Modern Analysis

Problem sheet one.

- (1) Prove that the series $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2}$ is uniformly convergent on \mathbb{R} .
- (2) Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of functions on $X \subseteq \mathbb{R}$. How may we use the Weierstrass M test to prove that the sequence converges uninformly?
- (3) Prove Riemann's Criterion for the existence of the Riemann integral.
- (4) Prove that if f and g are Riemann integrable on [a, b], then

$$\int_{a}^{b} |f(x)g(x)| dx \le \left(\int_{a}^{b} |f(x)|^{2} dx\right)^{1/2} \left(\int_{a}^{b} |g(x)|^{2} dx\right)^{1/2}.$$

- (5) Prove Theorem 2.2 in the lecture notes.
- (6) From the definition of the Riemann-Stieltjes integral, prove that $\operatorname{RS} \int_0^1 x d(x^2) = \operatorname{R} \int_0^1 2x^2 dx.$
- (7) Calculate RS $\int_{-1}^{1} x^2 d(x|x|)$, RS $\int_{-1}^{1} x^2 d(x^2)$ and RS $\int_{0}^{1} \cos x d(\sin x)$.
- (8) Prove that if f is continuous and monotone increasing, then

RS
$$\int_{a}^{b} f(x)d(f(x)) = \frac{1}{2}(f(b)^{2} - f(a))^{2}.$$

(9) Use the Euler-Maclaurin formula to estimate the following quantities for large N.

(i)
$$\sum_{n=1}^{N} \frac{\sin(\sqrt{n})}{n}$$

(ii)
$$\gamma_N = \sum_{n=1}^{N} \frac{1}{n} - \ln N$$

- (10) Use the Euler-Maclaurin formula to prove the integral test for series convergence: If f is a continuous function on \mathbb{R} , then $\sum_{n=1}^{\infty} f(n)$ converges if and only if $\operatorname{R} \int_{1}^{\infty} f(x) dx < \infty$.
- (11) Calculate the sums $\sum_{k=1}^{n} k^2$, and $\sum_{k=1}^{n} k^3$.
- (12) Find $\lim_{n\to\infty} \operatorname{RS} \int_0^{\frac{\pi}{2}} (1-\frac{x}{n})^n d(\cos x).$

Modern Analysis

Problem sheet two.

- (1) Prove Theorem 3.11 in the lecture notes.
- (2) Prove that

$$m((0,1]) = \sum_{k=1}^{\infty} m\left(\left(\frac{1}{k+1}, \frac{1}{k}\right]\right).$$

- (3) Prove that any countable set is measurable and has measure zero.
- (4) What is the measure of the irrational numbers in [0, 1]?
- (5) Prove that if $m^*(A) = 0$ then A is measurable.
- (6) Prove Theorem 3.13 in the lecture notes.
- (7) Let $A \subset \mathbb{R}$ be a measurable set. For $h \in \mathbb{R}$, define $A + h = \{x + h | x \in A\}.$

Prove that A + h is measurable and m(A + h) = m(A).

- (8) Let E, F be measurable and assume $E \subset F$, with $m(F) < \infty$. Prove that m(F - E) = m(F) - m(E).
- (9) Show that for any two sets A, B with $A \cup B = [0, 1]$,

$$m^*(A) \ge 1 - m^*(B).$$

- (10) Let
 - $A = \{x \in [0, 1] : \text{no 5s occur in the decimal expansion of } x\}.$ Find $m^*(A)$.
- (11) Suppose that A is a bounded set and $m^*(A \cap I) \leq \frac{1}{2}m^*(I)$ for every interval I. Prove that $m^*(A) = 0$.
- (12) (Hard) Prove that intervals are measurable by verifying that the Caratheodory condition is satisfied.

Problem sheet three.

