ D′(Ω) for i = 1, 2, 3, . . . and suppose
that for all φ ∈ D(Ω), limi−→∞ Λiφ exists as a complex number. Write
Λφ to denote this limit. Then Λ ∈ D′(Ω) and furthermore DαΛi −→
DαΛ.

Note this is not in general true for ordinary functions. For example,
if we take a sequence of differentiable functions fn, with fn → f the
limit function f need not even be differentiable. It is certainly not true
without added conditions on the fn that the derivatives of the fn con-
verge to the derivative of f. ie, f ′

n → f ′. However this is automatically
true for distributions.
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14.2. Supports and Structure Theorems. What do distributions
actually look like? We have seen some examples of useful distributions,
such as the Dirac Delta function. Is the Dirac Delta in some sense
typical of what distributions look like? Addressing that question is the
purpose of this next section.

Let Λ ∈ D′(Ω) and let ω ⊆ Ω be an open set. We say that Λ vanishes
on ω if Λφ = 0 for all φ with support in ω. The support of Λ is the
complement of the largest open set on which Λ vanishes. If Λ = Λf

where f is locally integrable function, then this definition coincides
with the usual definition of the support of f .

To see this, let Λfφ =
∫
Ω
fφ and supp φ = ω. Thus

∫

Ω

fφ =

∫

ω

fφ = 0,

for all φ. Which implies that f = 0 on ω. Hence suppf ⊆ ωc.

Theorem 14.8. The following holds for distribution in D′.

(a) If φ ∈ D(Ω) and Λ ∈ D′(Ω), and

suppφ
⋂

suppΛ = ∅,
then Λφ = 0.

(b) If supp Λ is empty, then Λ = 0.

c) If ψ ∈ C∞(Ω) and ψ = 1 in an open set V containing supp Λ,
then ψΛ = Λ

(d) If supp Λ is compact then Λ has finite order. In fact there
exists c < ∞ and N such that |Λφ| ≤ c‖φ‖N ∀φ ∈ D(Ω).
Further more Λ extends in a unique way to a continuous linear
functional on C∞(Ω). ie Λφ exists for φ ∈ C∞\D∞.

The aim of this section is to describe a generic distribution. That
is, say what a distribution looks like. For distributions which are sup-
ported at a single point, the picture is particularly simple as the fol-
lowing result shows.

Proposition 14.9. Suppose that Λ ∈ D′(Ω) and that the support of
Λ = {p} for p ∈ Ω. Suppose the order of Λ = N . There exists a
constants cα∀|α| ≤ N such that,

Λ =
∑

|α|≤N

cαD
αδp

where δp is the Dirac measure at p. Conversely every distribution of
this form is supported at p.
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This result tells us that the distributions supported at a single point
are linear combinations of derivatives of Dirac delta functions. For
distributions which are not supported at a single point, the situation
is somewhat more complicated. Nevertheless, the following result gives
us the characterisation that we seek.

Theorem 14.10 (Structure Theorem). Let Λ ∈ D′(Ω). For each multi-
index α there is a continuous function gα on Ω such that,

a) Each compact subset of K of Ω intersects the support of only
finitely many gα’s.

b) Λ =
∑

α(D
αΛgα). Furthermore if Λ has compact support, then we

can choose the gα’s so that only finitely many are non-zero.

Remark 14.11. This theorem says that if φ ∈ DK then Λφ =
∑

α(D
αΛgα)φ

and only finitely many of the gα’s are non zero.

Remark 14.12. This shows that the class of distributions we have in-
troduced is minimal in the sense that it contains locally integrable
functions, their derivatives, linear combinations and nothing else. In
other words, distributions in D′(Ω) are made up from locally integrable
functions.

14.3. Convolutions of distributions. The problem is to extend con-
volutions to distributions. Suppose Λ ∈ D′, φ ∈ D.

Definition 14.13. We define the convolution of a distribution Λ and
a function φ ∈ D(Ω) by

Λ ∗ φ = Λ(Txφ
ν), (14.12)

where (Txf)(y) = f(y + x) and φν(y) = φ(−y).
Let us unravel this and see that it makes sense. Observe that

(Txφ
ν)(y) = Tx(φ)(−y) = φ(−y + x) = φ(x− y).

So if we put all the pieces together, and take Λ = Λf . Then,

Λf ∗ φ = Λf(Txφ
ν) =

∫
f(y)(Txφ

ν)(y)dy

=

∫
f(y)Tx(φ(−y))dy

=

∫
f(y)φ(x− y)dy

= f ∗ φ(x)
So this gives us the convolution of f and φ, which is what we should
get in this case.

The following Lemma is easy to establish.

Lemma 14.14. If Λ ∈ D then Λ ∗ φ ∈ C∞ and for all α,

Dα(Λ ∗ φ) = (DαΛ) ∗ φ = Λ ∗ (Dαφ)



MODERN ANALYSIS 163

Now that we have defined the convolution of a distribution and a
function in D(Ω) we consider the convolution of two distributions.

Definition 14.15. Let Λ1 and Λ2 be distributions, and at least one of
them has compact support. Then Λ1 ∗ Λ2 is defined by

(Λ1 ∗ Λ2)(φ) = Λ1 ∗ (Λ2 ∗ φ).
Remark 14.16. We have defined the convolution of two distributions
where at least one has compact support. However, there is no notion
of the convolution of arbitrary distributions. Indeed there are theorems
which show that you cannot define such a thing.

Remark 14.17. If Λ1 or Λ2 has compact support, then
a) Λ1 ∗ Λ2 = Λ2 ∗ Λ1

b) Dα(Λ1 ∗ Λ2) = (DαΛ1) ∗ Λ2 = Λ1 ∗ (DαΛ2)
c) For all Λ, DαΛ = (Dαδ0) ∗ Λ

Part (c) gives us the useful fact that differentiation in D′ is given by
convolution with the Derivatives of the Dirac delta

14.4. Some useful theorems.

Theorem 14.18. Let k be a measurable function on Rn×Rn such that
for some c > 0, ∫

Rn

|k(x, y)|dy ≤ c for a.e x
∫

Rn

|k(x, y)|dx ≤ c for a.e y

if 1 ≤ p ≤ ∞ and f ∈ Lp(Rn). Then the function defined by,

Tf(x)

∫

Rn

|k(x, y)|f(y)dy ≤ c for a.e x

belongs to Lp(Rn) and ‖Tf‖p ≤ ‖f‖p.
Proof. This is an application of Holders inequality. �

Theorem 14.19 (Young’s inequality). Let f ∈ L1(Rn), g ∈ Lp(Rn).
Then f ∗ g ∈ Lp(Rn) and

‖f ∗ g‖p ≤ ‖f‖1‖g‖p
Proof. Take k(x, y) = f(x, y) in the previous theorem. �

14.5. Tempered Distributions. We would like to define the Fourier
transform of a distribution. We saw earlier that if f, g ∈ L1(Rn) then,∫

Rn

f̂(y)g(y)dy =

∫

Rn

f(y)ĝ(y)dy

This suggests that to define a Fourier transform of a distribution Λ we
should set

Λ̂(φ) = Λ(φ̂) ,Λ ∈ D′
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The difficulty with this is that if we work with the space D′, this
does not work. The reason is that if φ ∈ D(Rn), then φ̂ /∈ D(Rn)

unless φ = 0. This means that Λ(φ̂) may not exist because φ̂ is no
longer compactly supported. So it is not a test function for Λ. To
get around this problem, we need S, the space of rapidly decreasing
functions, which we introduced earlier. For convenience we give the
definition of S once more.

Definition 14.20. We say that f ∈ C∞(Ω) is rapidly decreasing if for
all N ∈ N, and all multindices α, there is a constant cαN such that

|Dαf(x)| ≤ cαN(1 + |x|2)−N

where |x|2 =
∑n

i=1 x
2
i . We denote the rapidly decreasing functions by

S(Ω). The space S(Ω) is known as Schwartz space.

We have already seen that if φ ∈ S(Rn) then φ̂ ∈ S(Rn). So to
extend the Fourier transform to distributions we introduce a new class
of distributions. These are the tempered distributions.

Let Ω ⊆ Rn. The space of tempered distributions on Ω, written
S ′(Ω) is constructed in the same way as the space D′(Ω). That is, S ′

is the dual of S(Ω). So if φ ∈ S, and Λ ∈ S ′(Ω), then Λ(φ) ∈ C. As
before, if we take f to be a locally integrable function, then the linear
functional defined by

Λfφ =

∫

Ω

fφ

is a tempered distribution.
The formal definition of a tempered distribution may be stated as

follows.

Definition 14.21. Λ ∈ D′ is a tempered distribution, if Λ extends to
continuous linear functional on S.

So the tempered distributions are distributions Λ ∈ D′ with an ad-
ditional property. Namely that we can take Schwartz functions as the
test functions and the linear functional is still defined. That is

|Λ(φ)| <∞
for all φ ∈ S(Ω).

