
Modern Analysis

Problem sheet one.

(1) Prove that the series
∞∑

n=1

sin(nx)

n2
is uniformly convergent on R.

(2) Let {fn}∞n=1 be a sequence of functions on X ⊆ R. How may we
use the WeierstrassM test to prove that the sequence converges
uninformly?

(3) Prove Riemann’s Criterion for the existence of the Riemann in-
tegral.

(4) Prove that if f and g are Riemann integrable on [a, b], then
∫ b

a

|f(x)g(x)|dx ≤
(∫ b

a

|f(x)|2dx
)1/2(∫ b

a

|g(x)|2dx
)1/2

.

(5) Prove Theorem 2.2 in the lecture notes.

(6) From the definition of the Riemann-Stieltjes integral, prove that

RS
∫ 1

0
xd(x2) = R

∫ 1

0
2x2dx.

(7) Calculate RS
∫ 1

−1
x2d(x|x|), RS

∫ 1

−1
x2d(x2) and RS

∫ 1

0
cosxd(sin x).

(8) Prove that if f is continuous and monotone increasing, then

RS

∫ b

a

f(x)d(f(x)) =
1

2
(f(b)2 − f(a))2.

(9) Use the Euler-Maclaurin formula to estimate the following quan-
tities for large N .

(i)
N∑

n=1

sin(
√
n)

n

(ii) γN =
N∑

n=1

1

n
− lnN.

(10) Use the Euler-Maclaurin formula to prove the integral test for
series convergence: If f is a continuous function on R, then∑∞

n=1 f(n) converges if and only if R
∫∞

1
f(x)dx <∞.

(11) Calculate the sums
∑n

k=1 k
2, and

∑n
k=1 k

3.

(12) Find limn→∞RS
∫ π

2

0
(1− x

n
)nd(cosx).



Modern Analysis

Problem sheet two.

(1) Prove Theorem 3.11 in the lecture notes.

(2) Prove that

m((0, 1]) =
∞∑

k=1

m

((
1

k + 1
,
1

k

])
.

(3) Prove that any countable set is measurable and has measure
zero.

(4) What is the measure of the irrational numbers in [0, 1]?

(5) Prove that if m∗(A) = 0 then A is measurable.

(6) Prove Theorem 3.13 in the lecture notes.

(7) Let A ⊂ R be a measurable set. For h ∈ R, define

A+ h = {x+ h|x ∈ A}.
Prove that A+ h is measurable and m(A+ h) = m(A).

(8) Let E, F be measurable and assume E ⊂ F , with m(F ) < ∞.
Prove that m(F − E) = m(F )−m(E).

(9) Show that for any two sets A,B with A ∪B = [0, 1],

m∗(A) ≥ 1−m∗(B).

(10) Let

A = {x ∈ [0, 1] : no 5s occur in the decimal expansion of x}.
Find m∗(A).

(11) Suppose that A is a bounded set and m∗(A ∩ I) ≤ 1
2
m∗(I) for

every interval I. Prove that m∗(A) = 0.

(12) (Hard) Prove that intervals are measurable by verifying that
the Caratheodory condition is satisfied.



Problem sheet three.

(1) Show that if A1, A2 are measurable then

m(A1) +m(A2) = m(A1 ∪ A2) +m(A1 ∩ A2).

(2) Let X be a nonempty set, and let f : X → [0,∞) be a func-
tion. Let P (X) be the collection of all subsets of X . Define
µ : P (X) → [0,∞) by µ(A) =

∑
x∈A f(x) if A is a nonempty,

countable set, µ(A) = ∞ is A is uncountable and µ(∅) = 0.
Show that µ is a measure.

(3) Consider the Cantor set. This is formed by taking the interval
C1 = [0, 1] and removing the middle third (0, 1). So C2 =
[0, 1/3] ∪ [2/3, 1]. Then remove the middle third from each of
these intervals. So C3 = [0, 1/9]∪[2/9, 1/3]∪[2/3, 5/9]∪[8/9, 1].
Continue this process indefinitely. The Cantor set is defined to
be

C = ∩∞
n=1Cn.

Prove that the Cantor set is nonempty, with infinitely many
points and thatm(C) = 0. In fact the Cantor set is uncountable.
So it provides an example of an uncountable set of Lebesgue
measure zero.

(4) Show that a countable union of sets of measure zero has mea-
sure zero.