(1) Show that if A_1, A_2 are measurable then

 $m(A_1) + m(A_2) = m(A_1 \cup A_2) + m(A_1 \cap A_2).$

- (2) Let X be a nonempty set, and let $f : X \to [0, \infty)$ be a function. Let P(X) be the collection of all subsets of X. Define $\mu : P(X) \to [0, \infty)$ by $\mu(A) = \sum_{x \in A} f(x)$ if A is a nonempty, countable set, $\mu(A) = \infty$ is A is uncountable and $\mu(\emptyset) = 0$. Show that μ is a measure.
- (3) Consider the Cantor set. This is formed by taking the interval $C_1 = [0, 1]$ and removing the middle third (0, 1). So $C_2 = [0, 1/3] \cup [2/3, 1]$. Then remove the middle third from each of these intervals. So $C_3 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 5/9] \cup [8/9, 1]$. Continue this process indefinitely. The Cantor set is defined to be

$$C = \bigcap_{n=1}^{\infty} C_n$$

Prove that the Cantor set is nonempty, with infinitely many points and that m(C) = 0. In fact the Cantor set is uncountable. So it provides an example of an uncountable set of Lebesgue measure zero.

- (4) Show that a countable union of sets of measure zero has measure zero.
- (5) If m^* is Lebesgue outer measure on \mathbb{R} and A is a null set (one with outer measure zero), then

$$m^*(B) = m^*(A \cup B) = m^*(B \setminus A)$$

holds for every subset B of \mathbb{R} .

(6) Let m^* be outer measure on \mathbb{R} . If a sequence of subsets $\{A_n\}$ of \mathbb{R} satisfies $\sum_{n=1}^{\infty} m^*(A_n) < \infty$, then the set

 $E = \{ x \in X : x \in A_n \text{ for infinitely many } n \},\$

is a null set.

- (7) Prove that χ_A is measurable if and only if A is measurable.
- (8) Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuous and $g : \mathbb{R} \to \mathbb{R}$ is measurable. Prove that the composition $f \circ g$ is also measurable.
- (9) Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function. Show that the derivative f' is Lebesgue measurable.

Problem sheet four.

(1) Consider a sequence of functions (f_n) , where each $f_n : \mathbb{R} \to \mathbb{R}$ is measurable. Let f be a measurable function. The sequence (f_n) is said to converge in measure to f if, for any $\epsilon > 0$,

$$\lim_{n \to \infty} m[\{x : |f_n(x) - f(x)| \ge \epsilon\}] = 0.$$

Prove that if $f_n \to f$ uniformly, then (f_n) converges in measure to f.

- (2) Let (f_n) and (g_n) be sequences of almost everywhere real, measurable functions, that converge in measure to f and g respectively. Let a, b be real numbers. Prove the following.
 - (i) $(af_n + bg_n)$ converges in measure to af + bg.
 - (ii) $(|f_n|)$ converges in measure to |f|.
 - (iii) $(f_n g_n)$ converges in measure to (fg), on X with $m(X) < \infty$.
 - (iv) $(f_n g)$ converges in measure to (fg), on X with $m(X) < \infty$.
- (3) Prove that if $k \leq f \leq K$ a.e. on a measurable set E, then

$$km(E) \le \int_E f \le Km(E).$$

- (4) Let f be an integrable function that is positive everywhere on a measurable set E. If $\int_E f = 0$ prove that m(E) = 0.
- (5) Prove that $\int_0^\infty \sin(x^2) dx$ is not Lebesgue integrable, but exists as an improper Riemann integral.
- (6) Let $f : [0,1] \to \mathbb{R}$ be Lebesgue integrable. Assume that f is differentiable at x = 0 and f(0) = 0. Show that the function defined by $g(x) = x^{-\frac{3}{2}}f(x)$ for all $x \in (0,1]$ and g(0) = 0 is Lebesgue integrable.
- (7) Find the Lebesgue integral over [0, 1] of the function

$$f(x) = \begin{cases} x^3 + 5x, & x \in [0, 1] - \mathbb{Q} \\ 2x^2, & x \in [0, 1] \cap \mathbb{Q}. \end{cases}$$

Problem sheet five.

(1) Prove that if $\varphi(x)$ is a continuous nondecreasing function in [a, b], then $\varphi'(x)$ is Lebesgue integrable and

$$\int_{a}^{b} \varphi'(x) dx \le \varphi(b) - \varphi(a).$$

(2) Show that

$$\lim_{n \to \infty} \int_0^n \left(1 + \frac{x}{n} \right)^n e^{-2x} dx = 1.$$

(3) Show that for $t \ge 0$

$$\int_0^\infty e^{-xt} \frac{\sin x}{x} dx = \frac{\pi}{2} - \tan^{-1} t.$$

(4) Prove that if f is continuously differentiable, then

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} f(x) \sin(nx) dx = 0$$

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = 0$$

and

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = 0.$$

(5) Assume that $f : [a, \infty) \to \mathbb{R}$ is Riemann integrable on every closed subinterval of $[a, \infty)$. Prove that $\int_a^\infty f(x)dx$ exists as an improper Riemann integral, if and only if for every $\epsilon > 0$ there exists an M such that $\left| \int_s^t f(x)dx \right| < \epsilon$ for all s, t > M.