We saw earlier that for a compactly supported distribution Λ, can be
extended to (C∞)′. Since S(Ω) ∈ C∞(Ω) every compactly supported
distribution is tempered.

The Fourier transform of a tempered distribution is easy to define.

Definition 14.22. Let Λ be a tempered distribution on Ω ⊆ Rn. The

Fourier transform of Λ, denoted by either FΛ or Λ̂, is defined by the
expression

FΛ(φ) = Λ̂(φ) = Λ(φ̂), (14.13)

for all test functions φ ∈ Ω.



MODERN ANALYSIS 165

Example 14.8. The Dirac delta function at a has compact support,

hence δa ∈ S ′. To calculate δ̂a we write

δ̂a(φ) = δa(φ̂) = φ̂(a),

for every φ ∈ S(Ω).
Because of the way the Dirac delta function is defined, it is easier to

see the Fourier transform, just by applying the usual Fourier transform
definition. More precisely, if Ω = R, we have

∫ ∞

−∞
δa(x)e

−ixydx =

∫ ∞

−∞
δ(x− a)e−ixydx = e−iay. (14.14)

Taking a = 0 gives F−1(1) = δ(x). So the Fourier transform of the
Dirac delta centered at zero is 1, and the inverse Fourier transform of
1 is the Dirac delta.

We can compute the Fourier transform of the derivative of the Delta
function in the same way. Taking a = 0 gives∫ ∞

−∞
δ′(x)e−ixydx = −

∫ ∞

−∞
(−iy)e−ixyδ(x)dx = iy. (14.15)

Exercise. Compute by the above method the Fourier transform of
δ′′(x− a).

The reader should see the significance of this extension of the Fourier
transform. As a regular function, the Fourier transform of 1 does not
exist, since it is not integrable. However, if we think of 1 as a dis-
tribution, its Fourier transform is defined. We can also compute the
Fourier transform of a polynomial. We will simply calculate the Fourier
transform of x.

We want to make sense of the expression
∫ ∞

−∞
xe−ixydx.

This makes no sense as an ordinary integral. If we treat it as a distri-
bution however, we note that x ∈ S ′(R), since for any φ ∈ S, xφ ∈ S.
Hence

∫∞
−∞ xe−ixydx exists as a distribution. Now, we can perform the

following manipulation.
∫ ∞

−∞
xe−ixydx = −

∫ ∞

−∞

1

i

d

dy
e−2πixydx

= i
d

dy

∫
e−ixydx

= iδ′(y),

since
∫
e−ixydx = δ(x). Thus the Fourier transform of x is defined as a

distribution and we have

F(x)(y) = iδ′(y). (14.16)
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Using these methods it is possible to compute the Fourier transform
in the sense of distributions for a whole range of functions which lie
well outside the usual domain of the Fourier transform.

We conclude our section on distributions with a brief discussion of
the Payley-Wiener theorems. These characterise the behaviour of the
Fourier transform of particular functions.

Theorem 14.23 (Paley-Wiener 1). (1) If φ ∈ D(Rn) is supported in
Br = {x : |x| < r} and

f(z) =

∫ ∞

−∞
φ(t)e−iztdt

then f is an entire function and for N = 1, 2, 3, . . . there exists γN
such that

|f(z)| ≤ γN(1 + |z|2)−Ner|ℑ(z)|

(2) The converse holds. So if

|f(z)| ≤ γN(1 + |z|2)−Ner|ℑ(z)|

is true then there exists some φ such that,

f(z) =

∫ ∞

−∞
φ(t)e−iztdt

This theorem says that the Fourier transform of a compactly sup-
ported function C∞ function is analytic everywhere. The Fourier trans-
form has to satisfy a particular growth condition. Conversely any entire
function satisfying the given growth condition, has to be the Fourier
transform of a compactly supported, C∞ function. There is a corre-
sponding theorem for distributions.

Theorem 14.24 (Paley-Wiener 2). (a) Suppose Λ ∈ D′(Rn) is sup-
ported in Br and has order N . Set f(z) = Λ(e−iz(·)). Then f(z) is an
entire function and f |Rn is the Fourier transform of Λ. Further there
is a constant c such that

|f(z)| ≤ c(1 + |z|2)−Ner|ℑ(z)|

(b) The converse is true. ie if f satisfies

|f(z)| ≤ c(1 + |z|2)−Ner|ℑ(z)|

then there exists some Λ ∈ D′(Rn) with support in Br such that,

f(z) = Λe−iz(·)dt
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15. Partial Differential Equations

In this chapter we will take a more theoretical look at the theory of
Partial Differential Equations, (PDEs). In particular we are interested
in solving PDE’s with (in general) complex coefficients.

15.1. Local Solvability. To simplify notation let Dα = (2πi)−|α|Dα,
where α is a multi-index. So in this notation

(̂Dαf)(ξ) = ξ|α|f̂(ξ).

A partial differential operator with constant coefficients is an expression
of the form,

L =
∑

|α|≤k

aαDα, aα ∈ C

If
∑

|α|=k |aα| 6= 0 then L is said to have order k.
This just means that the order of the highest derivative in L is

k. If p(ξ) denotes the polynomial p(ξ) =
∑

|α|≤k aαξ
α, then we have

L = p(D) and (L̂f)(ξ) = p(ξ)f̂(ξ). We can also consider nonconstant
coefficient, linear partial differential operators (PDO’s) by allowing the
aα to be functions of x ∈ Rn. ie let

L =
∑

|α|≤k

aα(x)Dα

Studying operators with variable coefficients is substantially harder.
We will consider constant coefficient equations unless otherwise speci-
fied. Our primary concern is the following.

Problem Given f ∈ C∞(Ω),Ω ⊆ Rn, find a distribution Λ such that

LΛ = f.

We say that L is locally solvable at x0 ∈ Ω if there is a neighborhood
V of x0 and a distribution Λ such that LΛ = f holds for all points
x0 ∈ V .

Remark We may as well assume for local solvability, that f has
compact support. If not, just multiply f by a function φ ∈ D(Ω)
which takes the value 1 near x0.

Aside Given a compact set K ∈ Ω, it is possible to construct a
function such that,

φ =

{
1 : x ∈ K
0 : x sufficiently outside K

and φ ∈ C∞(Ω). Functions like φ are sometimes called mollifiers.
Mollifiers are very useful. Notice that if we take a function f which
does not have compact support, and multiply by a mollifier φ with
support K, then f(x)φ(x) = f(x) for all x ∈ K and f(x)φ(x) = 0
for all x 6∈ K. Thus we can construct a compactly supported function
which is equal to f on some specified compact set K.
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One of the two most important results in the theory of linear constant
coefficient operators on Rn is the following. It tells us when it is possible
to solve a given PDE.

Theorem 15.1. Let L be a PDO with constant coefficients. If f ∈
D(Rn), then there is a u ∈ C∞(Rn) satisfying,

Lu = f

Proof. (The idea). We take the Fourier transform. Since f ∈ D(Rn), f̂

exists and f̂ is an entire function by the Paley-Wiener theorem. Also,

(L̂u)(ξ) = p(ξ)û(ξ).

So taking the Fourier transform of the PDE Lu = f , we have,

(L̂u)(ξ) = f̂(ξ),

which implies that

p(ξ)û(ξ) = f̂(ξ). (15.1)

Hence

û(ξ) =
f̂(ξ)

p(ξ)
. (15.2)

So by the Fourier inversion theorem we should have

u(x) =
1

(2π)n

∫

Rn

f̂(ξ)

p(ξ)
eiξ·xdξ (15.3)

There is an obvious difficulty with the expression (15.3). Since p(ξ)
is a polynomial, with potentially many real zeros, there is no reason to
suppose that the integral will actually converge.

But f̂(ξ) is entire and so is p(ξ), because it is a polynomial, and all
polynomials are entire. So by Cauchy’s theorem, we can deform the
contour of integration to miss the poles of 1/p(ξ). The technical details
of this are quite involved.

The idea is to show that if we change the contour of integration in (1)
we get a distribution that is in fact a C∞ function solving out PDE.
This actually works. The details are in Rudin’s book on Functional
Analysis. �

15.2. Fundamental Solutions. Given a linear partial differential op-
erator P (Dα) can you (locally) solve the PDE

P (Dα)Λ = f,

where f is now a distribution? As before, we may assume that f has
compact support. A distribution Λ is called a fundamental solution for
L = P (D) if it satisfies

P (Dα)Λ = δ0.
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Lemma 15.2. If f ∈ D′ has compact support and Λ is a fundamental
solution, then u = Λ∗f is a distribution which is a solution of Lu = f .
We also say u is a distributional solution, or a solution in the sense of
distributions.

Proof. This is an easy calculation.