(5) If m∗ is Lebesgue outer measure on R and A is a null set (one
with outer measure zero), then

m∗(B) = m∗(A ∪B) = m∗(B \ A)
holds for every subset B of R.

(6) Let m∗ be outer measure on R. If a sequence of subsets {An}
of R satisfies

∑∞
n=1m

∗(An) <∞, then the set

E = {x ∈ X : x ∈ An for infinitely many n},
is a null set.

(7) Prove that χA is measurable if and only if A is measurable.

(8) Suppose that f : R → R is continuous and g : R → R is mea-
surable. Prove that the composition f ◦ g is also measurable.

(9) Let f : R → R be a differentiable function. Show that the
derivative f ′ is Lebesgue measurable.



Problem sheet four.

(1) Consider a sequence of functions (fn), where each fn : R → R
is measurable. Let f be a measurable function. The sequence
(fn) is said to converge in measure to f if, for any ǫ > 0,

lim
n→∞

m[{x : |fn(x)− f(x)| ≥ ǫ}] = 0.

Prove that if fn → f uniformly, then (fn) converges in measure
to f.

(2) Let (fn) and (gn) be sequences of almost everywhere real, mea-
surable functions, that converge in measure to f and g respec-
tively. Let a, b be real numbers. Prove the following.

(i) (afn + bgn) converges in measure to af + bg.

(ii) (|fn|) converges in measure to |f |.

(iii) (fngn) converges in measure to (fg), on X with m(X) <
∞.

(iv) (fng) converges in measure to (fg), on X with m(X) <∞.

(3) Prove that if k ≤ f ≤ K a.e. on a measurable set E, then

km(E) ≤
∫

E

f ≤ Km(E).

(4) Let f be an integrable function that is positive everywhere on
a measurable set E. If

∫
E
f = 0 prove that m(E) = 0.

(5) Prove that
∫∞

0
sin(x2)dx is not Lebesgue integrable, but exists

as an improper Riemann integral.

(6) Let f : [0, 1] → R be Lebesgue integrable. Assume that f is
differentiable at x = 0 and f(0) = 0. Show that the function

defined by g(x) = x−
3

2 f(x) for all x ∈ (0, 1] and g(0) = 0 is
Lebesgue integrable.

(7) Find the Lebesgue integral over [0, 1] of the function

f(x) =

{
x3 + 5x, x ∈ [0, 1]−Q

2x2, x ∈ [0, 1] ∩Q.



Problem sheet five.

(1) Prove that if ϕ(x) is a continuous nondecreasing function in
[a, b], then ϕ′(x) is Lebesgue integrable and

∫ b

a

ϕ′(x)dx ≤ ϕ(b)− ϕ(a).

(2) Show that

lim
n→∞

∫ n

0

(
1 +

x

n

)n

e−2xdx = 1.

(3) Show that for t ≥ 0
∫ ∞

0

e−xt sin x

x
dx =

π

2
− tan−1 t.

(4) Prove that if f is continuously differentiable, then

lim
n→∞

∫ π

−π

f(x) sin(nx)dx = 0

and

lim
n→∞

∫ π

−π

f(x) cos(nx)dx = 0.

(5) Assume that f : [a,∞) → R is Riemann integrable on every
closed subinterval of [a,∞). Prove that

∫∞

a
f(x)dx exists as an

improper Riemann integral, if and only if for every ǫ > 0 there

exists an M such that
∣∣∣
∫ t

s
f(x)dx

∣∣∣ < ǫ for all s, t > M.

The previous result is useful because of the following the-
orem which you may assume. Let f : [a,∞) → R be Rie-
mann integrable on every closed subinterval of [a,∞). Then
f is Lebesgue integrable if and only if the improper Riemann
integral

∫∞

a
|f(x)|dx exists. In this case

L

∫
fdm = R

∫ ∞

a

f(x)dx.

(6) Show that ∫ ∞

0

sin2 x

x2
dx =

π

2
.

(Integrate by parts and use the convergence theorems).



(7) Let f : [a, b] → R be a differentiable function with the left
and right limits of the derivatives defined at the end points. If
the derivative f ′ is bounded on [a, b], prove that f ′ is Lebesgue
integrable and ∫

[a,b]

f ′dm = f(b)− f(a).

(8) Show that f(x) = lnx
x2 is Lebesgue integrable over [1,∞) and

that
∫
fdm = 1.

(9) Let f : [0,∞) → R be a continuous function such that
limx→∞ f(x) = δ. Show that

lim
n→∞

∫ a

0

f(nx)dx = aδ

for each a > 0.



37438 Problem sheet six.

(1) Calculate

∫ ∞

0

e−ax − e−bx

x
dx.

(2) Calculate

∫ 1

0

x− 1

ln x
dx. Hint, look at

∫ 1

0
xp−1
lnx

dx.

(3) Evaluate

∫ ∞

0

e−α2x2−β2/x2

dx.

(4) Let f : R → R be n times differentiable and assume that f (n)

is integrable for all n. Prove that

f̂ (n)(y) = (iy)nf̂(y).

(5) Let f : R → R be such that xf(x) is Lebesgue integrable. Prove
that

x̂f(x)(y) = i
d

dy
f̂(y).

(6) Solve the differential equation

u′(x) + xu(x) = 0, u(0) =
√
2π.

Now take the Fourier transform of this equation and hence show
that ∫ ∞

−∞

e−
x2

2 e−iyxdx =
√
2πe−

y2

2 .

(7) Compute the Fourier transform of

(i) f(x) = xe−x2

.

(ii) f(x) = e−|x|.

(iii) f(x) =
1

x4 + 1
.



37438 Problem sheet seven.

(1) Show that if d(x, y) is a metric on a space X , then

ρ(x, y) =
d(x, y)

1 + d(x, y)

is also a metric on X .

(2) Assume that two vectors x, y ∈ X where X is a normed linear
space satisfy the relation ‖x + y‖ = ‖x‖ + ‖y‖. Show that for
all non negative scalars α, β we have

‖αx+ βy‖ = α‖x‖+ β‖y‖.
(3) It is true that every norm defines a metric by d(x, y) = ‖x−y‖.

Show by example that not every metric defines a norm.

(4) Let f : X → R.

‖f‖∞ = inf{M : |f(x)| ≤M holds for almost all x}.
Prove the following.
(i) If f = g a.e., then ‖f‖∞ = ‖g‖∞.

(ii) ‖f‖∞ ≥ 0 for each function f , and ‖f‖∞ = 0 if and only if
f = 0 a.e.

(iii) ‖af‖ = |a|‖f‖∞ for all scales a.

(iv) ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞

(v) If |f | ≤ |g| then ‖f‖∞ ≤ ‖g‖∞.

(5) Two norms ‖x‖1 and ‖x‖2 on a vector space X are said to be
equivalent if there exist constants K > 0 and M > 0 such that

K‖x‖1 ≤ ‖x‖2 ≤ M‖x‖1.
Prove that on a finite dimensional vector space all norms are
equivalent.

(6) Let C1[0, 1] be the vector space of all real valued functions on
[0, 1] with continuous first derivative. Show that ‖f‖ = |f(0)|+
‖f ′‖∞ is a norm and that it is equivalent to the norm

‖f‖A = ‖f‖∞ + ‖f ′‖∞.
Hint: f(x) = f(0) +

∫ x

0
f ′(t)dt.



(7) let X , Y be normed linear spaces. An operator T : X → Y is
said to be bounded if there exists K > 0 such that

‖T (x)‖Y ≤ K‖x‖E .
Consider C[a, b] with the norm defined in question 4. Let K :
[a, b]× [a, b] → R be a continuous function. Show that

T (f)(x) =

∫ b

a

K(x, y)f(y)dy

is a bounded linear operator. i.e There exists M > 0 such that
‖Tf‖∞ ≤M‖f‖∞ for all f ∈ C[a, b].

(8) Let D : C1[0, 1] → C1[0, 1] be given by Df = f ′. Use the
norm of question 4 and show that with respect to this norm,
differentiation is an unbounded linear operator. (Hint. Find an
example of a function whose norm grows with derivatives).



37438 Problem sheet eight.

(1) Show that in a real inner product space (x, y) = 0 holds if and
only if ‖x+ y‖2 = ‖x‖2 + ‖y‖2. Does the same result hold if we
allow the inner product to be complex valued?

(2) Assume that the sequence {xn} in an inner product space sat-
isfies (xn, x) → ‖x‖2 and ‖xn‖ → ‖x‖. Show that xn → x.