The previous result is useful because of the following theorem which you may assume. Let $f : [a, \infty) \to \mathbb{R}$ be Riemann integrable on every closed subinterval of $[a, \infty)$. Then f is Lebesgue integrable if and only if the improper Riemann integral $\int_a^{\infty} |f(x)| dx$ exists. In this case

$$L\int fdm = R\int_{a}^{\infty} f(x)dx.$$

(6) Show that

$$\int_0^\infty \frac{\sin^2 x}{x^2} dx = \frac{\pi}{2}$$

(Integrate by parts and use the convergence theorems).

(7) Let $f : [a, b] \to \mathbb{R}$ be a differentiable function with the left and right limits of the derivatives defined at the end points. If the derivative f' is bounded on [a, b], prove that f' is Lebesgue integrable and

$$\int_{[a,b]} f'dm = f(b) - f(a).$$

- (8) Show that $f(x) = \frac{\ln x}{x^2}$ is Lebesgue integrable over $[1, \infty)$ and that $\int f dm = 1$.
- (9) Let $f : [0, \infty) \to \mathbb{R}$ be a continuous function such that $\lim_{x\to\infty} f(x) = \delta$. Show that

$$\lim_{n \to \infty} \int_0^a f(nx) dx = a\delta$$

for each a > 0.

37438 Problem sheet six.

(1) Calculate
$$\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} dx.$$

(2) Calculate $\int_0^1 \frac{x-1}{\ln x} dx.$ Hint, look at $\int_0^1 \frac{x^{p-1}}{\ln x} dx.$
(3) Evaluate $\int_0^\infty e^{-\alpha^2 x^2 - \beta^2 / x^2} dx.$

(4) Let $f : \mathbb{R} \to \mathbb{R}$ be *n* times differentiable and assume that $f^{(n)}$ is integrable for all *n*. Prove that

$$\widehat{f^{(n)}}(y) = (iy)^n \widehat{f}(y).$$

(5) Let $f : \mathbb{R} \to \mathbb{R}$ be such that xf(x) is Lebesgue integrable. Prove that

$$\widehat{xf(x)}(y) = i\frac{d}{dy}\widehat{f}(y).$$

(6) Solve the differential equation

$$u'(x) + xu(x) = 0, \ u(0) = \sqrt{2\pi}.$$

Now take the Fourier transform of this equation and hence show that $\sum_{i=1}^{\infty} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^$

$$\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} e^{-iyx} dx = \sqrt{2\pi} e^{-\frac{y^2}{2}}.$$

(7) Compute the Fourier transform of (i) $f(x) = xe^{-x^2}$.

(ii)
$$f(x) = e^{-|x|}$$
.

(iii)
$$f(x) = \frac{1}{x^4 + 1}$$
.

37438 Problem sheet seven.

(1) Show that if d(x, y) is a metric on a space X, then

$$\rho(x,y) = \frac{d(x,y)}{1+d(x,y)}$$

is also a metric on X.

(2) Assume that two vectors $x, y \in X$ where X is a normed linear space satisfy the relation ||x + y|| = ||x|| + ||y||. Show that for all non negative scalars α, β we have

$$\|\alpha x + \beta y\| = \alpha \|x\| + \beta \|y\|.$$

- (3) It is true that every norm defines a metric by d(x, y) = ||x y||. Show by example that not every metric defines a norm.
- (4) Let $f: X \to \mathbb{R}$.

 $||f||_{\infty} = \inf\{M : |f(x)| \le M \text{ holds for almost all } x\}.$

Prove the following.