Lu = L(Λ ∗ f) = (LΛ) ∗ f = (δ ∗ f) = f

�

Remark If you can find a fundamental solution with compact sup-
port then P (Dα)u = f is globally solved by u = Λ ∗ f .

The most important fact about linear constant coefficient Partial
Differential Operators is that they all have fundamental solutions. This
is a very famous result in the theory of PDEs. It is a deep result and
we will not prove it.

Theorem 15.3 (Malgrange-Ehrenpreis). Every linear PDO with con-
stant coefficients has a fundamental solution.

The existence of fundamental solutions was established indepen-
dently by L.Ehrenpreis (Amer.J.Math, col.76, pp.883-903, 1954) and
by B.Malgrange in his thesis (Ann. Inst. Fourier, vol 6, pp. 271-
355,1955-1956).

It is imperative that the PDO has constant coefficients, for if it does
not the theorem fails. The first example of this fact can be found in
Annals of Mathematics 66, 1957 p155-156 where H.Lewy showed that
if

Lφ = −φx − iφy + 2i(x+ iy)φz

then,

Theorem 15.4. There exists a C∞ function f(x, y, z) such that the
equation Lu = f has no local solution anywhere.

The moral of this is that constant coefficient operators are ‘easy’
and variable coefficient operators are hard. In fact constant coefficient
operators have their own unique features, which is why the word ‘easy’
is in quotation marks. However, we will not go into this any further.
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16. The Axiom of Choice and Zorn’s Lemma

An important though rarely remarked upon feature of mathematics is
that we like to be able to pick elements from different sets and combine
them into new sets. For example, we might like to take two whole
sets A and B and combine them by taking their Cartesian product
A × B = {(a, b) : a ∈ A, b ∈ B}. Now here is a question. If A and B
are non empty sets, does it follow that A×B is nonempty? The answer
would seem to be fairly obviously yes. What about if we have an infinite
family Ai where i ranges over some index set I. (For example we might
take I = N. ) If each Ai is nonempty, does it follow that

∏
i∈I Ai is also

nonempty? The answer again seems to obviously be yes, but the fact is,
there is no way of proving this using the axioms of set theory. Because
this fairly important property of Cartesian products cannot be deduced
from the axioms of set theory, it must itself be taken as an axiom. It
is known as the axiom of choice.
Axiom of Choice. If {Ai, i ∈ I} is a nonempty family of sets such
that Ai 6= ∅, then ∏i∈I Ai 6= ∅. (Here ∅ is the empty set).

There are a number of equivalent formulations for the axiom of
choice. Probably the most useful is the following.

If {Ai, i ∈ I} is a nonempty family of pairwise disjoint sets such that
Ai 6= ∅ for each i ∈ I, then there exists a set E ⊆ ∪i∈IAi, such that
E ∩ Ai consists of precisely one element for each i ∈ I.

This formulation says that given a family of sets, it is possible to
select an element from each one and form a new set. This statement
seems obvious, but cannot be proved and it is has some profoundly
unsettling consequences. The proof of the existence of a non Lebesgue
measurable set depends upon the axiom of choice and the existence of a
nonmeasurable set in turn leads to the Banach-Tarski paradox. Recall
that this says that a sphere can be decomposed into non measurable
sets and the pieces reassembled into two spheres of exactly the same
size as the original sphere, without stretching or deforming the pieces.

Many mathematicians would like to remove the axiom of choice from
mathematics altogether, but this is not an easy thing to do. Attempts
to do mathematics without the axiom of choice have been made, but
are not generally considered to be terribly useful.

Equivalent to the axiom of choice is something called Zorn’s lemma.
To formulate this, we introduce the idea of a partial order.

Definition 16.1. A relation on a set denoted ≤ is a partial order if it
satisfies

(a) x ≤ x holds for all x. (reflexivity)

(b) If x ≤ y and y ≤ x then x = y. (antisymmetry)

(c) If x ≤ y and y ≤ z then x ≤ z. (transitivity).
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A set with a partial order is called partially ordered.

We could equally well use ≥ but this doesn’t make any logical dif-
ference

. The simplest example of a partially ordered set is the real numbers.
We can say that one real number is less than or equal to another real
number. The real numbers are actually totally ordered. (However the
Complex numbers are not ordered. We cannot say that one complex
number is bigger than another complex number. Suppose we could.
Now suppose that i > 0. Then if we multiply both sides by i we get
i2 = −1 > 0 which is false. So i is not greater than zero. Okay, so
now take i < 0. If we now multiply by i, the inequality must reverse
because i is negative and so we again have −1 > 0. A contradiction.
Thus we cannot order the complex numbers).

We can also introduce partial orders on other structures, such as
groups, but we will not go into that here.

Now suppose that X is a partially ordered set. A subset Y ⊂ X is
said to be a chain, if for each pair x, y ∈ Y either x ≤ y or y ≤ x.
A chain is also referred to as a totally ordered set. Now suppose that
there is an element u ∈ Y with the property that for all x ∈ Y we have
x ≤ u. Then we call u an upper bound for Y . An element m ∈ X is
called a maximal element of X if m ≤ x always implies x = m. In other
words, nothing is ‘above’ m in the partial order of the set. (Note: In a
partially ordered set, a maximal element does not have to be unique).

An obvious question to ask is when a partially ordered set has a
maximal element?
Zorn’s Lemma. If every chain of a maximally ordered set X has an
upper bound in X then X has a maximal element.

Zorn’s Lemma is logically equivalent to the axiom of choice. If we
assume Zorn’s lemma, then the axiom of choice can be proved from it.
If we conversely assume the axiom, then we can prove Zorn’s Lemma
from it.

Zorn’s Lemma is used in the proof of many fundamental results of
mathematics. For example, the proof of the deeply important result
that every Hilbert space has an orthonormal basis uses Zorn’s Lemma.
Zorn’s Lemma is extensively used in a great deal of modern analysis.

16.1. More on Hilbert Spaces. We will now illustrate one of the
many uses of Zorn’s Lemma by proving an important fact about Hilbert
spaces. Previously we stated the result that every Hilbert space has an
orthonormal basis. In fact if the Hilbert space is separable, the basis is
countable.

First, we define the term separable

Definition 16.2. Let X be a metric space. (For example a normed
vector space). If there exists a countable subspace K ⊂ X such that
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every element of X is a limit of a sequence in K, then X is said to be
separable.

Most Hilbert and Banach spaces that we encounter are separable.
There do exist nonseparable Hilbert spaces however. The best known
example of a nonseparable Hilbert space was constructed by Harald
Bohr, the brother of the physcist Niels Bohr. This Hilbert space con-
sists of so called continuous, almost periodic functions on R. We need
not worry too much about the precise definition of almost periodic
function, but the idea is that although there does not exist a T > 0
such that f(x+ T ) = f(x) for all x, we can find a T > 0 such that for
all x, |f(x+ T )− f(x)| < ǫ, where ǫ is small.

The commonly encountered Hilbert spaces, such as L2(R) and l2

are separable. Every element of these spaces is the limit of a linear
combination of basis vectors. For example, in l2 every element is a
linear combination of elements of the form

(1, 0, 0, 0, ....), (0, 1, 0, 0, 0, ....), ), (0, 0, 1, 0, 0, 0, ....)

etc. We also know that a basis for L2(R) consists of the Hermite

functions Hn(x)e
− 1

2
x2
, where Hn(x) is the nth Hermite polynomial,

Hn(x) = (−1)nex
2 dn

dxn
e−x2

,

forms a basis for L2(R). The solution of a Sturm-Liouville problem on
some interval [a, b] will give an orthonormal basis for L2[a, b].

In fact every Hilbert space has an orthonormal basis. How do we
know this? To prove this, we define an orhonormal set in a Hilbert
space H to be one in which ‖e‖ = 1 for each e ∈ K and (e, f) = 0
for each e, f ∈ K with e 6= f. An orthonormal set is complete if every
element of H can be written as a linear combination of elements of K.

Now suppose that K is an orthonormal set in a Hilbert space H . We
say that K is an orthonormal basis if for every x ∈ H we can write

x =
∑

y∈Kx

(x, y)y (16.1)

where Kx = {y; y ∈ K and (x, y) 6= 0}. i.e. K is complete. A result
stated earlier is

Theorem 16.3. Let K be an orthonormal set in a Hilbert space H.
Then the following conditions are equivalent.

(a) K is complete;

(b) The closed linear subspace spanned by K is H;

(c) K is an orthonormal basis;
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(d) For any x ∈ H, Parseval’s formula holds:

‖x‖2 =
∑

y∈Kx

|(x, y)|2.

The proof of this is not difficult.

Theorem 16.4. In every Hilbert space there is an orthonormal basis.