(3) A sequence {xn} in a Hilbert space H is said to converge weakly
to x in H if (xn, y) → (x, y) for all y ∈ H.
(i) Show that if a sequence is convergent it is also weakly con-

vergent.

(ii) Show that if a sequence is weakly convergent, then the limit
is unique.

(iii) Show by an example that a sequence may be weakly con-
vergent, but not convergent.

(4) Let H be a Hilbert space with inner product (·, ·) : H×H → C.
Prove that for all x, y ∈ H

(x, y) =
1

4

(
[‖x+ y‖2 − ‖x− y‖2] + i[‖x+ iy‖2 − ‖x− iy‖2]

)
.

This is known as the polarisation identity and it used to recover
the inner product from the norm.

(5) Given an example of a function f such that f ∈ L2(R) but
f 6∈ L1(R). Then find an example of a function such that
f ∈ L1(R), but f 6∈ L2(R).

(6) Let [a, b] be a closed, bounded interval. Define the spaces
Lp([a, b]) in the obvious way. If f ∈ L1([a, b]) does it follow
that f ∈ L2([a, b])? What about the converse?

(7) Let p > 1, p 6= 2 and suppose that 1
p
+ 1

q
= 1. Suppose that

f ∈ Lp(R) and f ∈ Lq(R). Prove that f ∈ L2(R).

(8) Let f ∈ L2([0, 1]) satisfy ‖f‖2 = 1 and
∫ 1

0
f(x)dx ≥ α > 0. For

each β ∈ R, define Eβ = {x ∈ [0, 1] : f(x) ≥ β}. If 0 < β < α
show that m(Eβ) ≥ (β−α)2. (Hint: This uses Hölder’s inequal-
ity. Note that f − β ≤ (f − β)χEβ

≤ fχEβ
.)

(9) Suppose that {φn} is an orthonormal set in the Hilbert space
L2([−1, 1]). Show that the sequence {ψn} defined by

ψn(x) =

(
2

b− a

)1/2

φn

(
2

b− a

(
x− b+ a

2

))



is an orthonormal set in L2([a, b]).
(10) Let 1 ≤ p < ∞ and suppose f ∈ Lp([a, b]), where a < b,

a, b ∈ R∗ and let ǫ > 0. Show that

m∗({x ∈ [a, b] : |f(x)| ≥ ǫ}) ≤ ǫ−p

∫ b

a

|f(x)|pdx.

where m∗ is Lebesgue outer measure.
(11) Let 1 ≤ p < ∞ and suppose {fn} is a sequence in Lp([a, b]),

where a < b, a, b ∈ R∗. Prove that if ‖fn − f‖p → 0 as n→ ∞,
then fn → f in measure.



37438 Modern Analysis

37438 Problem sheet nine.

(1) Solve the PDE

ut = uxx + h(x), h ∈ L1(R), x ∈ R

subject to the initial condition u(x, 0) = f(x) and the assump-
tion that u(x, t), ux(x, t) → 0 as |x| → ∞.

(2) Solve the Poisson equation

uxx + uyy = h(x), h ∈ L1(R) x ∈ R, y ≥ 0

subject to the condition u(x, 0) = f(x) and the assumption that
u(x, y), ux(x, y) → 0 as |x| → ∞.

(3) Solve the integral equation

u(x) = h(x) +

∫ ∞

−∞

k(x− y)u(y)dy,

where h and k and their Fourier transforms are integrable.

(4) Use Parseval’s identity to evaluate the integrals
(a)

∫∞

−∞
dx

(1+x2)2

(b)
∫∞

−∞
sin2 x
x2 dx.

(5) Define the function hλ by

hλ(x) =

∫ ∞

−∞

e−λ|y|eiyxdy.

Prove that

(a) hλ(x) =
2λ

λ2 + x2
,

(b)

∫ ∞

−∞

hλ(x)dx = 2π.

(c) hλ(x) =
1

λ
h1

(x
λ

)
.

The convolution of two functions f and g is defined by

f ∗ g(x) =
∫ ∞

−∞

f(y)g(x− y)dy.

(d) Prove that if f is integrable, then for every λ > 0

f ∗ hλ(x) =
∫ ∞

−∞

e−λ|y|f̂(y)eixydy.



(e) Prove that for all f ∈ L1(R), limλ→0 f ∗ hλ = 2πf. Deduce
from this the Fourier inversion Theorem. (Hint: Consider
f ∗ hλ − 2πf ).

The function hλ is known as an approximation of the identity.

(6) Suppose that f ∈ L1(R) and that both f ′, f ′′ exist and are
continuous and integrable. Prove that the Fourier transform

f̂ ∈ L1(R).

(7) Suppose that f, fn ∈ L1([−π, π]) and that fn → f. Prove that

the Fourier coefficients satisfy f̂n → f̂ .

(8) Prove theWeierstrass approximation theorem: If f ∈ C([−π, π]),
then, given any ǫ > 0, there is a polynomial p(x) such that

sup
x∈[−π,π]

|f(x)− p(x)| < ǫ.

(Hint: Use a Fourier series).

(9) Let f be 2π periodic and integrable on [−π, π]. Let f̂(n) =
1
2π

∫ π

−π
f(x)e−ixndx.

(a) Show that f̂(n) = − 1

2π

∫ π

−π

f
(
x+

π

n

)
e−inxdx.

(b) Use the result of (a) and the DCT to prove that if f is

continuous, then f̂(n) → 0 as n → ∞. (Hint: Find an ex-

pression for 2f̂(n)).

(c) Prove that if for all x there is a C > 0 and 0 < α ≤ 1,

such that |f(x+h)−f(x)| ≤ C|h|α, then f̂(n) = O(1/|n|α).

(10) Let the Theta function be defined by

Θ(t) =

∞∑

n=−∞

e−tπk2 .

Prove that Θ(t) =
1√
t
Θ(

1

t
).
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Problem sheet ten.

(1) Prove that the product measure of two measures µ and ν is a
measure. That is, prove that (µ× ν)(A×B) ≥ 0 and

(µ× ν)(∪∞
i=1(Ai ×Bi) =

∞∑

i=1

(µ× ν)(Ai ×Bi).

(2) Let f(x, y) = (x2 − y2)/(x2 + y2)2 with f(0, 0) = 0. Evaluate

∫ 1

0

∫ 1

0

f(x, y)dxdy and

∫ 1

0

∫ 1

0

f(x, y)dydx.

Explain your answer.

(3) If λ, µ and ν are finite measures such that λ << ν and ν << µ,
show that

dλ

dµ
=
dλ

dν

dν

dµ
.

(4) Suppose that µ and ν are finite measures and that µ << ν and
ν << µ. Prove that

dµ

dν

dν

dµ
= 1.

(5) Calculate the moment generating function of a normal random
variable.

(6) Let λ be Lebesgue measure. Suppose that µ(E) =
∫
E
fdλ and

that the measure µ satisfies µ(aE) = µ(E) for all a > 0 and
each measurable subset E of (0,∞). The aim of this question
is to compute the Radon-Nikodym derivative f .
(i) Let E = [1, x]. What is aE?

(ii) Show that f satisfies
∫ x

1
f(t)dt =

∫ ax

a
f(t)dt

(iii) Show that f(x) = c/x for some constant c.

(7) Let X be a Banach space. Show that if L is a linear func-
tional on X and L is continuous at a ∈ X , then L is uniformly
continuous on the whole of X .



(8) Let (Ω,F , P ) be a probability space and let {An} be a sequence
of subsets of Ω. Define

lim
n→∞

An =

∞⋂

m=1

⋃

n≥m

An

= {ω : ω ∈ Anfor infinitely many n}.
Now suppose that each An is measurable. Prove the Borel-
Cantelli Lemma:

∞∑

n=1

P (An) <∞ ⇒ P (limn→∞An) = 0.

Conversely, if the An are P independent sets: P (An ∩ Am) =
P (An)P (Am); then

∞∑

n=1

P (An) = ∞ ⇒ P (limn→∞An) = 1.

(9) IfX and Y are independent prove that V ar(X+Y ) = V ar(X)+
V ar(Y ).

(10) If Xn are independent random variables on (Ω,F , P ), with
E(Xn) = µ, V ar(Xn) ≤ K < ∞ prove the weak law of large
numbers: 1

n

∑n
k=1Xk → µ in L2.

(11) Show that if X and Y are random variables on a probability

space, then d(X, Y ) = E
(

|X−Y |
1+|X−Y |

)
is a metric and that con-

vergence in d is equivalent to convergence in the probability
measure P .