- (i) If f = g a.e., then $||f||_{\infty} = ||g||_{\infty}$.
- (ii) $||f||_{\infty} \ge 0$ for each function f, and $||f||_{\infty} = 0$ if and only if f = 0 a.e.
- (iii) $||af|| = |a|||f||_{\infty}$ for all scales a.
- (iv) $||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$
- (v) If $|f| \le |g|$ then $||f||_{\infty} \le ||g||_{\infty}$.
- (5) Two norms $||x||_1$ and $||x||_2$ on a vector space X are said to be equivalent if there exist constants K > 0 and M > 0 such that

$$K||x||_1 \le ||x||_2 \le M||x||_1.$$

Prove that on a finite dimensional vector space all norms are equivalent.

(6) Let $C^1[0,1]$ be the vector space of all real valued functions on [0,1] with continuous first derivative. Show that $||f|| = |f(0)| + ||f'||_{\infty}$ is a norm and that it is equivalent to the norm

$$||f||_A = ||f||_{\infty} + ||f'||_{\infty}$$

Hint: $f(x) = f(0) + \int_0^x f'(t) dt$.

(7) let X, Y be normed linear spaces. An operator $T: X \to Y$ is said to be bounded if there exists K > 0 such that

$$||T(x)||_Y \le K ||x||_E.$$

Consider C[a, b] with the norm defined in question 4. Let K: $[a, b] \times [a, b] \to \mathbb{R}$ be a continuous function. Show that

$$T(f)(x) = \int_{a}^{b} K(x, y) f(y) dy$$

is a bounded linear operator. i.e There exists M > 0 such that $||Tf||_{\infty} \leq M ||f||_{\infty}$ for all $f \in C[a, b]$.

(8) Let $D : C^1[0,1] \to C^1[0,1]$ be given by Df = f'. Use the norm of question 4 and show that with respect to this norm, differentiation is an unbounded linear operator. (Hint. Find an example of a function whose norm grows with derivatives).

37438 Problem sheet eight.

- (1) Show that in a real inner product space (x, y) = 0 holds if and only if $||x + y||^2 = ||x||^2 + ||y||^2$. Does the same result hold if we allow the inner product to be complex valued?
- (2) Assume that the sequence $\{x_n\}$ in an inner product space satisfies $(x_n, x) \to ||x||^2$ and $||x_n|| \to ||x||$. Show that $x_n \to x$.
- (3) A sequence $\{x_n\}$ in a Hilbert space H is said to converge weakly to x in H if $(x_n, y) \to (x, y)$ for all $y \in H$.
 - Show that if a sequence is convergent it is also weakly convergent.
 - (ii) Show that if a sequence is weakly convergent, then the limit is unique.
 - (iii) Show by an example that a sequence may be weakly convergent, but not convergent.
- (4) Let *H* be a Hilbert space with inner product $(\cdot, \cdot) : H \times H \to \mathbb{C}$. Prove that for all $x, y \in H$

$$(x,y) = \frac{1}{4} \left([\|x+y\|^2 - \|x-y\|^2] + i[\|x+iy\|^2 - \|x-iy\|^2] \right).$$

This is known as the polarisation identity and it used to recover the inner product from the norm.

- (5) Given an example of a function f such that $f \in L^2(\mathbb{R})$ but $f \notin L^1(\mathbb{R})$. Then find an example of a function such that $f \in L^1(\mathbb{R})$, but $f \notin L^2(\mathbb{R})$.
- (6) Let [a, b] be a closed, bounded interval. Define the spaces $L^{p}([a, b])$ in the obvious way. If $f \in L^{1}([a, b])$ does it follow that $f \in L^{2}([a, b])$? What about the converse?
- (7) Let p > 1, $p \neq 2$ and suppose that $\frac{1}{p} + \frac{1}{q} = 1$. Suppose that $f \in L^p(\mathbb{R})$ and $f \in L^q(\mathbb{R})$. Prove that $f \in L^2(\mathbb{R})$.
- (8) Let $f \in L^2([0,1])$ satisfy $||f||_2 = 1$ and $\int_0^1 f(x)dx \ge \alpha > 0$. For each $\beta \in \mathbb{R}$, define $E_\beta = \{x \in [0,1] : f(x) \ge \beta\}$. If $0 < \beta < \alpha$ show that $m(E_\beta) \ge (\beta - \alpha)^2$. (Hint: This uses Hölder's inequality. Note that $f - \beta \le (f - \beta)\chi_{E_\beta} \le f\chi_{E_\beta}$.)
- (9) Suppose that $\{\phi_n\}$ is an orthonormal set in the Hilbert space $L^2([-1,1])$. Show that the sequence $\{\psi_n\}$ defined by

$$\psi_n(x) = \left(\frac{2}{b-a}\right)^{1/2} \phi_n\left(\frac{2}{b-a}\left(x-\frac{b+a}{2}\right)\right)$$

is an orthonormal set in $L^2([a, b])$.

(10) Let $1 \leq p < \infty$ and suppose $f \in L^p([a, b])$, where a < b, $a, b \in \mathbb{R}^*$ and let $\epsilon > 0$. Show that

$$m^*(\{x \in [a,b] : |f(x)| \ge \epsilon\}) \le \epsilon^{-p} \int_a^b |f(x)|^p dx.$$

where m^* is Lebesgue outer measure.

(11) Let $1 \leq p < \infty$ and suppose $\{f_n\}$ is a sequence in $L^p([a, b])$, where $a < b, a, b \in \mathbb{R}^*$. Prove that if $||f_n - f||_p \to 0$ as $n \to \infty$, then $f_n \to f$ in measure.

37438 Modern Analysis 37438 Problem sheet nine.

(1) Solve the PDE

 $u_t = u_{xx} + h(x), \quad h \in L^1(\mathbb{R}), \ x \in \mathbb{R}$

subject to the initial condition u(x,0) = f(x) and the assumption that $u(x,t), u_x(x,t) \to 0$ as $|x| \to \infty$.

(2) Solve the Poisson equation

 $u_{xx} + u_{yy} = h(x), \quad h \in L^1(\mathbb{R}) \quad x \in \mathbb{R}, \ y \ge 0$

subject to the condition u(x,0) = f(x) and the assumption that $u(x,y), u_x(x,y) \to 0$ as $|x| \to \infty$.

(3) Solve the integral equation

$$u(x) = h(x) + \int_{-\infty}^{\infty} k(x - y)u(y)dy,$$

where h and k and their Fourier transforms are integrable.

(4) Use Parseval's identity to evaluate the integrals (a) $\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^2}$

(b)
$$\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx.$$

(5) Define the function h_{λ} by

$$h_{\lambda}(x) = \int_{-\infty}^{\infty} e^{-\lambda|y|} e^{iyx} dy.$$

Prove that

(a)
$$h_{\lambda}(x) = \frac{2\lambda}{\lambda^2 + x^2}$$
,
(b) $\int_{-\infty}^{\infty} h_{\lambda}(x) dx = 2\pi$.
(c) $h_{\lambda}(x) = \frac{1}{\lambda} h_1\left(\frac{x}{\lambda}\right)$.

2)

The convolution of two functions f and g is defined by

$$f * g(x) = \int_{-\infty}^{\infty} f(y)g(x-y)dy.$$

(d) Prove that if f is integrable, then for every $\lambda > 0$

$$f * h_{\lambda}(x) = \int_{-\infty}^{\infty} e^{-\lambda|y|} \hat{f}(y) e^{ixy} dy.$$

(e) Prove that for all $f \in L^1(\mathbb{R})$, $\lim_{\lambda \to 0} f * h_\lambda = 2\pi f$. Deduce from this the Fourier inversion Theorem. (Hint: Consider $f * h_\lambda - 2\pi f$).

The function h_{λ} is known as an approximation of the identity.

- (6) Suppose that $f \in L^1(\mathbb{R})$ and that both f', f'' exist and are continuous and integrable. Prove that the Fourier transform $\widehat{f} \in L^1(\mathbb{R})$.
- (7) Suppose that $f, f_n \in L^1([-\pi, \pi])$ and that $f_n \to f$. Prove that the Fourier coefficients satisfy $\widehat{f}_n \to \widehat{f}$.
- (8) Prove the Weierstrass approximation theorem: If $f \in C([-\pi, \pi])$, then, given any $\epsilon > 0$, there is a polynomial p(x) such that

$$\sup_{\in [-\pi,\pi]} |f(x) - p(x)| < \epsilon.$$

(Hint: Use a Fourier series).

x

- (9) Let f be 2π periodic and integrable on $[-\pi,\pi]$. Let $\widehat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ixn} dx$.
 - (a) Show that $\widehat{f}(n) = -\frac{1}{2\pi} \int_{-\pi}^{\pi} f\left(x + \frac{\pi}{n}\right) e^{-inx} dx.$
 - (b) Use the result of (a) and the DCT to prove that if f is continuous, then $\widehat{f}(n) \to 0$ as $n \to \infty$. (Hint: Find an expression for $2\widehat{f}(n)$).
 - (c) Prove that if for all x there is a C > 0 and $0 < \alpha \le 1$, such that $|f(x+h) - f(x)| \le C|h|^{\alpha}$, then $\widehat{f}(n) = O(1/|n|^{\alpha})$.
- (10) Let the Theta function be defined by

$$\Theta(t) = \sum_{n = -\infty}^{\infty} e^{-t\pi k^2}$$

Prove that $\Theta(t) = \frac{1}{\sqrt{t}}\Theta(\frac{1}{t}).$

37438 Modern Analysis

Problem sheet ten.

(1) Prove that the product measure of two measures μ and ν is a measure. That is, prove that $(\mu \times \nu)(A \times B) \ge 0$ and

$$(\mu \times \nu)(\bigcup_{i=1}^{\infty} (A_i \times B_i)) = \sum_{i=1}^{\infty} (\mu \times \nu)(A_i \times B_i).$$

(2) Let $f(x,y) = (x^2 - y^2)/(x^2 + y^2)^2$ with f(0,0) = 0. Evaluate

$$\int_{0}^{1} \int_{0}^{1} f(x, y) dx dy \text{ and } \int_{0}^{1} \int_{0}^{1} f(x, y) dy dx.$$

Explain your answer.

(3) If λ, μ and ν are finite measures such that $\lambda \ll \nu$ and $\nu \ll \mu$, show that

$$\frac{d\lambda}{d\mu} = \frac{d\lambda}{d\nu} \frac{d\nu}{d\mu}.$$

(4) Suppose that μ and ν are finite measures and that $\mu \ll \nu$ and $\nu \ll \mu$. Prove that

$$\frac{d\mu}{d\nu}\frac{d\nu}{d\mu} = 1.$$

- (5) Calculate the moment generating function of a normal random variable.
- (6) Let λ be Lebesgue measure. Suppose that $\mu(E) = \int_E f d\lambda$ and that the measure μ satisfies $\mu(aE) = \mu(E)$ for all a > 0 and each measurable subset E of $(0, \infty)$. The aim of this question is to compute the Radon-Nikodym derivative f. (i) Let E = [1, x]. What is aE?

(i) Let
$$E = [1, x]$$
. What is aE^{*}

- (ii) Show that f satisfies $\int_1^x f(t)dt = \int_a^{ax} f(t)dt$
- (iii) Show that f(x) = c/x for some constant c.
- (7) Let X be a Banach space. Show that if L is a linear functional on X and L is continuous at $a \in X$, then L is uniformly continuous on the whole of X.

(8) Let (Ω, \mathcal{F}, P) be a probability space and let $\{A_n\}$ be a sequence of subsets of Ω . Define

$$\overline{\lim_{n \to \infty}} A_n = \bigcap_{m=1}^{\infty} \bigcup_{n \ge m} A_n$$
$$= \{ \omega : \omega \in A_n \text{ for infinitely many } n \}.$$

Now suppose that each A_n is measurable. Prove the Borel-Cantelli Lemma:

$$\sum_{n=1}^{\infty} P(A_n) < \infty \Rightarrow P(\overline{\lim}_{n \to \infty} A_n) = 0.$$

Conversely, if the A_n are P independent sets: $P(A_n \cap A_m) = P(A_n)P(A_m)$; then

$$\sum_{n=1}^{\infty} P(A_n) = \infty \Rightarrow P(\overline{\lim}_{n \to \infty} A_n) = 1.$$

- (9) If X and Y are independent prove that Var(X+Y) = Var(X) + Var(Y).
- (10) If X_n are independent random variables on (Ω, \mathcal{F}, P) , with $E(X_n) = \mu$, $Var(X_n) \leq K < \infty$ prove the weak law of large numbers: $\frac{1}{n} \sum_{k=1}^n X_k \to \mu$ in L^2 .
- (11) Show that if X and Y are random variables on a probability space, then $d(X,Y) = E\left(\frac{|X-Y|}{1+|X-Y|}\right)$ is a metric and that convergence in d is equivalent to convergence in the probability measure P.