Proof. Consider the class of all linearly independent orthonormal sets in
a Hilbert space H . We define a partial order on this set by inclusion. i.e
K1 ≤ K2 if K1 ⊂ K2. Since the largest possible such set is H itself, each
orthonormal set is a chain with an upper bound. So by Zorn’s Lemma,
there exists a maximal orthonormal set K. Since K is maximal, it
must be complete and hence it is an orthonormal basis. �

We will not prove the following result, though the proof is not very
difficult.

Lemma 16.5. If H is a separable Hilbert space, then it has a countable
orthonormal basis.

Countable simply means that the basis elements can be listed as
e1, e2, e3 etc.
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17. The Baire Category Theorem

How strange can a function be? This was a question that was asked
by analysts in the 19th century after the discovery of a series of in-
creasingly pathological functions. In the time of Euler, little attention
was paid to the notion of concepts like continuity and smoothness. The
very concept of a function was not properly formulated and many ideas
about the behavious of functions were wrong. For example, it was be-
lieved that if two analytic expressions agreed on an interval, then they
agreed everywhere, a belief that strikes modern mathematicians as as-
tonishingly naive. It was also assumed that if a function was contin-
uous, it more or less had to also be differentiable. This turned out to
be completely wrong, when Weierstrass constructed an example of a
function that was continuous everywhere, and nowhere differentiable.
Weierstrass proved the following remarkable result.

Theorem 17.1. If a ≥ 3 is an odd integer and if 0 < b < 1 such that
ab > 1 + 3π

2
, then the function

f(x) =

∞∑

k=0

bk cos(πakx)

is continuous everywhere and differentiable nowhere.

The continuity of the function follows from the fact that it is a sum of
continuous functions. It is not hard to prove that the series converges.
This is an easy consequence of the Weierstrass M test.

Since |bk cos(πakx)| < bk and

∞∑

n=0

bk =
b

1− b
,

the series defining f in the theorem is uniformly convergent. A sequence
of continuous functions which converges uniformly, must converge to a
continuous limit. So f is continuous. However the series of derivatives
−∑∞

k=0 b
kπak sin(πakx) is a divergent series, suggesting that the func-

tion is not differentiable. This is true, but the proof is quite difficult.
Following Weierstrass’s discovery, pathological functions were con-

structed with disturbing frequency. Quite bland looking examples often
had hidden complexities. This was very important in the development
of Fourier analysis, where we often need to consider sequences of con-
tinuous functions, and perform operations where we reverse the order of
integration and summation. In Euler’s time, this operation was carried
out without even considering whether such a thing is possible. This is
because they were considering only sequences of polynomials and these
behave as well as a mathematician could desire. Of course, reversing
the order of summation and integration cannot be done with impunity,
as we have seen.
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Even sequences of well behaved functions can converge to very badly
behaved functions. Recall the example

fk,j(x) = (cos(πk!x))2j .

This is a sequence of continuous, indeed analytic functions. Yet the
limit function is not even continuous. (It is called Dirichlet’s func-
tion). This is quite bad behaviour contained from functions which are
themselves all analytic.

The kind of behaviour that we can expect from a function turns out
to be quite bizarre, but are there limits? This was one of the most
important questions in analysis in the 19th century. In this section
we will discuss some aspects of it, and present a major result that
emerged from the consideration of the problem. We begin by focusing
on a question about continuity. How discontinuous can a function be?

It is not difficult to find a function which is continuous at every
irrational number, but discontinuous at every rational number. Here is
an example due to Johannes Karl Thomae (1840-1921). Let x ∈ (0, 1)
and define

r(x) =

{
1
q
x = p/q in lowest terms

0 x 6∈ Q.
(17.1)

This function is continuous at every irrational number and discontinu-
ous at every rational! To see this, we need a lemma.

Lemma 17.2. If a ∈ (0, 1), then limx→a r(x) = 0.

Proof. The proof is rather subtle and can be skipped on a first reading.
Let ǫ > 0 and choose an integer N > 0) such that 1/N < ǫ.

Now in (0, 1), there are only finitely many rationals in lowest terms,
whose denominator is less than or equal to N. This is obvious with
a little thought. The only fractions with denominator 5 or smaller
are 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5. Because the collection of
such fractions is finite, given a, we can find an interval around a,
(a − δ, a + δ) ⊂ (0, 1) such that none of the given fractions with de-
nominator less than N lies in this interval. (Except possibly a, if it is
rational). Now choose x ∈ (a− δ, a+ δ). If x = p/q, then |r(x)− 0| =
|r(p/q)| = 1/q < ǫ. This is because q > N if p/q 6= a ∈ (a − δ, a + δ).
If x is irrational, then |r(x)− 0| = 0 < ǫ. Either way, if ǫ > 0, then we
have a δ > 0 such that 0 < |x− a| < δ implies that |r(x)− 0| < ǫ and
so limx→a r(x) = 0. �

This lemma immediately implies that r has the above stated prop-
erty. If a is rational, then r(a) 6= 0. So let xn be a sequence in (0, 1 such
that xn → a. Then limn→∞ r(xn) = 0 6= r(a). So r is not continuous at
any rational a. If a is irrational however, then limn→∞ r(xn) = 0 = r(a).
So r is continuous at a, if a is irrational.
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The discovery of this function led to the question of whether or not
it is possible to find a function with the opposite property. Can we
find a function which is continuous at the rationals, but discontinuous
at the irrationals? This is not an easy question at all, and getting any
intuition about the problem is tough. One can try and construct such
a function, but attempts to do so all failed. Eventually Volterra proved
that no such function actually exists. In fact he did something deeper.
He proved the following truly remarkable result. The proof requires
the Baire Category Theorem.

Theorem 17.3 (Volterra). Let Cf = {x ∈ R : f(x) is continuous at x}
and Df = {x ∈ R : f(x) is discontinuous at x}. Then there cannot ex-
ist a function g such that Cf = Dg and Df = Cg.

In other words, there do not exist two functions f and g such that
the set of points where f is continuous is the set of points where g
is discontinuous and vice versa. This is a remarkable result and is
one of the theorems which puts some kind of limit on the question of
how strange a function can be. The theorem immediately implies that
there is no function continuous on the rationals and discontinuous on
the irrationals. To see this, suppose that such a function does exist
and call it g. Now recall our function r(x). We would then have the
following situation: Dg = Cr and Cg = Dr. This is impossible by
Volterra’s theorem.

It turns out that there is an easier way to prove that there is no
function continuous on the rationals and discontinuous on the irra-
tionals. We will present this later. The idea is due to Renè Baire
(1874-1932). Baire had the brilliant insight that many questions about
functions reduce to questions about sets and proved a deep theorem in
his PhD thesis, which is now called the Baire Category Theorem. Baire
worked with real numbers, but his ideas actually immediately extend
to complete metric spaces and have many applications in Functional
Analysis. Some of the major results in Functional Analysis use the
Baire Category Theorem for their proof.

Recall that a subset X of a metric space M is said to be dense in M
if every point x ∈ M is the limit of a sequence {xn} ∈ X. The most
obvious example is the rational numbers: Q is dense in R as every real
number is the limit of a sequence of rational numbers. Baire moved
from the idea of a dense set to the idea of a nowhere dense set.

Definition 17.4. Let X be a subset X of a metric space M We say
that X is nowhere dense if M \ X̄ is dense in M. Here X̄ is the closure
of X .

What this means is that if we take the closure of X away from M ,
we are still left with a subset of M which is dense in M. In other
words, the set X is very small in some sense. If you remove the closure
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of a nowhere dense set from a metric space, you don’t take out very
much of the mass of the space. Hankel preferred the term a sparse
set to a nowhere dense set. They are also called meager sets. Baire’s
terminology was incredibly bland and has often been criticised, because
it makes it difficult to get any insight into what is actually going on

An example of a nowhere dense set is provided by considering the
interval [0, 1] and the set X = { 1

k
, k = 1, 2, 3, , , }. If we take the closure

of X we get X together with the point 0. Now remove this from [0, 1].
We end up with a set that has a countable number of points removed
and the closure of this set is again [0, 1]. So X is nowhere dense.

The union of two nowhere dense sets is again nowhere dense. How-
ever a countable union does not have to be nowhere dense. A single
point is nowhere dense. But the rationals are dense and countable,
and hence a union of nowhere dense sets. Baire gave the following
definition.

Definition 17.5. A set is of the first category if it is a countable union
of nowhere dense sets. A subset that is not of the first category is said
to be of the second category.

This terminology was criticised for being so bland as to be almost
useless. The term “first category” tells you nothing at all about what
is happening, but it is still used.

Theorem 17.6 (Baire Category Theorem). Any nonempty, complete
metric space is of the second category.

There are equivalent formulations which give more insight than the
version stated above. Here is one of the more useful formulations. The
proof is actually not that difficult.

Theorem 17.7. If {Un}∞n=1 is a sequence of open dense subsets of a
complete metric space M , then

⋂∞
n=1 Un is also dense in M.

This tells us that countable intersections of dense subsets of metric
spaces are still dense. This means that if X and Y are dense inM , then
X
⋂
Y is still dense in M . This is of great importance in functional

analysis, where we often deal with dense subsets. (A basis for example).
The Baire category theorem has many applications in analysis. We
first give another formulation of the Baire Category Theorem, which is
actually how Baire formulated the result on R.

Theorem 17.8 (Baire). Let F =
⋃∞

n=1 Pn be a union of nowhere dense
subsets of (α, β). Then there is a point in (α, β) which is not in F .

Here is a simple application of this result.

Theorem 17.9 (Cantor). A sequence of points cannot exhaust an in-
terval. That is, the set of points in any interval (α, β) is uncountable.
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Proof. Let {xk} be a sequence of points in (α, β). The set of points in
the sequence is then F = {x1, x2, x3, ...}, which is a countable union
of single points, and hence nowhere dense sets. Baire’s theorem says
that there is a point in (α, β) not contained in F. Hence no countable
sequence of numbers can give every point in an interval. �

We now give a proof of the result first established by Volterra. We
define the oscillation of a function f on an interval I by

ωf(I) = sup{f(x) : x ∈ I} − inf{f(x) : x ∈ I}. (17.2)

So the oscillation of a function is (essentially) the difference between
its maximum and minimum values on the given interval. We can define
the oscillation at a point as well. At a single point a ∈ I we define the
oscillation of f at a by

ωf(a) = inf{ωf(J) : J ⊆ I, J is an open interval containing a}.
(17.3)

A technical lemma is needed.

Lemma 17.10. A bounded real valued function f defined on an open
interval I is continuous at a ∈ I if and only if ωf(a) = 0 and the set
{x ∈ I : ωf(x) < ǫ} is an open set.

Proof. First suppose that f is continuous. Recall that f is continuous
at a if given ǫ > 0 there exists a δ > 0 such that |f(x) − f(a)| < ǫ
whenever |x − a| < δ. This means that if x ∈ (x − δ, x + δ), then
f(x) ∈ (f(a)− ǫ, f(a) + ǫ). Now by definition

ωf(a) ≤ ωf((a− δ, a+ δ))

= sup{f(x) : x ∈ (a− δ, a + δ)} − inf{f(x) : x ∈ (a− δ, a+ δ)}.
≤ f(a) + ǫ− (f(a)− ǫ) = 2ǫ.

This holds for all ǫ > 0, so that if f is continuous at a, then ωf (a) = 0.
To prove the converse, suppose that ωf(a) = 0. Then for any ǫ > 0,

there is an open interval J ⊆ I, such that ωf(J) < ǫ. As J is open,
then there exists a δ > 0 such that J ⊆ (a− δ, a+ δ). Hence |x−a| < δ
implies that

|f(x)− f(a)| ≤ sup{f(x) : x ∈ (a− δ, a + δ)}
− inf{f(x) : x ∈ (a− δ, a+ δ)}

= ωf((a− δ, a + δ)) ≤ ωf(J) < ǫ.

Hence f is continuous at a.
Finally, we need to prove that {x ∈ I : ωf(x) < ǫ} is open. Recall

that a set A is open if for any x ∈ A we can find an open interval J ,
such that x ∈ J and J ⊆ A.

Now let ǫ > 0 and take x0 ∈ {x ∈ I : ωf(x) < ǫ}. Suppose that J is
an open interval containing x0 with ωf(J) < ǫ. For any other y ∈ J we
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have ωf(y) ≤ ωf(J)ǫ. Thus J ⊆ {x ∈ I : ωf(x) < ǫ}. This proves that
{x ∈ I : ωf(x) < ǫ} is open. �

With this result and the Baire Category Theorem, we can now prove
the following result.

Theorem 17.11 (Volterra). There is no function defined on (0, 1) that
is continuous at each rational point of (0, 1) and discontinuous at each
irrational point (0, 1).

Proof. We want to proceed by contradiction. The question is what sort
of contradiction can we find? The idea is to write the interval [0, 1] as
a union of nowhere dense subsets. This would then prove that [0, 1] is
of the first category. Since [0, 1] is complete, it must be of the second
category, by Baire’s Theorem. Hence we have a contradiction.

The sets we work with are defined as follows. Assume that such a
function exists. Let

Un =

{
x ∈ (0, 1) : ωf(x) <

1

n

}
. (17.4)

By the previous lemma, this set is open. Now the function is supposed
to be continuous at each rational number in (0, 1) and hence at each
rational x, we have by the lemma ωf(x) = 0 < 1

n
. Thus if x ∈ Q, then

certainly x ∈ Un. The function is not continuous at any irrational point,
so given x0 irrational, there is a number N , such that ωf(x0) > 1/N ,
since ωf (x0) cannot be zero. So certainly x0 is not in every Un. It
thus follows that the only points in every Un are the rational numbers.
Hence ∞⋂

n=1

Un = Q ∩ (0, 1).

The rational numbers are dense in (0, 1), so each Un is also dense,
since each Un contains the rationals in (0, 1). Now define Vn = (0, 1) \
Un, n = 1, 2, 3, ... Each Vn is nowhere dense in (0, 1), (and hence also in
[0, 1].) To see why, observe that

(0, 1) \ Vn = (0, 1) \ ((0, 1) \ Un, ) = Un (17.5)

and Un is dense in (0, 1). Thus by definition, Vn is nowhere dense.
Further

(0, 1) \Q =

∞⋃

n=1

Vn.

Now Q is a countable set, so it can be written as Q = ∪∞
n=1rn for some

sequence {rn}. Each point {rn} is nowhere dense. We thus have

[0, 1] = (∪∞
n=1rn) ∪ (∪∞

n=1Vn) ∪ {0} ∪ {1}. (17.6)

In other words, we have written [0, 1] as a countable union of nowhere
dense sets, proving that it is of the first category. This is a contradition,
as [0, 1] is of the second category by Baire’s Theorem. This proves
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the result. There does not exist a function continuous at the rational
numbers and discontinuous at the irrational numbers. �

The Baire Category Theorem is used in the proofs of some of the ma-
jor results of functional analysis, including the Open Mapping Theorem
and the Banach-Steinhaus Theorem.

Theorem 17.12 (The Open Mapping Theorem). Let X and Y be
Banach spaces and suppose that T : X → Y is bounded and linear. If
T is also onto, (i.e. T (X) = Y ), then T (U) is open in Y whenever U
is open in X. That is, onto and bounded operators map open sets to
open sets.

Note that the set of bounded linear operators fromX to Y is denoted
B(X, Y ). It is also a normed linear space and has its own norm. So
we may define a norm ‖T‖B(X,Y ) for elements. This norm appears in
the Banach-Steinhaus Theorem. This theorem gives conditions on a
family of opeators which guarantee that each operator in the family is
bounded in norm by the same constant.

The Banach-Steinhaus Theorem relates to families of operators. It
is also called the principle of uniform boundedness.

Theorem 17.13 (Banach-Steinhaus). Consider a Banach space X and
a normed linear space Y . If Tα is a family of bounded linear operators
from X to Y is such that for each α,

sup{‖Tαx‖Y } <∞
for every x ∈ X, then for each α,

sup{‖Tα‖B(X,Y ) <∞.

These are two of the big four theorems of functional analysis, the
other two being the Hahn-Banach Theorem and the Closed Graph The-
orem. We will state and prove all four of these results.
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18. Some basic facts about linear operators

Now we will prove some of the major results of functional analysis
and give some applications. We need some properties of linear opera-
tors first.

On normed linear spaces, we are often interested in bounded linear
operators. Consider the mapping T : X → Y , where X and Y are
linear spaces. We say T is a bounded linear operator if for all x, y ∈ X
and all scalars a, b, we have

T (ax+ by) = aT (x) + bT (y),

and there exists a constant M > 0 sucht that for all x ∈ x we have

‖Tx‖Y ≤M‖x‖X .
In this notation ‖ · ‖X is the norm on X , and ‖ · ‖Y is the norm on Y .
These are not necessarily the same norm. Let

K = inf{M : ‖Tx‖Y ≤M‖x‖X}.
We say that K is the norm of T and write ‖T‖ = K. It is not hard to
show that we also have

‖T‖ = inf {‖Tx‖Y : ‖x‖X = 1} = inf

{‖Tx‖Y
‖x‖X

: ‖x‖X 6= 0

}
. (18.1)

In what follows we will abuse notation and drop the X and Y sub-
scripts from the norm symbols, understanding that ‖Tx‖ = ‖Tx‖Y and
‖x‖ = ‖x‖x etc. So we take the norm of z according to the space where
z lives.

Recall that a function f : R → R is continuous at x if for every
sequence xn → x, we have f(xn) → f(x). By analogy, an operator on
a normed space X is said to be continuous if for every xn → x we
have Txn → Tx, where convergence is defined in terms of the norm. It
is immediately apparent that a bounded linear operator is continuous.
This follows because if xn → x, then for every ǫ > 0, we can find an N
such that for n ≥ N , we have

‖xx − x‖ < ǫ

K
.

Now by linearity and boundedness

‖Txn − Tx‖ = ‖T (xn − x)‖ ≤ K‖xn − x‖ < K
ǫ

K
= ǫ.

Thus Txn → Tx and so T is continuous at x.

Lemma 18.1. A linear operator continuous at one point in its domain
is continuous at all points.

Proof. Suppose that T is continuous at z. Let xn → x. Then

xn − x+ z → z.
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Since T is continuous at z, T (xn − x+ z) → Tz. Now

T (xn − x+ z) = Txn − Tx+ Tz → Tz.

So we must have Txn → Tx and T is also continuous at x. �

One might ask if it is possible to have an operator which is continuous
and unbounded? The answer is no.

Theorem 18.2. A linear transformation T : X → Y is continuous if
and only if it is bounded.

Proof. We have already seen that boundedness implies continuity. Sup-
pose now that T is continuous and unbounded. Observe that T0 = 0.
This is because by linearity

T (0) = T (0x) = 0T (x) = 0.

Now, since T is unbounded, for every n, there is a point x′n such that

‖Tx′n‖ ≥ n‖x′n‖.
If there were no such point, n would be a bound.

Now we let xn = x′

n

n‖x′

n‖ . Plainly ‖xn‖ = 1
n
→ 0 and so xn → 0. But

‖Txn‖ > n‖xn‖ > n 1
n
‖x′n‖/‖x′n‖ = 1. This holds for all n. So Txn does

not converge to 0, because ‖Txn‖ > 1 and hence ‖Txn‖ 9 0. . Hence
T is not continuous at 0. This contradicts the previous lemma, so T
cannot be continuous.

�

Another important and completely equivalent definition of continuity
is the following. T is continuous if and only if the set {x ∈ X : Tx ∈ U}
is open whenever U is open. That is, the inverse image under T of an
open set is open.

If we define the operator norm as in (18.1), then the space

B(X, Y ) = {T : X → Y, bounded and linear} (18.2)

is a normed vector space. In fact, if Y is a Banach space, then B(X, Y )
is also a Banach space.

Theorem 18.3. If X is a normed linear space and Y is a Banach
space, then B(X, Y ) is a Banach space.

Proof. Let {Tn} be a Cauchy sequence in B(X, Y ). Every Cauchy se-
quence is bounded and hence there is a constant K such that for every
x,

‖Tnx‖ ≤ K‖x‖.
Now by boundedness and linearity

‖Tnx− Tmx‖ ≤ ‖Tn − Tm‖‖x‖ → 0.
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Thus {Tnx} is a Cauchy sequence in Y. Now Y is Banach and hence
complete. So there exists a point y ∈ Y such that Tnx→ y. We define
an operator T by Tx = y.

Since ‖Tnx‖ ≤ K‖x‖ it follows that

‖Tx‖ ≤ lim
n→∞

‖Tnx‖ ≤ K‖x‖.

It is also clear that T is linear, since Tn(x + x′) = Tnx + Tnx
′ and

so Tn(x + x′) → Tx + Tx′. Thus T is a bounded linear operator. So
T ∈ B(X, Y ). We now have to prove that ‖T − Tn‖ → 0. That is,
Tn converges to T. We know that {Tn} is a Cauchy sequence, so given
ǫ > 0 we may find an N ∈ N such that n,m ≥ N implies ‖Tm−Tn‖ < ǫ.
Thus for all m,n > N ,

‖Tmx− Tnx‖ ≤ ǫ‖x‖.
Let m → ∞. We then have ‖Tx − Tnx‖ ≤ ǫ‖x‖ if n > N. Thus
‖Tn − T‖ → 0. This completes the proof. �
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19. The Hahn-Banach Theorem

Probably the most important result in the subject, this theorem tells
us when we can extend operators defined on subspaces to the whole
space. We begin with a lemma, that some authors consider to be a
version of the Hahn-Banach Theorem. It is important to note that
there are different formulations of this result, in different settings.

Theorem 19.1 (Hahn-Banach Lemma). Let X be a real vector space
and let p be a real functional on X satisfying

p(x+ y) ≤ p(x) + p(y), p(λx) = λp(x)

for all λ ≥ 0, x, y ∈ X. Let f be a linear functional F on a subspace
Y ⊂ X such that

f(x) ≤ p(x), (19.1)

for all x ∈ X. Then there exists a real linear functional F on X such
that

F (x) = f(x) (19.2)

for all x ∈ Y and F (x) ≤ p(x) for all x ∈ X.

Proof. We let K be the set of all pairs (Yα, gα), where Yα is a subspace
of X containing Y and gα is a real linear functional on Yα satisfying
gα(x) = f(x), for all x ∈ X , gα(x) ≤ p(x) for all x ∈ Yα.

We will use Zorn’s Lemma, so we define a partial order by inclusion.
That is (Yα, gα) ≤ (Yβ, gβ) if Yα ⊂ Yβ and gα = gβ on Yα. Now every
totally ordered subset {(Yβ, gβ)} has an upper bound (Y ′, g′) with Y ′ =⋃
Yβ, g

′ = gβ on Yβ. There is by Zorn’s Lemma a maximal element
(Y0, g0). To prove the result we must show that Y0 = X and we take
F = g0.

Now we proceed by contradiction, so we assume Y0 6= X. Suppose
that there is an element y1 ∈ X , but y1 6∈ Y0. Consider the set given by
the span of points of the form x = y + λy where λ is real and y ∈ Y0.
Now define a linear functional g1 on Y1 by g1(y + λy) = g0(y) + λc. To
derive a contradiction we want to choose the constant c so that

g0(y) + λc ≤ p(y + λy1)

for all λ ∈ R, y ∈ Y0, because this will give (Y1, g1) ∈ K and (Y0, g0) ≤
(Y1, g1), Y0 6= Y1, which contradicts the maximality of Y0, g0).

Now note that for any two points x, y ∈ Y0,

g0(y)− g0(x) = g0(x− y) ≤ p(y − x) ≤ p(y + y1) + p(−y1 − x).

So
−p(−y1 − x)− g0(x) ≤ p(y + y1)− g0(y).

We then have

A = sup
x∈Y0

{−p(−y1 − x)− g0(x)} ≤ inf
y∈Y0

{p(y + y1)− g0(y)} = B.
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To get our contradiction, take c to be any number A ≤ c ≤ B. Then

c ≤ p(y + y1)− g0(y), all y ∈ Y0 (19.3)

−p(−y1 − y)− g0(y) ≤ c, all y ∈ Y0. (19.4)

Multiplying the first of these by λ > 0 and replacing y by y/λ gives

λc ≤ p(y + λy1)− g0(y). (19.5)

Now multiply the second equation by λ < 0 and make the same re-
placement to get the same result. This tells us that c has the desired
property and the result is proved. �

To state the Hahn-Banach Theorem we need the notion of a dual.

Definition 19.2. Let X be a vector space. Then the dual of X , de-
noted X∗ consists of the set of all linear functionals on X . Elements of
X∗ will be denoted x∗.

Using the Riesz representation theorems, we can identify the duals
of various spaces, such as Lp(X), p > 1. We can also consider the dual
of a dual, which we will briefly mention below. First note that

Theorem 19.3. If X is a Banach space, then so is X∗.

Proof. This follows immediately from Theorem 18.3. �

The Hahn-Banach Theorem may be stated as follows.

Theorem 19.4. Let X be a normed vector space and let Y be a sub-
space. Then to every y∗ ∈ Y ∗ there corresponds an x∗ ∈ X such that

‖x∗‖ = ‖y∗‖, x∗(y) = y∗(y), all y ∈ Y.

Proof. We only consider the real case, which happens immediately from
the Hahn-Banach Lemma. Take p(x) = ‖y∗‖‖x‖, f(x) = y∗(x) and
x∗ = F. It is obvious that ‖x∗‖ ≥ ‖y∗‖. Now for any x ∈ X , write
x∗(x) = θ|x∗(x)| where θ = ±1. Then

|x∗(x)| = θx∗(x) = x∗(θx) ≤ p(θx) = ‖y∗|‖θx‖ = ‖y∗‖‖x‖.
So ‖x∗‖ = ‖y∗‖. �

The dual of a dual is defined as we would expect. Certainly if x∗ :
X → R, then we may define an element x∗∗ by x∗∗ = x∗(x). This leads
to an obvious question. First a definition.

Definition 19.5. A vector space is said to be reflexive if (X∗)∗ = X.

What vector spaces are reflexive? It is not hard to show that Lp(Ω),
where Ω ⊆ Rn, is reflexive for finite p > 1. This is an immediate
consequence of the Riesz Representation Theorem. But this fails for
p = 1.

Theorem 19.6. The space L1(Ω) is not reflexive.
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The fact that L1 is not reflexive has important consequences in anal-
ysis, but a discussion is beyond the scope of the current notes.

The Hahn-Banach Theorem is used extensively in functional anal-
ysis, because it allows us to extend an operator from a subspace to
the whole space. Let us consider an example. Closely related to the
concept of a fundamental solution is that of a Green’s function.

Definition 19.7. A function G(x, y) defined for all y ∈ Ω ⊂ Rn and
x ∈ Ω − {y}, is called a Green’s function for the Laplace equation
∆u = 0 in Ω if

(i) G(x, y) = k(x, y) + h(x, y), is harmonic in x, for x ∈ Ω,

(ii) G(x, y) is continuous in x when x ∈ Ω̄− {y},

(iii) G(x, y) = 0 for x ∈ ∂Ω, the boundary of Ω.

Here Ω̄ is the closure of Ω.

We recall the following result.

Theorem 19.8 (Maximum Principle). Let u be harmonic in Ω, con-
tinuous in Ω̄. Then the maximum and minimum values of u occur on
∂Ω.

As an application of the Hahn-Banach Theorem, we prove the ex-
istence of a Green’s function in the case n = 2. The extension of a
linear functional in the following proof is accomplished by the Hahn-
Banach Theorem. The proof requires the extension, and it is only done
once. This is typical of the applications of the four major theorems of
functional analysis. They are technical results that allow us to make
important conclusions in our proofs.

Theorem 19.9. If n = 2 and ∂Ω is C1, then Green’s function exists.

Proof. We know that the space of all continuous functions on ∂Ω is
a Banach space under the supremum norm. Denote this space by X
and by X ′ the subspace of X consisting of functions f for which the
Dirichlet problem ∆u = 0 in Ω, u = f on Ω has a solution u. We
introduce the linear functional Ly on X ′ by Ly(f) = u(y). By the
maximum principle, Ly is bounded and has norm 1. So we can apply
the Hahn-Banach Theorem to extend Ly to a linear functional on X,
which we also denote by Ly.

For z 6∈ ∂Ω, consider fz ∈ X defined by

fz(x) = ln |x− z|, x ∈ ∂Ω. (19.6)

Let ky(z) = Ly(fz). We show that ky(z) is harmonic. The fact that
fz satisfies Laplace’s equation in the z variable is clear. Now let z′ =
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(z1 + δ, z2), then by the fact that Ly is continuous we have

lim
δ→0

ky(z
′)− ky(z)

δ
= lim

δ→0
Ly

(
fz′ − fz

δ

)
= Ly

(
∂fz
∂z1

)
(19.7)

Continuing in the same vein we have δky(z) = Ly(∆fz) = 0, since
fz is harmonic and Ly is continuous, so Ly(0) = 0. Since ln |x − z| is
harmonic in x ∈ Ω, when z 6∈ Ω̄ we have

ky(z) = Ly(fz) = ln |x− z|, z 6∈ Ω̄.

Now take a point z ∈ Ω and near ∂Ω. Denote by z′ its reflection
with respect to the tangent plane to ∂Ω at the point of ∂Ω nearest to
z. Then one can show that

max
x∈∂Ω

|z − x|
|z′ − x| → 1,

if z → z0 ∈ ∂Ω. Thus

‖fz − fz′‖ = max
x∈∂Ω

ln

( |z − x|
|z′ − x|

)
→ 0

if z → z0 ∈ ∂Ω. From which we have Ly(fz − fz′) → 0, that is

ky(z)− ky(z
′) → 0

if z → z0 ∈ ∂Ω. Now ky(z
′) exists and equals ln |y − z0|. Hence ky(z),

z ∈ Ω can be extended into a continuous function k̃y(z) in Ω̄ and

k̃y(z) = ln |y− z| if z ∈ ∂Ω. One can then see that k̃y(x) = ln |x− y| is
a Green’s function. �
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20. The Open Mapping Theorem

This result was stated earlier. Before we proceed to the proof, which
relies on the Baire Category Theorem, we introduce some notation. If
A ⊆ X and a is a scalar, we denote aA = {ax : x ∈ A}. We define the
open ball

Br(x0) = {x ∈ X : ‖x− x0‖ < r}.
We will define aBr(x) = Bar(x).We observe that if x ∈ Br(x0)+Bs(x0),
then x ∈ Br+s(x0). Here A+B = {a+ b, a ∈ A, b ∈ B}.

Convergence of a sequence can be reformulated in terms of open
balls. We say that xn → x if for every ǫ > 0 there exists an N such
that for all n ≥ N we have xn ∈ Bǫ(x).

In preparation we recall two previous results.

Theorem 20.1. Suppose that X is a Banach space and
∑∞

n=1 ‖xn‖ <
∞. i.e

∑∞
n=1 xn is absolutely convergent. Then

∑∞
n=1 xn is convergent.

In other words, there exists x ∈ X, such that x =
∑∞

n=1 xn.

It is important to note that this result holds if and only if X is a
Banach space.

Theorem 20.2. Let
∑∞

n=1 xn be a series in a normed linear space X.
Then absolute convergence of the series implies convergence if and only
if X is a Banach space.

Finally, recall that a set U in a normed linear space is open if and
only given any x ∈ U , we can surround it with an open ball which
is entirely contained within U. That is, there is an ǫ > 0 such that
Bǫ(x) ⊆ U. The proof of the open mapping theorem relies on this.

Theorem 20.3 (The Open Mapping Theorem). Let X and Y be Ba-
nach spaces and suppose that T : X → Y is bounded and linear. If T
is also onto, (i.e. T (X) = Y ), then T (U) is open in Y whenever U is
open in X. That is, T maps open sets in X onto open sets in Y .

The idea of the proof is to show that if U is open, then for any x ∈
T (U) we can find an open ball Br(x) ⊆ T (U) where r is suitably small.
The first two parts of the proof establish some technical properties
about open balls that we need.

Proof. The proof proceeds in three stages. We consider an operator T
with the required properties. We first prove that if B 1

2
(0) is a ball of

radius 1/2 centered on 0 in X , then we can find a ball in Y of radius

ǫ which is contained in T (B 1
2
(0)). This is a technical detail which we

need for the rest of the proof.
We assumed that Y is complete and hence by Baire’s Theorem, it

cannot be written as the union of nowhere dense sets. T is also onto,
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and hence

Y = T (X) = T

( ∞⋃

n=1

Bn
2
(0)

)
=

∞⋃

n=1

T
(
Bn

2
(0)
)
. (20.1)

Baire’s Theorem implies that at least one of the sets Bn/2(0) isn’t
nowhere dense. So there is some integer N such that one of the sets

T
(
BN

2
(0)
)
isn’t nowhere dense. Since T

(
BN

2
(0)
)
isn’t nowhere dense,

the interior of its closure cannot be empty. We may thus find a y0 ∈ Y
and an r > 0 such that

Br(y0) ⊆ T
(
BN

2
(0)
)
. (20.2)

Now let ǫ = r
2N

. If y ∈ B2ǫ(0) then
y0
N

+ y ∈ T (B 1
2
(0)). Next let y ∈

Bǫ(0). By symmetry, both y0/N and −y0/N are contained in T (B 1
2
(0)).

Thus

y = − y0
2N

+ (
y0
2N

+ y)

= − y0
2N

+
1

2
(
y0
N

+ 2y)

∈ T (B 1
4
(0)) + T (B 1

4
(0))

⊆ T (B 1
2
(0)).

So if y ∈ Bǫ(0), then y ∈ T (B 1
2
(0)). Hence Bǫ(0) ⊆ T (B 1

2
(0)).

What does this do for us? It shows us that for any y ∈ Bǫ(0), we
can find a point x1 ∈ B 1

2
(0) such that Tx1 and y are as close together

as we desire. So choose an x1 such that

‖y − Tx1‖ <
ǫ

2
.

This means that

y − Tx1 ∈ B ǫ
2
(0) =

1

2
Bǫ(0) ⊆

1

2
T (B 1

2
(0) = T (B 1

4
(0)).

So now we choose x2 ∈ B 1
4
(0) such that Tx2 and y − Tx1 are as close

as we like. In particular

‖(y − Tx1)− Tx2‖ <
ǫ

4
.

We repeat this to generate a sequence xn with xn ∈ B 1
2n

(0) and

∥∥∥∥∥y −
n∑

k=1

Txk

∥∥∥∥∥ <
ǫ

2n
.



190 MARK CRADDOCK

Now the sequence
∑n

k=1 xk is convergent. To see this, observe that by
the triangle inequality∥∥∥∥∥

n∑

k=1

xk

∥∥∥∥∥ ≤
n∑

k=1

‖xk‖ ≤
n∑

k=1

1

2k
→ 1.

Thus
∑n

k=1 xk is absolutely convergent and hence convergent. Let
x =

∑∞
k=1 xk. By the above we have ‖x‖ ≤ ∑∞

k=1 ‖ = 1. This shows
that x ∈ B1(0).

We are now in a position to prove the open mapping theorem. Let U
be an open set. We want to show that T (U) is open. Let Tx ∈ T (U).
Because U is open, we may find an open ball centered on x of radius
δ > 0 such that Bδ(x) ⊆ U . To show that T (U) is open, we need to
show that we can surround any point Tx ∈ T (U) with an open ball
contained entirely within T (U). We show that Bǫδ(Tx) ⊆ T (U). To
this end, let y ∈ Bǫδ(Tx). Since y is near the point Tx we can write
y = Tx+ y1 for some y1 ∈ Bǫδ(0). It is clear that

y =
y1
δ

∈ Bǫ(0) ⊆ T (B1(0)).

Now write y2 = Tx2 for some x2 ∈ B1(0). Then by linearity

y = Tx+ δTx2 = T (x+ δx2),

with x+δx2 ∈ U. Thus y ∈ Bǫδ(Tx) implies y ∈ T (U) and so Bǫδ(Tx) ⊆
T (U). Thus T (U) is open and this proves the theorem.

�

Notice that the Baire Category Theorem is used only at one point in
the proof, but the proof simply doesn’t work without it. This is typical
of the applications of Baire’s theorem.

As a corollary of the Open Mapping Theorem, we have an easy proof
of the following result due to Banach.

Theorem 20.4. Let X and Y be Banach spaces and let T be a one to
one bounded linear map from X onto Y . Then the inverse of T , T−1

is also a bounded linear mapping.

Proof. Because the map is one to one and onto, the inverse exists. This
is just algebra. That T−1 is linear is trivial. We know that T−1T (z) = z
for all z ∈ X. Suppose that Tx1 = y1 and Tx2 = y2. Then x1 = T−1y1
and x2 = T−1y2. Linearity follows from

T−1(ay1 + by2) = T−1(aTx1 + bTx2) = T−1(T (ax1 + bx2)) = ax1 + bx2

= aT−1y1 + bT−1y2.

So T−1 is linear, one to one and onto. Hence it maps open sets to open
sets. Thus for any open set U ∈ X , {y ∈ Y : T−1(y) ∈ U} is open.
Hence T−1 is continuous and therefore it is bounded. �
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21. The Principle of Uniform Boundedness

As with many of the theorems in functional analysis, there are dif-
ferent versions of the Banach-Steinhaus Theorem, which is often called
the Principle of Uniform Boundedness. A version of the theorem was
stated earlier. Here we will prove the result in a slightly different, but
completely equivalent form. There are also versions of the theorem
which hold in topological vector spaces. All the different versions of
the theorem are related to the problem of determining when a family
of operators is uniformly bounded.

That is, given a family of operators A ⊆ B(X, Y ), when does there
exist a constant K > 0 such that ‖T‖ < K for all T ∈ A? This might
seem to be an odd question to ask, because every T under consideration
is bounded. The space B(X, Y ) is after all defined to be the space of
bounded linear operators from X to Y . The difficulty lies in the fact
that A may be an infinite set. Consider the operators Tn : C[a, b] →
C[a, b], (where we equip C[a, b] with the supremum norm), defined by
Tnf = nf , n = 1, 2, 3, 4, ... Each operator in this family is bounded.

We have
‖Tnf‖∞ = n‖f‖∞

for all n. So ‖Tn‖ = n. The problem is that there does not exist a
constant K such that ‖Tn‖ ≤ K for all n. If there were such a constant
then we would have K > n for all n = 1, 2, 3, ... which is plainly im-
possible. The Banach-Steinhaus Theorem tells us when we can bound
an entire family of operators by the same norm. Here we will pay close
attention to which norm is which, since this is a theorem about norms.

Theorem 21.1 (Banach-Steinhaus). Consider a Banach Space X and
a normed linear space Y. If A ⊆ B(X, Y ) is such that

sup{‖Tx‖Y : T ∈ A} <∞
for each x ∈ X, then

sup{‖T‖B(X,Y ) : T ∈ A} <∞.

So if the set ‖Tx‖ is bounded by a constant for every x, T, then
there is a uniform bound for the norms of the operators in A. Note
that ‖T‖B(X,Y ) is the operator norm defined previously.

Proof. We begin by defining the sets

En = {x ∈ X : ‖Tx‖Y ≤ n for all T ∈ A} =
⋂

T∈A
{x ∈ X : ‖Tx‖Y ≤ n}.

Each set En is closed, since if Tj ∈ En and Tj is Cauchy, then Tj
converges to a T ∈ En. Also, since T is a bounded linear operator, each
‖Tx‖Y is bounded by some constant, which may be arbitrarily large,
so given an x ∈ X , we will eventually find an n such that ‖Tx‖Y ≤ n.
From this it follows that X =

⋃∞
n=1En.
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Now we assumed that X is Banach and hence complete. So by the
Baire Category Theorem it cannot be written as the union of nowhere
dense sets, which implies that at least one En is nowhere dense. Thus
there is an N such that the interior of EN is not empty. If x0 is a point
in the interior (i.e. not on the boundary) of EN , then we can find an
open ball Br(x0) ⊆ EN , for some r > 0.

From the definition of En, this tells us that ‖Tx‖Y ≤ N for every
x ∈ Br(x0) and every T ∈ A. Now recall the definition of the operator
norm from the previous section. We had

‖T‖B(X,Y ) = inf {‖Tx‖Y : ‖x‖X = 1} . (21.1)

We are trying to show that the family of norms is bounded. In order
to do this, we need only consider elements of norm 1, by (21.1). More
precisely, we want to find a K > 0 such that ‖Tx‖Y ≤ K for every
element x ∈ X of norm 1 and each T ∈ A.

To do this, first notice that if we take an x with ‖x‖X = 1, then
y = r

2
x+ x0 ∈ Br(x0). To see this, note that ‖x0 − y‖ = r

2
‖x‖ = r

2
< r,

so

y ∈ {x ∈ X : ‖x− x0‖X < r} = Br(x0).

Since y ∈ Br(x0), it follows that ‖Ty‖Y ≤ N. We therefore have

N ≥ ‖Ty‖Y = ‖T (r
2
x+ x0)‖Y = ‖r

2
Tx+ Tx0‖

≥ r

2
‖Tx‖Y − ‖Tx0‖Y

where we used the reverse triangle inequality in the last line. Rear-
ranging this gives

‖Tx‖Y ≤ 2

r
(N + ‖Tx0‖Y ).

This holds for every x of norm 1 and every T and K is independent
of x. We have thus computed an upper bound for the set {‖T‖B(X,Y ) :
T ∈ A} and this completes the proof. �

The Banach-Steinhaus Theorem is used extensively in operator the-
ory, Now however we turn to the final of the big four theorems, the
Closed-Graph Theorem.

The Closed Graph Theorem gives a condition guaranteeing that an
operator T is continuous in terms of its graph. The graph of a function
is a familiar object. We define it as the set (x, f(x)), where x ranges
over the domain of f. For an operator T : X → Y , with domain DT , we
similarly define the graph as the set of points GT = (x, Tx) as x ranges
over DT . The graph is a subset of X × Y. If this subset is closed, then
we say that T is a closed operator. So T is closed if and only if GT is
a closed linear subspace of X × Y. Another way of looking at this, is
that if xn ∈ DT and xn → x, Txn → y, then T is closed if x ∈ DT and
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y = Tx. Note the similarity to a continuous operator. In fact closed
operators are continuous.

Theorem 21.2 (The Closed Graph Theorem). Let X and Y be Banach
spaces and let T : X → Y be linear, (with DT = X). If T is closed,
then it is continuous.

Proof. To prove that T is continuous, it is enough to prove that it
is bounded, since bounded linear operators are continuous. The key
to the proof is to turn the graph GT into a Banach space and use a
corollary of the Open Mapping Theorem.

The graph GT is a closed linear subspace of X × Y. Now given two
Banach spaces, we may equip Z = X × Y with the norm ‖(x, y)‖ =
‖x‖X + ‖y‖Y . Under this norm, Z is itself a Banach space. Since GT

is a closed subspace of Z, then GT must also be a Banach space.
We now define the operator J : GT → X given by J(x, Tx) = x. The

operator J is one to one and onto, hence J−1 exists and is bounded,
by the Banach inverse Theorem. Thus there is a K > 0 such that
‖J−1x‖ ≤ K‖x‖X for all x ∈ X . Now

(x, Tx) = J−1x

by definition of J and so

‖x‖X + ‖Tx‖Y = ‖(x, Tx)‖ = ‖J−1x‖ ≤ K‖x‖X , (21.2)

for all x ∈ X. This tells us that ‖Tx‖Y is bounded for all x ∈ X and
thus T is continuous. �


