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September 13, 2021

With a focus on the theorems and their proofs, these notes have fewer examples than given in the lecture,
but the proofs will be more explicit.
The exam will be a 20 minute oral exam. It will consist of two or three questions where we have to prove
some results.
The lecture slides and a script is provided at the professors home page https://people.math.ethz.ch/
˜fdalio/MASSundINTEGRALFS21.

1 Measure spaces
If we naively try to define a notion of measure that has some intuitive properties, we can run into some
problems that give paradoxical results. The Riemann Integral we saw in Analysis I/II also had some
drawbacks of not being general enough. We can use measure theory to define a better definition of the
integral.

1.1 Algebras and σ-Algebras
From now on, let X denote a non-empty set.

Definition 1.1.1. For a sequence of subsets (An)∞n=1 in P(X). We define

lim sup
n→∞

An :=
∞⋂
n=1

∞⋃
m=n

Am

lim inf
n→∞

An :=
∞⋃
n=1

∞⋂
m=n

Am

And if they are equal, we say that the sequence (An)∞n=1 converges to its limit limn→∞An.

Informally, the lim sup consists of elements of X that occur in infinitely many An, whereas the lim inf
consists of elements that occur for all but finitely many An.

Remark 1.1.2.

(a) lim infn→∞An ⊆ lim supn→∞An

(b) If An ⊆ An+1 for all n ∈ N, then

lim
n→∞

An =
∞⋃
n=1

An

(c) If An ⊇ An+1 for all n ∈ N, then

lim
n→∞

An =
∞⋂
n=1

An

The similarity in names with the lim sup and lim inf from Analysis can be seen using the characteristic
function

1A : X → {0, 1}

1A(x) =
{

1 x ∈ A
0 x /∈ A
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1.2 Measures September 13, 2021

It holds that

lim sup
n→∞

An = A ⇐⇒ lim sup
n→∞

1An = 1A

lim inf
n→∞

An = A ⇐⇒ lim inf
n→∞

1An = 1A

where the lim sup and lim inf on the left are as in Definition 1.1.1 and the ones on the right are the ones
from Analysis.

Definition 1.1.3 (Algebras of sets). A collection of subsets A ⊆ P(X) is called an algebra in X if

(a) X ∈ A

(b) A,B ∈ A =⇒ A ∪B ∈ A

(c) A ∈ A =⇒ Ac ∈ A

An algebra E is called a σ-algebra, if for any sequence (An)∞n=1 in E we have ⋃∞n=1An ∈ E

Note that using the De Morgan’s identity( ∞⋃
n=1

An

)c
=
∞⋂
n=1

Acn

we can see that algebras (σ-algebras) are stable under finite (infinite) intersections aswell.

Definition 1.1.4. For a collection of sets K ⊆ P(X), the intersection of all σ-algebras containing K forms
again a σ-algebra.
We call this the σ-algebra generated by K and it its the smallest σ-algebra that contains K.
The algebra generated by the open sets of a topology is called the Borel σ-Algebra of X, denoted B(X).

1.2 Measures
Definition 1.2.1. Let A be an Algebra on X and µ : A → [0,∞]. We say that µ is

• additive, if for any finite family of disjoint sets A1, . . . , An ∈ A

µ

(
n⊔
k=1

Ak

)
=

n∑
k=1

µ(Ak)

• σ-additive, if for any countable family of disjoint sets (An)n∈N ⊆ A such that ⊔∞k=1Ak ∈ A

µ

( ∞⊔
k=1

Ak

)
=
∞∑
k=1

µ(Ak)

• A pre-measure, if it is σ-additive and satisfies µ(∅) = 0.

Remark 1.2.2. Let (An)n∈N be a sequence of sets in A such that their union is again in A.

(a) If µ is additive, then it is monotone with respect to incusion, i.e. A ⊆ B =⇒ µ(A) ≤ µ(B).
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(b) If µ is additive and the sets Ak are mutually disjoint, then

µ

( ∞⊔
k=1

Ak

)
≥
∞∑
k=1

µ(Ak)

(c) If µ is σ-additive, then it is also σ-subadditive, which means that for any sequence (An)n∈N in A
with ⋃∞k=1Ak ∈ A

µ

( ∞⋃
k=1

Ak

)
≤
∞∑
k=1

µ(Ak)

To see this, we can define the mutually disjoint sets

B1 = A1, Bn = An \
n−1⋃
k=1

Ak ∈ A

Since ⊔∞k=1Bk = ⋃∞
k=1Ak and µ(Bk) ≤ µ(Ak) we have

µ

( ∞⋃
k=1

Ak

)
= µ

( ∞⊔
k=1

Bk

)
=
∞∑
k=1

µ(Bk) ≤
∞∑
k=1

µ(Ak)

It follows immediately from (b) and (c) that

µ is additive and σ-subadditive ⇐⇒ µ is σ-additive

Example 1.2.3. Not all additive functions are σ-additive. For X = N and

A = {A ∈ P(X)
∣∣A is finite or Ac is finite}

the function ν : A → [0,∞] with ν(∅) = 0 and

ν(A) =


∑
n∈A

1
2n if A is finite

∞ if Ac is finite

is additive but not σ-additive because we can take the sequence

A1 = {1}, A2 = {2}, A3 = {3}, . . . , An = {n}, . . .

which is a sequence of mutually disjoint sets satsfying

ν(A1) = 1
2 , ν(A2) = 1

4 , . . . , ν(An) = 1
2n

=⇒ ν

( ∞⊔
n=1

An

)
= ν(N) =∞ 6≤

∞∑
n=1

ν(An) = 1

Definition 1.2.4. A σ-additive function µ : A → [0,∞] is called

• finite, if µ(X) <∞
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• σ-finite, if there exists a sequence (An)n∈N ⊆ A such that
∞⋃
n=1

An = X and µ(An) <∞ ∀n ∈ N

Clearly, µ finite =⇒ µ σ-finite.
While pre-measures are only defined on algebras A ⊆ P(X), we would like to extend the domain of
such functions to P(X) without losing too many of its nice properties. In particular, we want to keep
monotonicity and σ-subadditivity:

Definition 1.2.5. A function µ : P(X)→ [0,∞] is called a measure1 on X, if

(a) µ(∅) = 0

(b) µ is σ-subadditive: If A ⊆ ⋃∞k=1Ak, then µ(A) ≤∑∞k=1 µ(Ak)

Note that subadditivity implies monotonicity with respect to inclusion, i.e. A ⊆ B =⇒ µ(A) ≤ µ(B).

Definition 1.2.6. Let µ be a measure on X and A ⊆ X. We can restrict µ to A (written µ A) defined
by

(µ A)(B) := µ(A ∩B) ∀B ⊆ X

Definition 1.2.7 (Carathéodory criterion). A subset A ⊆ X is called µ-measurable if

µ(B) = µ(B ∩A) + µ(B \A), ∀B ⊆ X

Remark 1.2.8. (a) By subadditivity of the measure, the definition is equivalent to

µ(B) ≥ µ(B ∩A) + µ(B \A), ∀B ⊆ X

(b) If µ(A) = 0, then A is µ-measurable:

µ(B ∩A) + µ(B \A) ≤ µ(A) + µ(B) = µ(B)

Theorem 1.2.9. Let µ : P(X)→ [0,∞] be a measure. Then the collection of measurable sets

Σ = {A ⊆ X
∣∣A is µ-measurable}

forms a σ-algebra.

Proof.

• X ∈ Σ: Let B ⊆ X. It’s trivial to see that

µ(B ∩X) + µ(B \X) = µ(B) + µ(∅) = µ(B)

• A ∈ Σ =⇒ Ac ∈ Σ: With the equalities

B ∩Ac = B \A, and B \Ac = B ∩A

we get

µ(B ∩Ac) + µ(B \Ac) = µ(B \A) + µ(B ∩A) A∈Σ= µ(B)
1sometimes also called outer measure
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• A1, A2 ∈ Σ =⇒ A1 ∪A2 ∈ Σ:
Let B ⊆ X. From the previous remark, it is sufficient to just show the inequality

µ(B) ≥ µ
(
B ∩ (A1 ∪A2)

)
+ µ

(
B \ (A1 ∪A2)

)
Using µ-measurability for A1 on the test set B \A2, we see

µ(B \A2) = µ
(
(B \A2) ∩A1

)
+ µ

(
(B \A2) \A1

)
= µ

(
(B \A2) ∩A1

)
+ µ

(
B \ (A2 ∪A1)

)
so with the decomposition

(B ∩A2) ∪
(
(B \A2) ∩A1

)
= B ∩ (A1 ∪A2)

and subadditivity of the measure, we get

µ(B) = µ(B ∩A2) + µ(B \A2)
= µ(B ∩A2) + µ

(
(B \A2) ∩A1

)
+ µ

(
B \ (A2 ∪A1)

)
≥ µ

(
B ∩ (A2 ∪A1)

)
+ µ

(
B \ (A2 ∪A1)

)
• (An)n∈N ⊆ Σ =⇒ A = ⋃∞

n=1An ∈ Σ:
We can assume without loss of generality that the sets are mutually disjoint. Otherwise, consider
the sequence

(
Ãn
)
n∈N
⊆ Σ given by

Ã1 := A1, Ãn := An \
n−1⋃
k=1

Ak which satisfy
∞⊔
k=1

Ãk =
∞⋃
k=1

Ak.

We can use µ-measureability of Am with the test set B ∩⋃mk=1Ak to find that by induction on m

µ

(
B ∩

m⊔
k=1

Ak

)
= µ

((
B ∩

m⊔
k=1

Ak

)
∩Am

)
+ µ

((
B ∩

m⊔
k=1

Ak

)
\Am

)

= µ(B ∩Am) + µ

(
B ∩

m−1⊔
k=1

Ak

)

=
m∑
k=1

µ(B ∩Ak)

and using monotonicity of µ on the inclusion ⊔mk=1Ak ⊆ A it follows that

µ(B) = µ

(
B ∩

m⊔
k=1

Ak

)
+ µ

(
B \

m⊔
k=1

Ak

)

≥
m∑
k=1

µ(B ∩Ak) + µ(B \A)

for all m ∈ N. Taking the limit m→∞, we get

µ(B) ≥
∞∑
k=1

µ(B ∩Ak) + µ(B \A)

≥ µ(B ∩A) + µ(B \A)

which shows µ-measurability of A.
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Definition 1.2.10. A measure space is a tuple (X,Σ, µ) consisting of measure µ on a set X and the
σ-algebra of µ-measurable sets Σ.

Example 1.2.11. The following are measure spaces:

• For every x ∈ X,A ⊆ X, define the Dirac measure at x

δx(A) =
{

1 x ∈ A
0 x /∈ A

Every A is δx-measurable.

• For every A ∈ P, the counting measure is a measure, where every subset is µ-measurable:

µ(A) =
{
|A| if A is finite
∞ otherwise

Every A is µ-measurable.

• The indiscrete measure given by

µ(A) =
{

1 A 6= ∅
0 A = ∅

only has ∅, X as µ-measurable sets.

The Carathéodory criterion of µ-measurable sets and the σ-subadditivity of the measure give us some nice
properties back.

Theorem 1.2.12. Let (X,Σ, µ) be a measure space and (An)n∈N ⊆ Σ. Then the following are true

(a) µ is σ-additive.

(b) Continuity from below:

A1 ⊆ A2 ⊆ . . . ⊆ An ⊆ An+1 ⊆ . . . =⇒ µ

( ∞⋃
n=1

An

)
= lim

n→∞
µ(An)

(c) Continuity from above:

µ(A1) <∞, A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ An+1 ⊇ . . . =⇒ µ

( ∞⋂
n=1

An

)
= lim

n→∞
µ(An)

Proof. (a) Let (An)n∈N be a sequence of mutually disjoint sets. In the proof of the previous theorem,
we already saw

µ

(
B ∩

m⊔
k=1

Ak

)
=

m∑
k=1

µ(B ∩Ak)
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so in particular, for B = X, we see

µ

(
m⊔
k=1

Ak

)
=

m∑
k=1

µ(Ak)

By monotonicity of µ, we have

µ

( ∞⊔
k=1

Ak

)
≥ lim

m→∞
µ

(
m⊔
k=1

Ak

)
= lim

m→∞

m∑
k=1

µ(Ak) =
∞∑
k=1

µ(Ak)

The other inequality (and thus equality) follow from σ-subadditivity of the measure.

(b) Let (An)n∈N be an increasing sequence. Define the pairwise disjoint family

Ã1 := A1, Ãk := Ak \Ak−1 =⇒ µ(Ãk) = µ(Ak)− µ(Ak−1),
∞⊔
k=1

Ãk =
∞⋃
k=1

Ak,

from σ-additivity, summation into a telescoping sum

µ

( ∞⋃
k=1

Ak

)
= µ

( ∞⊔
k=1

Ãk

)
=
∞∑
k=1

µ(Ãk)

= µ(Ã1) + lim
m→∞

∑
k=2

µ(Ak)− µ(Ak−1)

= lim
m→∞

µ(Am)

(c) Let (An)n∈N be a decreasing sequence. Consider instead the increasing sequence Ã1 ⊆ Ã2 ⊆ . . .
given by

Ã1 := ∅, Ãk := A1 \Ak =⇒ µ(A1) = µ(Ak) + µ(Ãk),
∞⋃
k=1

Ãk = A1 \
∞⋂
k=1

Ak

by (b), we find

µ(A1)− lim
k→∞

µ(Ak) = lim
k→∞

µ(Ãk)

(b)= µ

( ∞⋃
k=1

Ãk

)
= µ

(
A1 \

∞⋂
k=1

Ak

)

= µ(A1)− µ
( ∞⋂
k=1

Ak

)

The condition µ(A1) in (c) is necessary. Consider the example X = N with the counting-measure and the
sequence An := {m ∈ N

∣∣m ≥ n}. The intersections converge to the emtpy set, but the µ(Ak) is always ∞.
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1.3 Construction of Measures
Let X be non-empty set.

Definition 1.3.1. A collection of subsets K ⊆ P(X) is called a covering of X if

∅ ∈ K and ∃(Kj)j∈N ⊆ K : X =
∞⋃
j=1

Kj

Example 1.3.2. The collection of higher-dimensional open intervals

{
n∏
k=1

(ak, bk)
∣∣ak ≤ bk ∈ R}

are a covering of Rn.
It is easy to see that every Algebra A of X is a covering since ∅, X ∈ A.

Theorem 1.3.3. Let K be a covering of X and λ : K → [0,∞] and any function with λ(∅) = 0.
Then this induces a measure µ on X given by

µ(A) = inf


∞∑
j=1

λ(Kj)
∣∣Kj ∈ K, A ⊆

∞⋃
j=1

Kj


Proof. Let A ⊆ ⋃∞k=1Ak. We show σ-subadditivity of µ, i.e µ(A) ≤∑∞k=1 µ(Ak).
If the right-hand side is infinite, then the inequality is trivial, so assume it is finite.
By definition of µ, for all k ∈ N and ε > 0 there exists a sequence (Kj,k)j∈N in K such that

Ak ⊆
∞⋃
j=1

Kj,k and
∞∑
j=1

λ(Kj,k) ≤ µ(Ak) + ε

2k

Taking the union over all sequences for each k, we get

A ⊆
∞⋃

j,k=1
Kj,k and µ(A) ≤

∑
j,k

λ(Kj,k) ≤ ε+
∞∑
k=1

µ(Ak)

Since ε > 0 was arbitrary, subadditivity follows.

Example 1.3.4. Set K = {∅, X} and define λ(∅) = 0, λ(X) = 1.
The induced measure is defined by µ(A) = 0 if A = ∅ and µ(A) = 1 if A 6= ∅.

The function λ in the previous theorem only had minimal restrictions (K had to be a covering and
λ : K → [0,∞] with λ(∅) = ∅).
It turns out that if λ and K are nice enough, then the induced measure is a σ-additive extension of λ.
Nice-enough here means that K is an algebra and λ is a pre-measure.
Recall that given an algebra A ⊆ P(X), a function λ : A → [0,∞] is called a pre-measure if it is
σ-additive and satisifes λ(∅) = 0.
Given a pre-measure λ on A, we can obtain a measure µ on P(X) that coincides with λ on A, i.e. µ
extends λ.
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Theorem 1.3.5 (Carathéodory-Hahn extension). Let λ : A → [0,∞] be a pre-measure on X. Then for

µ : P(X)→ [0,∞], µ(A) := inf
{ ∞∑
k=1

λ(Ak)
∣∣A ⊆ ∞⋃

k=1
Ak, Ak ∈ A

}

it holds that

(a) µ : P → [0,∞] is a measure.

(b) µ(A) = λ(A), ∀A ∈ A

(c) All A ∈ A are µ-measurable, i.e. satisfy µ(B) ≥ µ(B ∩A) + µ(B \A), ∀B ⊆ X.

Proof. (a) Because algebras are also coverings, we can just use the previous theorem.

(b) Let A ∈ A. Since A itself contains A, the term λ(A) is present in the right hand side, so µ(A) ≤ λ(A).
Now assume there is some other collection ⋃∞k=1Ak that contains A with Ak ∈ A. By inductively
defining the mutually disjoint sequence

B1 = A1, Bk := Ak \
k−1⋃
i=1

Bi

we see ∑∞k=1 λ(Bk) ≤
∑∞
k=1 λ(Ak), so since we’re taking the infimum, we can assume that WLOG

the Ak are mutually disjoint.
Setting Ãk := Ak ∩A ∈ A, we see that they are also mutually disjoint and their union contains A.
By σ-additivity of the pre-measure λ, we get

λ(A) =
∞∑
k=1

λ(Ãk) ≤
∞∑
k=1

λ(Ak)

since the collection (Ak)k∈N was arbitrary, the inequality λ(A) ≤ µ(A) follows.

(c) Let A ∈ A and B ⊆ X be any test set. By definition of µ, for every ε > 0 we can chose a collection
(Bk)k∈N ⊆ A that contains B and

∞∑
k=1

λ(Bk) ≤ µ(B) + ε

By (σ)-additivity of λ and A,Bk ∈ A we have

λ(Bk) = λ(Bk ∩A) + λ(Bk \A) ∀k

so since the (Bk ∩A)k∈N and (Bk \A)k∈N contain B ∩A and B \A each, we get

µ(B ∩A) + µ(B \A) ≤
∞∑
k=1

λ(Bk ∩A) +
∞∑
k=1

λ(Bk \A)

=
∞∑
k=1

λ(Bk) ≤ µ(B) + ε

and in the limit ε→ 0 the inequality follows.
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Not only does such an extension exist, we can show that under certain assumptions it is unique:
Definition 1.3.6. A pre-measure λ is called σ-finite if there exists a covering X = ⋃∞

k=1 Sk, Sk ∈ A such
that λ(Sk) <∞,∀k.
Theorem 1.3.7 (Uniqueness of Carathéodory-Hahn extension). Let λ : A → [0,∞] be a σ-finite pre-
measure on X and µ the Carathéodory-Hahn extension of λ and let Σ be the σ-algera of µ-measurable
sets.
If µ̃ : P(X)→ [0,∞] is another measure with µ̃|A = λ, then µ̃|Σ = µ|Σ
Proof. Let µ̃ : P(X)→ [0,∞] be a measure extending λ. We show

(i) ∀A ∈ P(X): µ̃(A) ≤ µ(A).

(ii) ∀A ∈ Σ: µ̃(A) ≥ µ(A).
For the first claim, let A ⊆ ⋃∞k=1Ak with Ak ∈ A. By σ-subadditivity of µ̃ it follows that

µ̃(A) ≤
∞∑
k=1

µ̃(Ak) =
∞∑
k=1

λ(Ak)

So by taking the infimum over all such coverings (Ak)k∈N as in the definition of µ, the inequality still
holds: µ̃(A) ≤ µ(A). Note that we didn’t have to use σ-finiteness of λ for this inquality.
For the second claim let A ∈ Σ be µ-measurable. We then consider the simple case where there exists an
S ∈ A such that

A ⊆ S and λ(S) <∞

Then, using the first claim on S \A and monotonicity of µ, it follows that

µ̃(S \A) ≤ µ(S \A) ≤ µ(S) = λ(S)

Since A ∈ A is µ-measurable and A = S ∩A we get with µ|A = λ = µ̃|A that

µ̃(A) + µ̃(S \A) ≤ µ(S ∩A) + µ(S \A) = µ(S)
= λ(S) = µ̃(S)
≤ µ̃(A) + µ̃(S \A)

where we used sub-additivity of µ̃ in the last step. It follow sthat µ̃(A) = µ(A) ≤ µ̃(A).
In the more general case, we can use σ-finiteness to get a covering

X =
∞⋃
k=1

Sk, Sk ∈ A, λ(Sk) <∞

As remarked in the proof of the last theorem, we can assume without loss of generality that the Sk are
mutually disjoint.
Defining Ak = A ∩ Sk we get A = ⋃∞

k=1Ak. Because A is closed under finite unions and µ̃|A = µ|A, we
have that for all m ∈ N:

m⋃
k=1

Ak ∈ A =⇒ µ̃

(
m⋃
k=1

Ak

)
= µ

(
m⋃
k=1

Ak

)
and by using monotonicity on the inclusion A ⊇

⋃m
k=1Ak and taking the limit m→∞, we get

µ̃(A) ≥ lim
m→∞

µ̃

(
m⋃
k=1

Ak

)
= lim

m→∞
µ

(
m⋃
k=1

Ak

)
= µ(A)
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If we denote Σ̃ to be the σ-agebra of µ̃-measurable sets, the theorem doesn’t tell us if Σ̃ = Σ. Moreover, it
doesn’t tell us anything about the behaviour of µ̃ outside of Σ.
Example 1.3.8. Let X = [0, 1],A = {∅, X} and set λ(∅) = 0, λ(X) = 1.
The Carathéodory extension of λ has µ(A) to be 0 or 1, depending on if A is empty or not. The
µ-measurable sets are Σ = {∅, X}.
However, as we will see in the next section, the Lebesuge measure  L1 is also an extension of λ with
 L1|Σ = µ|Σ, but they differ when measuring the interval [0, 1

2 ].

1.4 Lebesgue Measure
The Lebesgue measure is the Carethéodory-Hahn extension of the pre-measure that corresponds to the
“physical” notion of what a volume of simple objects such as n-dimensional hypercubes like [0, 1]n is.
We want to give a precise definition of what these “simple objects” are and define the pre-measure.
Definition 1.4.1. For a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ Rd we define the d-dimensional interval

(a, b) :=
{ ∏d

i=1(ai, bi) if ai < bi ∀i
∅ otherwise ⊆ Rd

in an analogous way, we define the closed and half-open boxes [a, b], [a, b) or (a, b]. Like on the real line,
we also allow the open ends to be ±∞.
To each d-dimensional interval I (whether open, closed or half-open), we define it’s volume to be

vol(I) :=
{ ∏d

i=1(bi − ai) ∈ [0,+∞] if ai < bi, ∀i
0 otherwise

An elementary set is the finite disjiont union of intervals and we define its volume to be

vol
(

d⊔
k=1

Ik

)
:=

d∑
k=1

vol(Ik) ∈ [0,∞]

Remark 1.4.2. We can check easily that the volume function is well defined. For example, the decompo-
sition [0, 2] = [0, 1) t [1, 2] = [0, 1) t [1, 1.5) t [1.5, 2] should all give the same volume.
More generally, if I = ⊔n

k=1 Ik = ⊔m
j=1 Jj where Ik, Jj are Intervals, then

n∑
k=1

vol(Ik) =
m∑
j=1

vol(Jj)

Proof. Let (Ik)k∈N and (Jj)j∈N be as above. Then

Ik = I ∩ Ik =
m⋃
j=1

Jj ∩ Ik

taking the volume on both sides and summing over all k, we get
n∑
k=1

vol(Ik) =
n∑
k=1

m∑
j=1

vol(Jj ∩ Ik)

flipping the roles of Ik and Jj , e also get
m∑
j=1

vol(Jj) =
m∑
j=1

n∑
k=1

vol(Jj ∩ Ik)

which equals what we got before.
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We of course have to show that our attempt to use the Carathéodory-Hahn Extension of vol on the
elementary sets is well defined. But it should be easy to see how the class of elmentary sets forms an
algebra and that the vol function is a pre-measure on it. In our example above, we used half-open intervals
of length 1, 2−1 to decompose the interval [0, 2] ⊆ R.
A direct generalisation for this in higher dimensions is to introduce finer and finer hypercubes that cover
Rd. For k ∈ N let Dk the collection of half open cubes

Dk :=
{

d∏
i=1

[ ai
2k ,

ai + 1
2k

)∣∣ai ∈ Z
}

In particular, D0 is the collection of hpyercubes of edge length 1 and vertices in Zd.
We call the cubes of the collection

{Q
∣∣Q ∈ Dk, k = 0, 1, 2, . . .}

the dyadic cubes.

Remark 1.4.3. The dyadic cubes have the following properties:

(a) For all k ∈ N, Rn = ⊔
Q∈Dk Q.

(b) If Q ∈ Dk and P ∈ Dl, with l ≤ k, then either Q ⊆ P or P ∩Q = ∅.

(c) Every Q ∈ Dk has volume vol(Q) = 2−kn.

Definition 1.4.4. The Lebesgue measure Ln is the Carathéodory Hahn extension of the volume defined
on the algebra of elementary sets2, i.e.

Ln(A) := inf
{ ∞∑
k=1

vol(Ek)
∣∣A ⊆ ∞⋃

k=1
Ek, Ek is an elementary set

}

If we want to measure open subsets U ⊆ Rn with the Lebesgue-measure, we want to ensure that a
countable covering of U with disjoint elementary sets Ek is possible, or else taking the infimum makes it
so that U is not Ln-measurable.

Lemma 1.4.5. Every open set in Rn can be written as a countable union of disjoint dyadic cubes.

Proof. Let U ⊆ Rn be a non-empty open subset.
Let S0 to be the collection of all cubes in D0 that lie entirely in U . Let S1 to be the collection of all cubes
in D1 that lie entirely in U , but are not subcubes of S0, etc. Let Sk be the collection of cubes in Dk which
are not subcubes of any cubes in S0, . . . ,Sk−1. Set S := ⋃

k∈N Sk.
Because each Dk is countable, S is countable. By construction, the cubes in S are also disjoint.
Since U is open and the cubes become arbitrarily small, every x ∈ U will be covered by some Q ∈ S, so
U = ⊔

Q∈S Q.

Recall that the Borel σ-algebra B(X) is the σ-algebra generated by open subsets of X.

Definition 1.4.6. A measure µ on Rn is called Borel (or a Borel measure), if every Borel set is
µ-measurable.

2Because elementary sets are finite disjoint unions of intervals, we can replace Ek with intervals Ik
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Remark 1.4.7. From Lemma 1.4.5, it follows that Ln is a Borel measure.
The lemma says that the open sets are Ln-measurable. Moreover, by Theorem 1.2.9 the the collection of
Ln-measurable sets form a σ-algebra. So the Borel σ-algebra is contained in the σ-algebra of Ln-measurable
subsets.

When we want to characterize Ln(A) for some subset A ⊆ Rn, the definition used in the Carathéodory-
Hahn extension where we consider all countable coverings using elementary sets is quite unwiedly. The
following theorem gives a nicer characterisation.

Theorem 1.4.8. For every A ⊆ Rn it holds

Ln(A) = inf
A⊆U
Ln(U), U open

Proof. By monotonicity, Ln(A) ≤ Ln(U) follows directly.
For the other inequality, suppose that Ln(A) <∞ (or else the inequality is trivial). By definition, for any
ε > 0 we can find intervals (Ik)k∈N with

A ⊆
∞⋃
k=1

Ik,
∞∑
k=1

vol(Ik) ≤ Ln(A) + ε

Since Ln(A) <∞, every interval Ik must have finite volume and is thus bounded. So let Ĩk ⊇ Ik be open
bounded intervals with vol(Ĩk) ≤ vol(Ik) + ε

2k .
Setting U := ⋃∞

k=1 Ĩk, we see that U is an open subset containing A and it’s volume is

Ln(U) ≤
∞∑
k=1

vol(Ĩk) ≤
∞∑
k=1

vol(Ik) + ε

ek
≤ Ln(A) + 2ε

since ε was arbitrary, the result follows.

This alternative characterisation lets us find out what subsets A ⊆ Rn are Ln-measurable.

Theorem 1.4.9. For any subset A ⊆ Rn the following are equivalent

(a) A is Ln-measurable.

(b) ∀ε > 0 ∃U ⊇ A open with Ln(U \A) < ε.

(c) A it can be “approximated” from the inside and outside: ∀ε > 0 ∃F closed, U open with F ⊆ A ⊆ U
such that

Ln(U \A) + Ln(A \ F ) < ε

(d) ∀ε > 0∃F closed, ∃U open, such that F ⊆ A ⊆ U and Ln(U \ F ) < ε.

Proof.

(a) =⇒ (b): Let ε > 0, A be Ln-measurable.
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• If Ln(A) <∞, by the previous theorem, we can chose a U ⊇ A open such that

Ln(U) ≤ Ln(A) + ε

Because A is Ln-measurable we can use U as a test set and get

Ln(U) = Ln(U ∩A) + Ln(U \A)
= Ln(A) + Ln(U \A)

which gives us

Ln(U \A) = Ln(U)− Ln(A) < ε

• If Ln(A) =∞, we set

Ak = A ∩ [−k, k]n =⇒ A =
∞⋃
k=1

Ak

since Ln(Ak) <∞, we are in the first case so we can find Uk ⊇ Ak open with

Ln(Uk \Ak) <
ε

2k ∀k ∈ N

Then their union U := ⋃∞
k=1 Uk is open and contains A. Moreover, we have

Ln(U \A) = Ln
( ∞⋃
k=1

(Uk \A)
)

≤ Ln
( ∞⋃
k=1

(Uk \Ak)
)

≤
∞∑
k=1
Ln(Uk \Ak) < ε

(b) =⇒ (a): Let B ⊆ Rn. For ε > 0, chose U ⊇ A open with Ln(U \A) < ε. Then

B \A ⊆ (B \ U) ∪ (U \A)

Since open subsets are Ln-measurable, we have

Ln(B) = Ln(B ∩ U) + Ln(B \ U)
≥ Ln(B ∩A) + Ln(B \A)− Ln(U \A)
≥ Ln(B ∩A) + Ln(B \A)− ε

since ε was arbitrary, Ln-measurability of A follows.

(b) ⇐⇒ (c): For ε > 0 use (b) for Ac to get an open set V ⊇ Ac with Ln(V \ Ac) < ε. Then F = V c ⊆ A is
closed and

Ln(A \ V c) = Ln(V \Ac) < ε

The other implication is trivial.
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(c) =⇒ (d): Using (c), we get F ⊆ A closed and U ⊇ A open. Because F ⊆ A ⊆ U ,

U \ F = (U \A) ∪ (A \ F )

it follows from subadditivity that

Ln(U \ F ) ≤ Ln(U \A) + Ln(A \ F ) < ε

(d) =⇒ (c): For ε > 0, use (d) to get F ⊆ A closed, U ⊇ A open with Ln(U \ F ) < ε. Because F ⊆ A ⊆ U

U \A ⊆ U \ F, A \ F ⊆ U \ F

so we get

Ln(U \A) + Ln(A \ F ) ≤ 2Ln(U \ F ) < 2ε

1.5 Comparision between Lebesgue and Jordan Measure
Definition 1.5.1. A bounded subset A ⊆ Rn is Jordan-measurable if µ(A) = µ(A), where

µ(A) :=
∫

Rn
χAdµ := sup{vol(E)

∣∣E ⊆ A,E elementary set}

µ(A) :=
∫

Rn
χAdµ := inf{vol(E)

∣∣A ⊆ E,E elementary set}

If that is the case, denote the Jordan measure of A with the common value µ(A).
We call µ(A) the Jordan inner measure of A and µ(A) the Jordan outer measure of A.

Example 1.5.2. For f : I → R continuous, I ⊆ Rn compact, its graph

Γ = {(x, f(x))
∣∣x ∈ I} ⊆ Rn+1

is a Jordan measurable set.
The area under a function

G = {(x, t) ∈ I × R
∣∣0 ≤ t ≤ f(x)}

is also Jordan-measurable

As the following theorem will show, the Lebesgue measure can measure more sets than the Jordan measure
can.

Theorem 1.5.3. Let A ⊆ Rn be bounded, then

(a) µ(A) ≤ Ln(A) ≤ µ(A)

(b) If A is Jordan-measurable, then A is Ln-measurable and Ln(A) = µ(A).
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Proof. (a) Because elementary sets are finite disjoint unions of intervals, we have

Ln(A) = inf
{ ∞∑
k=1

vol(Ik)
∣∣A ⊆ ∞⋃

k=1
Ik, Ik intervals

}

≤ inf
{

m∑
k=1

vol(Ik)
∣∣A ⊆ E =

m⊔
k=1

Ik, Ik intervals
}

= µ(A)

For the other inequality, for every elementary set E = ⊔m
k=1 Ik ⊆ A we have

vol(E) = Ln(E) ≤ Ln(A)

so when taking the sup over such E, we get

µ(A) ≤ Ln(A)

(b) If A is Jordan measurable, then it follows from (i) that

µ(A) ≤ Ln(A) ≤ µ(A) = µ(A)

To show that A is Ln-measurable, we use characterisation (b) from Theorem 1.4.9
Because A is bounded, Ln(A) <∞ and because it is Jordan-measurable, we can find for all ε > 0
elementary sets Eε, Eε such that

Eε ⊆ A ⊆ Eε and vol(Eε)− ε < µ(A) < vol(Eε) + ε

Because the volume doesn’t depend on whether the intervals comprising the elementary set are open,
half-open or closed, we can assume WLOG that Eε is open, so

Ln(Eε \A) ≤ Ln(Eε \ Eε) = vol(Eε \ Eε)
= vol(Eε)− vol(Eε) < 2ε

which shows the condition from the previous theorem.

One would naturally think that the “physical” volume of an object should stay invariant under translation
or rotation.

Theorem 1.5.4. The Lebegue measure is invariant under isometries of Rn, which are maps

Φ : Rn → Rn, x 7→ x0 +Rx, R ∈ O(n)

Proof. Missing

Definition 1.5.5. A Borel measure µ on Rn is called Borel regular, if for every A ⊆ Rn there exists a
Borel set B ⊇ A such that µ(A) = µ(B).

Lemma 1.5.6. The Lebesgue measure is Borel regular.
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Proof. If Ln(A) =∞, we can simply take B = Rn, so assume Ln(A) <∞.
By the characterisation with open sets from Theorem 1.4.8, we can chose for every k ∈ N an open set
Uk ⊇ A open with

Ln(Uk) < Ln(A) + 1
k
, k ∈ N

by intersecting each Uk with the previous ones, we can also assume without loss of generality that the
sequence (Uk)k∈N is monotonously decreasing (i.e. Uk+1 ⊆ Uk).
By Remark 1.4.7, the open sets Uk are in the σ-algebra of Ln-measurable subsets. Setting B := ⋂∞

k=1 Uk
it follows from continuity from above (Theorem 1.2.12)

Ln(B) c.f.a= lim
k→∞

Ln(Uk) = Ln(A)

1.6 Special-Examples of sets
As we will see, not all subsets of Rn are Ln-measurable.
To construct such a non-measurable set, we will use the Axiom of Choice, which states that for any family
of non-empty disjoint sets (Ai)i∈I , there exists a choice-function f : I → ⋃

i∈I Ai such that f(i) ∈ Ai.
With this, we can construct the set {f(i)

∣∣i ∈ I} that contains exactly one element from each set Ai.
For x, y ∈ [0, 1) we define ⊕ := ( mod 1 ◦+)

x⊕ y =
{
x+ y if x+ 1 < 1
x+ y − 1 if x+ y ≥ 1

So if we have a subset E ⊆ [0, 1), we can “shift” the set E by x, with E ⊕ x ⊆ [0, 1).
Where some part E ∩ [0, 1− x) moves naturally to the right and the set E ∩ [1− x, 1) moves back to the
left side. Set

E1 := E ∩ [0, 1− x)⊕ x
E2 := E ∩ [1− x, 1)⊕ x

which are disjoint.
If E is L1-meaurable, then the translated sets E1, E2 are also L1-measurable and

L1(E ⊕ x) = L1(E1) + L1(E2)
= L1(E ∩ [0, 1− x)) + L1(E ∩ [1− x, 1))
= L1(E)

A non-measurable set

Then we define the equivalence relation

x, y ∈ [0, 1) x ∼ y ⇐⇒ x− y ∈ Q

by the axiom of choice, there exists a set P ⊆ [0, 1) that contains exactly one representative of each
equivalence class.
By enumerating all rational points in [0, 1) by an index Q ∩ [0, 1) = {rk}k∈N with r0 = 0 we define

Pk := P ⊕ rk
Then it is easy to see that
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(a) The Pj are disjoint and [0, 1) = ⊔∞
j=0 Pj .

Because if x ∈ Pn∩Pm, then x = pn⊕rn = pm⊕rm. Since rn, rm ∈ Q it follows that also pn−pm ∈ Q
so they must be of the same equivalence class.
It also covers [0, 1) because by construction, every x ∈ [0, 1) belongs to a unique equivalence class.

(b) If P were L1-measurable, then so is Pj = P ⊕ rj and L1(P ) = L1(Pj).
We just showed this earlier.

But P cannot be L1-measurable, because by σ-additivity on L1-measurable subsets

1 = L1([0, 1)) =
∞∑
i=0
L1(Pj) =

∞∑
i=0
L1(P )

and the right hand side is either 0 or infinite.
So since P is not L1-measurable there exists a set B ⊆ R with

L1(B) < L1(B ∩ P ) + L1(B \ P )

We also know that L1(P ) can’t be zero, or else it would be L1-measurable.
Moreover, if E ⊆ P is L1-measurable, then L1(E) = 0 because we can set

Ei := E ⊕ ri =⇒ F :=
∞⊔
i=0

Ei ⊆ [0, 1) is L1-measurable

and we have

1 = L1([0, 1)) ≥ L1(F ) =
∞∑
i=0
L1(Ei) =

∞∑
i=0
L1(E)

which can only be true if L1(E) = 0.
Not only does there exists a non-L1-measurable subset, we can construct more using P as a “template”.

Proposition 1.6.1. For every A ⊆ R with L1(A) > 0, there exists a subset B ⊆ A that is not L1-
measurable.

Proof. Because we can shift and scale A or take subsets of A, we can assume without loss of generality
that A ⊆ (0, 1).
Then set Bi = A ∩ Pi. Then A = ⊔∞

i=0Bi
As we showed earlier, if Bi were L1-measuralble, then L1(Bi) = 0, which contradicts L1(A) = ∑∞

i=0 L1(Bi).

Remark 1.6.2. Because singletons {α} ∈ R are contained in the arbitrarily small interval (α− ε, α+ ε)
with Lebesgue measure 2ε, singletons have Lebesgue measure zero.
It follows that by subadditivity, every countable subset of R also has Lebesgue measure zero.
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The Cantor tridadic set

The real numbers can be defined as the set of Cauchy-sequences in Q up to equivalence of Cauchy sequences.
This gives for every x ∈ R and base b > 2 ∈ N a b-ary expansion with digits di(x) ∈ {0, . . . , b− 1}.

x =
∞∑
i=1

di(x)b−i

Although the digit expansion is not always unique, the set of those with multiple expansions is countable
and thus have measure zero.
Proposition 1.6.3. The Cantor set is the set of numbers whose 3-adic digits don’t contain a 1.

C = {x ∈ [0, 1]
∣∣di(x) ∈ {0, 2}∀i}

Then C is uncountable and L(C) = 0.
Proof. We construct the Cantor set as C := ⋂∞

n=1Cn, where
Cn = {x ∈ [0, 1]

∣∣di(x) 6= 1∀i ≤ n
Then each Cn can be written as a finite union closed intervals. For example

C1 =
[
0, 1

3

]
∪
[2

3 , 1
]
, etc.

They are in particular Borel and have Lebesgue measure

L1(Cn) =
(2

3

)n
because this sequence is decreasing, by continuity from above we have

L1(C) = L1
( ∞⋂
n=1

Cn

)
= lim

n→∞
L1(Cn) = 0

To show that C is countable, we define a function that maps elements of C surjectively to [0, 1]
Because C consists of numbers whose 3-ary sequence of digits don’t contain a 1, i.e. only use the digits 0
and 2, we can map them to binary sequences of digits which use the digit 0 and 1, by converting every
digit 2 to a 1 and look at it as a binary sequence.

f : C → [0, 1],
∞∑
i=1

di(x)
3i 7→

∞∑
i=1

di(x)
2

1
2i

For example, 8
27 = 0.0223 7→ 0.0112 = 3

8 .
Because this lets us generate any (even infinite) binary sequence of digits, the map is surjective.

The construction of the Cantor set can be generalised to give us the so-called fat Cantor sets, where
we start off with the interval I1 = [0, 1], and for n ∈ N, if some interval inside In has length `, then we
remove the centered subinterval of length β` and let In+1 ⊆ In be the remaining pieces of this operation.
The fat cantor set with parameter β is then Cβ := ⋂∞

n=1 In.
We see that the “normal” Cantor set has the parameter β = 1

3 and if β < 1
3 , then we have

L1(In \ In+1) = 2n−1βn =⇒ L1(I1 \ Cβ) =
∞∑
n=1

2n−1βn = β

1− 2β

but this set is not Jordan-measurable as

µ(Cβ) = 0 but β(Cβ) = 1− β

1− 2β
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1.7 The Lebesgue-Stieltjes Measure
Let F : R→ R be non-decreasing and continuous from the left, i.e:

F (x0) = lim
x→x−0

F (x) := lim
x→x0
x<x0

F (x) ∀x0 ∈ R

For a, b we define

λF [a, b) =
{
F (b)− F (a) if a < b
0 otherwise

Because the collection of bounded half-open sets K = {[a, b)
∣∣a, b ∈ R} does not form an Algebra (see 1.7.6),

we cannot use the Carathéodory-Hahn extension theorem to produce a measure induced by λF .
However, K constitutes a covering of R as in Definition 1.3.1, so by Theorem 1.3.3, the function λF induces
a measure

ΛF (A) := inf
{ ∞∑
k=1

λF [ak, bk), A ⊆
∞⋃
k=1

[ak, bk)
}

called the Lebesgue-Stieltjes Measure generated by F .
To find out if ΛF is nice, we will find the following definition useful.

Definition 1.7.1. A measure µ on Rn is called metric, if the measure is additive on separated sets, i.e.
for all A,B ⊆ Rn with

dist(A,B) := inf{|a− b|, a ∈ A, b ∈ B} > 0

it holds

µ(A ∪B) = µ(A) + µ(B)

By subadditivity, the inequality “≥” is sufficient.

Theorem 1.7.2 (Carathéodory criterion for Borel measures). A metric measure µ on Rn is Borel.

Proof. Let µ be a metric measure on Rn. Because the µ-measurable subsets (1.2.9) form a σ-Algebra, it is
sufficient to show that closed sets are µ-measurable.
Let F ⊆ Rn be closed and B ⊆ Rn be some test set. If µ(B) =∞, then the inequality

µ(B) ≥ µ(B ∩ F ) + µ(B \ F )

is trivial, so assume µ(B) <∞. For k = 1, 2, . . ., we define

Fk := {x ∈ Rn
∣∣0 ≤ dist(x, F ) ≤ 1

k
}

It should be clear that

dist(B \ Fk, B ∩ F ) ≥ 1
k
> 0

so since µ is metric and monotonous, we have

µ(B ∩ F ) + µ(B \ Fk) = µ((B ∩ F ) ∪ (B \ Fk)) ≤ µ(B) ∀k

Han-Miru Kim kimha@student.ethz.ch 21

mailto:kimha@student.ethz.ch


1.7 The Lebesgue-Stieltjes Measure September 13, 2021

If we can show that limk→∞ µ(B ∩ Fk) = µ(B \ F ), then we are done.
To do so, first note that the (Fk)k∈N form a decreasing sequence Fk+1 ⊆ Fk. Moreover, we have
F = ⋂∞

k=1 Fk, so we can write

B \ F = B \
∞⋂
l=1

Fl =
∞⋃
l=1

(B \ Fl)

We can expand the union above in telescoping fashion 3 and use the fact that the (B \ Fl)l∈N form an
increasing sequence to get

∞⋃
l=1

(B \ Fl) = (B \ F1) ∪
∞⋃
l=1

(B \ Fl+1) \ (B \ Fl)

= (B \ Fk) ∪
∞⋃
l=k

(Fl \ Fl+1) ∩B

Setting

Rl := (Fl \ Fl+1) ∩B = {x ∈ B
∣∣ 1
l + 1 < d(x, F ) ≤ 1

l
}

we see that the (Rl)l∈N are pairwise disjoint, so we have

B \ F = (B \ Fk) ∪
∞⊔
l=k

Rl

Therefore, for all k ∈ N it holds

µ(B \ Fk) ≤ µ(B \ F ) ≤ µ(B \ Fk) +
∞∑
l=k

µ(Rl)

Now we only need to show that

lim
k→∞

∞∑
l=k

µ(Rl) = 0

Observe that Ri only “touches” its neighbors Ri−1, Ri+1, in other words

dist(Ri, Rj) > 0, if |i− j| ≥ 2

decomposing the sum ∑∞
l=1 µ(Rl) into the even and odd numbers, we can use the fact that µ is metric to

get
2m+1∑
l=1

µ(Rl) =
(

m∑
k=1

µ(R2k)
)

+
(

m∑
k=1

µ(R2k)
)

= µ

(
m⋃
k=1

R2k

)
+ µ

(
m⋃
k=1

R2k

)
≤ 2µ(B) <∞

so even in the limit m→∞, the series converges. But in the inequality we showed earlier

µ(B \ Fk) ≤ µ(B \ F ) ≤ µ(B \ Fk) +
∞∑
l=k

µ(Rl)

we were allowed to omit any number of (non-negative) starting terms µ(Rl) for l < k, so in the limit we
get limk→∞ µ(B \ Fk) = µ(B \ F ), and the result follows.

3For example, for any sequence (Al)l∈N we can write
⋃∞
l=1 Al = A1 ∪

⋃∞
l=1 Al+1 \Al.
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Theorem 1.7.3. The Lebesgue-Stieltjes measure ΛF is Borel regular.

Proof. (i) ΛF is Borel. We show that it is metric and use the previous theorem, so let A,B ⊆ R with
δ := dist(A,B) > 0. We now show that for all ε > 0 we have

ΛF (A) + ΛF (B) ≤ ΛF (A ∪B) + ε

Per definition of the Lebesgue-Stieltjes measure, we can find a collection of half-open intervals with

A ∪B ⊆
∞⋃
k=1

[ak, bk) and
∞∑
k=1

< ΛF (A ∪B) + ε

Because we can always subdivide any interval [ak, bk) further, we may also assume that |bk − ak| < δ
for all k.
Because A and B are separated, for each interval [ak, bk) either

A ∩ [ak, bk) = ∅ or B ∩ [ak, bk) = ∅

, so the covering of A ∪B gives us a covering A of A and a covering B of B. Therefore

ΛF (A) + ΛF (B) ≤
∑

[ak,bk)∈A
ΛF ([ak, bk)) +

∑
[ak,bk)∈B

ΛF ([ak, bk))

=
∑
k∈N

λF ([ak, bk) ≤ ΛF (A ∪B) + ε

This shows that ΛF is metric and thus Borel.

(ii) ΛF is Borel regular.
To show that ΛF is Borel regular, let A ⊆ R. Of course we can assume ΛF (A) <∞. Then for any
n ∈ N we can find coverings

A ⊆
∞⋃
k=1

[
a

(n)
k , b

(n)
k

)
=: Bn with

∞∑
k=1

λF
([
a

(n)
k , b

(n)
k

))
≤ ΛF (A) + 1

n

If we set B := ⋂∞
n=1B, then B is Borel and A ⊆ B ⊆ Bn and

ΛF (A) ≤ ΛF (B) ≤ ΛF (Bn) ≤
∞∑
k=1

λF
([
a

(n)
k , b

(n)
k

))
≤ ΛF (A) + 1

n

in the limit n→∞, we get ΛF (A) = ΛF (B), so ΛF is Borel regular.

The Carathéodory-Hahn extension had the property that it coincided with the pre-measure on the algebra,
on which the pre-measure was defined. Despite not being such an extension, the Lebesgue-Stieltjes measure
has a similar property.

Theorem 1.7.4. For a < b ∈ R it holds

ΛF ([a, b)) = λF ([a, b)) = F (b)− F (a)
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Proof. Let a < b ∈ R. By definition of ΛF , we already have ΛF ([a, b)) ≤ λF ([a, b)).
For the other inequality, let ([ak, bk))k∈N be a covering of [a, b).
Since F is left-continuous, for every ε > 0 there exist δ, δk > 0 such that

F (b)− F (b− δ) ≤ ε, and F (ak)− F (ak − δk) ≤ 2−kε ∀k ∈ N

Because [a, b− δ] is compact and is covered by ⋃∞k=0(ak − δk, bk), there exists a finite subcovering

[a, b− δ] ⊆
m⋃
k=0

(ak − δk, bk)

By removing any redundant intervals, we can decrease the sum ∑m
k=0 λF (ak − δk, bk), so we can assume

WLOG that they are ordered in such a way that

ak − δk < bk−1 for all k = 1, . . . ,m

Since F is increasing and a0 − δ0 < a < b < bm, we have

F (b− δ)− F (a) ≤ F (bm)− F (a0 − δ0)
≤ F (bm)− F (a1 − δ1) + F (b0)− F (a0 − δ0)

≤ . . . ≤
m∑
k=0

F (bk)− F (ak − δk)

so with the initial estimates, we have

λF ([a, b)) = F (b)− F (a) = F (b)− F (b− δ) + F (b− δ)− F (a)

≤ ε+
m∑
k=0

F (bk)− F (ak − δk)

= ε+
m∑
k=0

F (bk)− F (ak) +
m∑
k=0

F (ak)− F (ak − δk)

≤ ε+
∞∑
k=0

F (bk)− F (ak) +
∞∑
k=0

2−kε

=
∞∑
k=0

λF ([ak, bk)) + 3ε

Since this is true for all coverings ([ak, bk))k∈N, we get in the limit ε→ 0

λF ([a, b)) ≤ ΛF ([a, b))

Example 1.7.5.

• The Lebesgue measure is the special case when F (x) = x, so ΛidR = L1

• The Dirac measure δ0 from Example 1.2.11 is the Lebesgue-Stieltjes measure ΛΘ for the Heaviside
step function

Θ(x) =
{

1 x > 0
0 x ≤ 0
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Remark 1.7.6. In the beginning of this section, we noted that the collection of bounded half-open sets
K = {[a, b)

∣∣a, b ∈ R} does not form an Algebra. If we set K̃ to be the collection of finite disjoint unions:

K̃ =
{

m⊔
k=1

[ak, bk)
∣∣m ≥ 1 ∈ N, ak, bk ∈ R

}

then the set K̃ is stable under intersection and difference. And we say that K̃ forms a ring.
That is: ∅ ∈ K̃ and A,B ∈ K̃ =⇒ A ∩B,A \B ∈ K̃
The same is not true for the collection of open and closed intervals.

1.8 Hausdorff Measures
Say we have the unit square A := [0, 1]2. It’s L2-measure would of course be 1.
If we however were to embed the square into R3 with

ι : R2 → R3, (x, y) 7→ (x, y, 0)

we would find that L3(ι(A)) = 0. More generally, the Lebesgue measure Ln on subsets A ⊆ Rn that have
“dimension” < n is always going to be zero.
Moreover, the Lebesgue measure also has the weakness of failing to properply measure fractal sets (which
can be though of as having non-integer “dimension”)
It would be nice to define a collection of measures that are able to measure sets, regardless of whether
they are embedded into a higher-dimensional space. The Hausdorff measures try to solve this.
We start by introducing an intermediate measure, where instead of covering a subset A with dyadic cubes
(as was the case for the Lebesgue measure) we do this using open balls of radius smaller than some δ > 0.

Definition 1.8.1. For s ≥ 0, δ > 0 and A ⊆ Rn non-empty, we set

Hsδ(A) := inf

∑
k∈I

rsk

∣∣∣∣I at most countable, A ⊆
⋃
k∈I

B(xk, rk), 0 < rk < δ


where we set H0

δ(∅) = 0.

Remark 1.8.2. Hsδ defines a measure on Rn and for fixed s,A, the function δ 7→ Hsδ(A) is non-increasing:

δ2 ≤ δ1 =⇒ Hsδ1(A) ≤ Hsδ2(A)

since every δ2 covering is also a δ1 covering. Therefore, the limit

Hs(A) := lim
δ↓0
Hsδ(A) = sup

δ>0
Hsδ(A)

exists. We now use this as for our next definition.

Definition 1.8.3. We call Hs the s-dimensional Hausdorff measure on Rn

As hinted at earlier with the case of fractals, notice that s may take on non-integer values.
To build some intuition, let’s consider an example of a “one-dimensional” set A ⊆ R2.

Example 1.8.4. Let A = S1 = {x ∈ R2, ‖x‖ = 1}.
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s = 0: We see that H0
δ(A) depends only on the number of balls covering A.

If δ > 1, we see that A can be covered by the ball B(0, 1 + ε), for ε small enough. Therefore
H0
δ(A) = 1 for δ > 1.

On the other hand, if δ < 1 then we have to cover A by using multiple balls. It should be clear that
in the limit δ → 0, we have Hs(A) =∞.

s = 1: Again, for δ > 1, it’s easy to see that the covering with the single ball B(0, 1+ε) give us H1
δ(A) ≤ 1+ε.

But for arbitrary δ > 0, let n ∈ N such that δ > π
n . We then can place n equally spaced balls along

the circle each with radius π
n + ε, for some ε > 0 small enough. This covers A entirely and gives us

an upper bound

H1
δ(A) ≤

n∑
i=1

π

n
= π

One can convince themself that there is no “better” covering strategy resulting in a lower upper
bound, so H1(A) = π.

s = 2: The same covering strategy as decribed in the case s = 1 gives us the upper bound

Hsδ(A) ≤
n∑
i=1

(
π

n

)2
= π2

n

But unlike for s = 1, chosing bigger and bigger n means that we can make the H2-measure of A
arbitrarliy small. So H2(A) = 0.
A similar argumentation also shows that Hs(A) = 0 for all s > 1.

Before we prove that Hs is actually a measure, let’s take a look at the case s = 0 more closely.

Remark 1.8.5. H0 is the counting measure from 1.2.11.

Proof. If A is finite and has k elements A = {a1, . . . , ak}, let δ > 0 be the minimal distance between all
elements.
It easily follows from the triangle inequality, that H0(A) ≥ H0

δ
2
≥ k. The other inequality is also trivial.

If A is infinite, then for any k ∈ N we can find a subset Ak with at least k elements. By monotonicity we
have k = H0(Ak) ≤ H0(A) and in the limit k →∞, the proof follows.
And if A is empty, by defintion we have H0(∅) = 0.

Theorem 1.8.6. For s ≥ 0, Hs is a Borel regular measure on Rn

Proof. Let s ≥ 0.

(i) Hs is a measure. Clearly, Hs(∅) = 0. Let (Ak)k∈N and A ⊆
⋃∞
k=1Ak. Since Hsδ is σ-subadditive

for all δ > 0, we get

Hsδ(A) ≤
∑
k

Hsδ(Ak) ≤
∑
k

Hs(Ak) ∀δ > 0

by taking the limit δ → 0 (as in the definition of Hs) we get the σ-subadditivity of Hs.
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(ii) Hs is metric and therefore Borel. The proof is more or less the same as for the Lebesgue-Stieltjes
measure. Let A,B ⊆ Rn such that δ0 := dist(A,B) > 0. We then take a covering A ∪ B of balls
of size smaller than δ := δ0

4 and claim that we can partition the covering into two non-overlapping
coverings of A and B each.
Since Hsδ takes the infimum over all such coverings, suppose that A ∪B = ⋃

k B(xk, rk) with rk < δ.
Then we set

A = {B(xk, rk)
∣∣B(xk, rk) ∩A 6= ∅}B = {B(xk, rk)

∣∣B(xk, rk) ∩B 6= ∅}

And it becomes obvious that these are non-overlapping coverings of A and B each (by using the
triangle inequality).
Therefore, we get

Hsδ(A) +Hsδ(B) ≤
∑
k

rsk

and taking the infimum of coverings of A ∪B, this means

Hsδ(A ∪B) ≥ Hsδ(A) +Hsδ(B)

which, when taking the limit δ → 0 just states Hs(A ∪B) ≥ Hs(A) +Hs(B). By (σ)-subadditivity
of Hs, the reverse inequality holds and so Hs(A ∪B) = Hs(A) +Hs(B) shows that Hs is metric and
thus also Borel.

(iii) Hs is Borel regular. Again, the proof follows the same structure as in the proof for the Lebesgue-
Stieltjes measure. Let A ⊆ Rn and suppose Hs(A) < ∞ (Otherwise, just take B = Rn). By
monotonicity of Hsδ, this also means that Hsδ(A) <∞ for all δ > 0.
For δ = 1

m ,m = 1, 2, . . ., this gives us a covering ⋃k∈I B(xk,m, rk,m) ⊇ A with rk,m < 1
m and

∑
k∈I

rsk,m ≤ Hs1
m

(A) + 1
m

Then set Am := ⋃
k∈I B(xk,m, rk,m) and B = ∩∞m=1Am. Then B is a Borel set containing A.

Which by monotonicity of Hs1
m

lets us sandwich

Hs1
m

(A) ≤ Hs1
m

(B) ≤ Hs1
m

(Am) ≤
∑
k∈I

rsk,l

≤ Hs1
m

(A) + 1
m

so in the limit m→∞, we get Hs(B) = Hs(A).

In the example, where we calculated Hs(S1), we saw that

H0(A) =∞, H1(A) = π, H2(A) = 0

The following Lemma proves the general pattern.

Lemma 1.8.7. Let A ⊆ Rn and 0 ≤ s < t <∞. Then
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(a) Hs(A) <∞ =⇒ Ht(A) = 0

(b) Ht(A) > 0 =⇒ Hs(A) =∞

Proof. Since (b) is just the contraposition of (a), it’s enough to prove (a).
Let 0 ≤ s < t ∈ R and A ⊆ Rn with Hs(A) <∞.
For any covering A ⊆ ⋃k∈I B(xk, rk) with rk < δ, we have

Htδ(A) ≤
∑
k∈I

rtk =
∑
k∈I

rt−sk rsk ≤ δt−s
∑
k∈I

rsk

Considering the infimum over all such coverings we get

Htδ(A) ≤ δt−sHsδ(A)

so as δ → 0, we get Ht(A) = 0.

This Lemma makes the definition of “dimension” possible.

Definition 1.8.8. The Hausdorff dimension of a subset A ⊆ Rn is defined as

dimH(A) := inf{s ≥ 0
∣∣Hs(A) = 0}

Equivalently, we could have defined it as

dimH(A) := sup{t ≥ 0
∣∣Ht(A) =∞}

Example 1.8.9. Let Q = [−1, 1]n ⊆ Rn. Then

2−nLn(Q) ≤ Hn(Q) ≤ 2−nn
n
2 (Q)

Proof. Missing

Examples of non-integer Hausdorff-dimension sets

There is a famous problem of finding out what the coast-line length of England is. The problem is that
depending on how many knicks and bumps in the coast-line we count, the length gets longer and longer.
Although it seems to be a bit counter-intuitive that a coast-line does not have a length, it isn’t as
unbelievable as it seems, because this is exactly what happened when we tried to measure H0

δ(S1). The
more and more we decreased δ, the harder it became to cover all points, so in the limit δ → 0, we found
that H0(S1) =∞.
What this points to is that the coast-line must have some Hausdorff dimension dimH(A) > 1.

Example 1.8.10 (Triadic Cantor Set). When talking about the Lebesgue, we found that the Triadic
Cantor set C was an example of an uncountable set with L1-measure zero (see 1.6.3)
First we note that if we strech a set A ⊆ Rn by some factor λ > 0R, then

Hs(λ ·A) = λsHs(A), ∀s > 0
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If we let d := dimH(C), then we can take two copies of 1
3 · C and when we put them back together, we

obtain C again. So

Hd(C) = 2Hd
(1

3 · C
)

= 2
3dH

d(C)

which gives us the result

d = log3 2 = ln 2
ln 3

Example 1.8.11 (Cantor Dust). Missing

Example 1.8.12 (The Koch Curve). Missing

1.9 Radon Measures
Definition 1.9.1. A measure µ on Rn is called a Radon measure, if µ is Borel regular and µ(K) <∞
for every compact K ⊆ Rn.

Example 1.9.2.

• Ln is a Radon measure on Rn

• Hs for s < n is not a Radon measure.

• The Dirac measure δ0 is a Radon measure.

• If µ is Borel regular and A ⊂ Rn is µ-measurable with µ(A) <∞, then the restriction measure

(µ A)(B) := µ(A ∩B)

is a Radon measure.

We wish to show that for Radon measure, an analogue to Theorem 1.4.9 holds. For this we need the
following Lemma:

Lemma 1.9.3. Let µ be a Radon measure. For every µ-measurable set A ⊆ Rn it holds

∀ε > 0 ∃U ⊇ A,U open such that µ(U \A) < ε (∗)

Proof Sketch. For the full proof, see Prof. Michael Struwe’s notes “Analysis III – Mass und Integral”
We only show that WLOG, A is a Borel set. Let A,µ, ε as above.
Since µ is Borel-regular, there exists a Borel set B ⊇ A with µ(B) = µ(A). By µ-measurability of A:

µ(A) = µ(B) = µ(B ∩A︸ ︷︷ ︸
=A

) + µ(B \A) =⇒ µ(B \A) = 0

Now assume that the Lemma is true for Borel sets, so there exists an open set U ⊇ B with µ(U \B) < ε.
Since Borel sets are also µ-measurable, we apply the Carathéodory criterion on the test set U \A to get

µ(U \A) = µ((U \A) ∩B) + µ((U \A) \B)
= µ(B \A) + µ(U \B) < ε

For the rest, set

G := {B ⊆ Rn
∣∣B Borel, (∗) is true for B}

and show that G contains the Borel algebra B. To do so, we proceed as follows
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• G contains all the open sets.

• G is closed under countable inclusion.

• G is closed under countable intersection.

• It therefore contains all closed sets.

Then we set

F = {B ⊆ Rn
∣∣B ∈ G, or Bc ∈ G}

Using de Morgan’s rule, we see that F is a σ-algebra that contains all open sets.

Theorem 1.9.4 (Approximation by open and compact sets). Let µ be a Radon measure on Rn.

• For every A ⊆ Rn it holds

µ(A) = inf{µ(U) : A ⊆ U,U open}

• For every A ⊆ Rn µ-measurable it holds

µ(A) = sup{µ(K) : K ⊆ A,K compact}

Proof.

(a) Suppose µ(A) <∞ (or else take U = Rn).
We first show it assuming that A is µ-measurable. Since for all ε > 0 there exists an open set U ⊇ A
with µ(U \A) < ε. By µ-measurablility of A, we have

µ(U) = µ(U ∩A) + µ(U \A) = µ(A) + ε

Now let A be an arbitrary set. Since µ is Borel regular, there exists a Borel set B ⊇ A with
µ(A) = µ(B). Then

µ(A) = µ(B) = inf{µ(U), B ⊆ U open}
≥ inf{µ(U), A ⊆ U open}

(b) Let A be µ-measurable. We consider two cases:

µ(A) <∞ : Set ν := µ A, which is also a Radon measure. By applying (a) on the set Rn \A , for all ε > 0
there exists an open set U with Rn \A ⊆ U and

ν(U) ≤ 4ν((Rn \A) ∩ U) + ν(Rn \ U) = µ((Rn \A) ∩A) + ε = ε

Then the set C := Rn \ U is closed and is contained in A and

µ(A \ C) = µ(A ∩ (Rn \ C)) = ν(Rn \ C) = ν(G) < ε

Which gives µ(A) ≤4 µ(C) + ε and therefore

µ(A) = sup{µ(C)
∣∣C ⊂ A,C closed}

4Since Rn \A and C are also µ-measurable, we could also have used equality here.
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Notice that for any closed set C we can take the sequence of compact sets

Cm := C ∩B(0,m) =⇒
⋃
m∈N

Cm = C

and by continuity from below for µ-measurable subsets, we also have µ(C) = limm→∞ µ(Cm),
which means

∀ε > 0 ∃m0 : m ≥ m0 =⇒ µ(C)− µ(Cm) < ε

And therefore

sup{µ(K)
∣∣K ⊆ A,K compact} = sup{µ(C)

∣∣C ⊆ A,C closed } = µ(A)

µ(A) =∞ : In ths case, set Dk := {x
∣∣k − 1 ≤ |x| < k}. These disjoint sets can be written as the union of a

closed an an open set, and are thus Borel. Moreover, A = ⋃∞
k=1(Dk ∩A).

Because Dk ∩A ⊆ Dk ∩A and µ is Radon, µ(Dk ∩A) <∞.
But then we are in the first case, so there exists a closed set Ck ⊆ Dk ∩A with

µ(Dk ∩A)− µ(Ck) ≤
1
2k

Because (⋃mk=1Ck)m∈N is an increasing sequence, we can use continuity from below and the
fact that measures are σ-additive on the σ-algebra of µ-measurable sets

lim
m→∞

µ

(
m⋃
k=1

Ck

)
= µ

( ∞⋃
k=1

Ck

)
=
∞∑
k=1

µ(Ck)

≥
∞∑
k=1

µ(Dk ∩A)− 1
2k

= µ(A)− 1 =∞

This shows that

sup{µ(C)
∣∣C ⊆ A closed

∣∣} =∞ = µ(A)

and by a similar argument as in the first case (writing µ(C) = limm→∞ µ(C ∩B(0,m))) we get

µ(A) = sup{µ(K)
∣∣K ⊆ A compact}

2 Measurable Functions
2.1 Basic definitions
For X,Y nonempty sets and f : X → Y with A ⊆ Y , the inverse image is defined as

f−1(A) = {x ∈ X
∣∣f(x) ∈ A}

And it’s easy to show that
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(a) f−1(Ac) =
(
f−1(A)

)c
(b) For a sequence of subsets (Ak)k the following holds

f−1
( ∞⋃
k=1

Ak

)
=
∞⋃
k=1

f−1(Ak)

(c) The analogue for countable intersections follows easily from de Morgan’s rule, (a) and (b)

In particular, if A ⊆ P(Y ) is a σ-algebra, then

Σ := f−1(A) := {f−1(A)
∣∣A ∈ A}

is a σ-algebra in X.
In the following, let µ be a measure on Rn and Ω ⊆ Rn be a µ-measurable subset.

Definition 2.1.1. A function f : Ω→ [−∞,∞] is called µ-measurable if in the sense of definition 1.2.7

(a) f−1{+∞}, f−1{−∞} are µ-measurable.

(b) f−1(U) for every U ⊆ R open is µ-measurable.

Remark 2.1.2. The following two conditions are equivalent to (b)

(c) f−1(B) is µ-measurable for each Borel set B ⊆ R

(d) f−1((−∞, a)) is µ-measurable for all a ∈ R.

And if we consider R = [−∞,∞] with the topology generated by the open sets of R and the neighborhoods
[−∞, a), (a,∞), a ∈ R of ±∞, then for a function f : Ω→ [−∞,∞], the following are equivalent:

• f is µ-measurable.

• f−1(U) is µ-measurable, ∀U ⊆ R open

• f−1([−∞, a)) is µ-measurable, ∀a ∈ R.

Remark 2.1.3. Even preimages of Borel sets are µ-measurable!
By the properties discussed in the begnning of this chapter, we know that the inverse image of a Borel set
can be written as some combination of complements, unions and intersections of preimages of open sets.
And since µ-measurable sets form a σ-algebra (see Theorem 1.2.9), they are also µ-measurable.

Example 2.1.4. Let f : Ω→ R be µ-measurable and g : R→ R continuous. Then g ◦ f is µ-measurable.

Theorem 2.1.5.

(a) Let f, g : Ω→ R be µ-measurable functions. Then: f + g, f · g, |f |, sgn(f),max{f, g},min{f, g} and
(if g is never zero) f

g are µ-measurable, where

(sgn f)(x) :=
{

f(x)
|f(x)| if f(x) 6= 0
0 otherwise

(b) For a sequence of µ-measurable functions (fk : Ω→ R)k∈N the following are also µ-measurable

inf
k∈N

fk, sup
k∈N

fk, lim inf
k→∞

fk, lim sup
k→∞

fk
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Proof. Missing

Recall that when defining the Riemann integral in Analysis I/II, we started by defining the Integral of
step functions “by hand”, which were functions that were constant when decomposing them into intervals.
To define the Riemann integral of general types of functions, we defined the “Ober- und Untersummen”,
and if they coincided, took that as the value for the integral.
Our approach will be slightly more general

Definition 2.1.6. Given a subset A ⊆ Rn, we define the characteristic function of the set A as

χA : Rn → R, χA(x) =
{

1 if x ∈ A
0 otherwise

It’s easy to see that χA is µ-measurable if and only if A is µ-measurable.
A simple function is a function of the form

f(x) =
∞∑
i=1

ciχAi(x), ci ∈ R, Ai ⊆ Rn, Ai mutually disjoint

And if the Ai are µ-measurable, then f is called a µ-measurable simple function.
Equivalently, a function f : Rn → R is a µ-measurable simple function if and only if f is µ-measurable
and the image of f is a countable subset of R.

The following theorem lets us decompose any non-negative µ-measurable function into a simple function.

Theorem 2.1.7. Let f : Ω→ [0,∞] be µ-measurable. Then there exist µ-measurable sets Ak ⊆ Ω such
that

f =
∞∑
k=1

1
k
χAk

Proof. We define the sets Ak inductively, starting with

A1 = {x ∈ Ω
∣∣f(x) ≥ 1} = f−1[1,∞]

which is µ-measurable. Then for all k = 2, 3, . . ., we define

Ak = {x ∈ Ω
∣∣1
k

+
k−1∑
j=1

1
j
χAj}

To show that this produces the function f , we show both inequalities in

f(x) =
∞∑
k=1

1
k
χAk(x)

≥: If sup{k
∣∣x ∈ Ak} =∞, then

Missing Rest

Proposition 2.1.8. Let f : Ω→ R be continuous and µ a Borel measure. Then f is µ-measurable.

Proof. For any open set U ⊆ Rn, f−1(U) = O ∩ Ω for some open set O ⊆ Rn.
Since µ is Borel, f−1(U) is µ-measurable.

From now on, we will say that a statement holds “µ-a.e.” or “almost everywhere with respect to µ”
to mean that the set A, for which the statement does not hold, has µ(A) = 0.
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2.2 Lusin’s and Egoroff’s Theorems
Consider for example the sequence of (L1-measurable) functions (fk : [0, 1]→ R)k∈N given by

fk = χAk , for Ak =
(

1− 1
2k , 1

)
this sequence converges pointwise to the constant function 0, but not uniformly.
However we can say that for any δ > 0, it converges uniformly on the (compact) subset A := [0, 1− δ],
which satisfies L1([0, 1] \A) = δ.

Definition 2.2.1. Let Ω ⊆ Rn. We say that a sequence of functions (fk : Ω → R)k∈N converges
µ-almost uniformly on Ω to a function f : Ω→ R, if for all δ > 0 there exists a µ-measurable subset
A ⊆ Ω with µ(Ω \A) < δ such that (fk)k∈N converges uniformly on A. That is:

sup
x∈A
|fk(x)− f(x)| → 0 as k →∞

Theorem 2.2.2 (Egoroff). Let Ω ⊆ Rn be µ-measurable with µ(Ω) < ∞, and let f, (fk)k∈N : Ω → R
µ-measurable.

(a) If fk(x)→ f(x) as k →∞ for µ-a.e. x ∈ Ω, and f(x) finite µ-a.e., then (fk)k∈N converges µ-almost
uniformally to f on Ω.

(b) If additionally, µ is a Radon measure we can also assume that the set on which (fk)k∈N converges
uniformly is compact. That is:
∀δ > 0 ∃K ⊆ Ω compact with µ(Ω \K) < δ and

sup
x∈C
|fk(x)− f(x)| → 0 as k →∞

Proof. (a) Let δ > 0 and for i, j ∈ N define the sets

Cij :=
∞⋃
k=j

{
x ∈ Ω

∣∣|fk(x)− f(x)| > 1
2i
}

which are µ-measurable, since they are the pre-images of open subsets under a µ-measurable function.
They are also decreasing in j (i.e. Ci,j+1 ⊆ Ci,j∀i, j) and µ(Ci,1) ≤ µ(Ω) < ∞, so we can use
continuity from above. Note how ⋂∞

j=1Cij consists of points in Ω, on which (fk)k∈N does not
converge to f . But as fk(x)→ f(x) for µ-a.e. x we get

lim
j→∞

µ(Cij)
c.f.a.= µ

 ∞⋂
j=1

Cij

 = 0, ∀i ∈ N

This means that for every i, there exists an N(i) > 0 such that

µ

N(i)⋂
j=1

Ci,j

 = µ(Ci,N(i)) <
δ

2i

setting

A := Ω \
∞⋃
i=1

Ci,N(i)
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which is µ-measurable, we get the estimate

µ(Ω \A) = µ

( ∞⋃
i=1

Ci,N(i)

)
<
∞∑
i=1

δ

2i = δ

Moreover, for all x ∈ A, i ∈ N, k ≥ N(i) we have

|fk(x)− f(x)| ≤ 1
2i

which shows uniform convergence of fk → f on A.

(b) By applying Theorem 1.9.4, there exists a compact subset K ⊆ A such that µ(A \K) < δ, and so

µ(Ω \K) ≤ µ(Ω \A) + µ(A \K) ≤ 2δ

Remark 2.2.3. The condition that µ(Ω) < ∞ is necessary. Take for example the sequence of “bump
functions moving to the right”: fk = χ[k,k+1] : R→ R, which converges pointwise to 0.
It is clear that any set A ⊆ R on which the sequence converges uniformly must be bounded from the right,
which means that A cannot satisfy µ(R \A) < δ.

In Analysis I/II, we proved that continous functions are Riemann integrable and that Riemann-integrable
functions only have measure-zero points of discontinuity.
Because µ is assumed to be a Radon measure, all continuous functions are µ-measurable. We now show
the generalisation of the other fact.

Theorem 2.2.4 (Lusin’s Theorem). Let µ be a Radon measure on Rn, Ω ⊆ Rn be µ-measurable with
µ(Ω) <∞ and f : Ω→ R µ-measurable and finite µ.a.e..
Then ∀ε > 0 ∃K ⊆ Ω compact with µ(Ω \K) < ε such that f |K is continuous.

Remark 2.2.5. Warning: The theorem states that the function f |K : K → R is continous and not that
f is continous at x for all x ∈ K.
If we drop the condition µ(Ω) < ∞, then we can still find such a set C ⊆ Ω, which is closed, but not
necessarily compact.

Proof. For each i ∈ N>0, let {Bij}j∈N be a collection of disjoint Borel sets such that

R =
∞⊔
j=1

Bij and diam(Bij) := sup{|x− y|
∣∣x, y ∈ Bij} < 1

i

Then define Aij := f−1(Bij) which are µ-measurable and let

Ω̃ :=
∞⋃
j=1

Aij =⇒ Ω = Ω̃ t f−1{±∞}

since µ is a Radon measure, there exist compact sets Kij ⊆ Aij such that

µ(Aij \Kij) <
ε

2i+j
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Then

µ

Ω̃ \
∞⋃
j=1

Kij

 = µ

 ∞⋃
j=1

Aij \
∞⋃
j=1

Kij


≤ µ

 ∞⋃
j=1

(Aij \Kij)


≤
∞∑
j=1

µ(Aij \Kij)

<
∞∑
j=1

ε

2i+j = ε

2i

This means that for all i, there exists a N(i) such that

µ

Ω̃ \
N(i)⋃
j=1

Kij <
ε

2i


Then define the compact sets

Di :=
N(i)⋃
j=1

Kij and K :=
∞⋂
i=1

Di

For each i, j chose some bij ∈ Bij and define gi : Di → R, gi(x) = bij if x ∈ Kij for all j ≤ N(i).
Since the sets {Kij}j∈N are compact disjoint sets, this means that gi is locally constant and thus continuous.
Moreover, by construction of Bij , we have

diam(Bij) <
1
i

=⇒ |f(x)− gi(x)| < 1
i
, ∀x ∈ Di

which means that the sequence of continuous functions (gi|K)i∈N>0 : K → R converges uniformly to a
continous function f |K .
The set K also satisifes

µ(Ω̃ \K) = µ

( ∞⋃
i=1

(Ω̃ \Di)
)
≤
∞∑
i=1

µ( ˜Ω \Di) < ε

and since f(x) is finite µ-a.e., we have

µ(Ω \K) ≤ µ(Ω̃ \K) + µ(f−1{±∞} \K) ≤ ε+ 0

2.3 Convergence in Measure
For this section, let µ be an arbitrary measure on Rn and Ω ⊆ Rn µ-measurable and let f, fk : Ω→ R be
µ-measurable and |f(x)| <∞ µ-a.e..
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Definition 2.3.1. We say that the sequence (fk)k∈N converges in measure µ to f (written fk
µ→ f as

k →∞)4, if ∀ε > 0

lim
k→∞

µ
({
x ∈ Ω

∣∣|f(x)− fk(x)| > ε
})

= 0

Remark 2.3.2. If the sequence converges uniformly, then also fk
µ→ f . However pointwise convergence is

not enough to show fk
µ→ f , as the same Example as in 2.2.3 proves otherwise.

Also, the sequence fk = χ{0}
L1
→ 0 shows that pointwise convergence does not necessarily follow from

in-measure convergence.

Theorem 2.3.3. Let µ(Ω) <∞. If fk → f µ-a.e. then fk
µ→ f .

Proof. By Egoroff’s theorem, (fk)k∈N converges µ-almost uniformally on Ω.
This means that for all ε > 0 there exists a set A with µ(Ω \A) < δ such that for all ε > 0 : ∃N ∈ N with

sup
x∈A
|fn(x)− f(x)| < ε ∀n ≥ N

for such n ≥ N we have

{x ∈ Ω
∣∣|fn(x)− f(x)| > ε} ⊆ Ω \A

Taking µ(·) on both sides gives the result.

Remark 2.3.4. The converse of this theorem does not hold, so the statement fk → f µ-a.e. is stronger
than fk

µ→ f .
To see this, take Ω = [0, 1) with the measure L1. And set fk = χAk , for

A1 = [0, 1), A2 = [0, 1
2), A3 = [1

2 , 1), A4 = [0, 1
4), A5 = [1

4 ,
2
4), . . . , A7 = [3

4 , 1), A8 = [0, 1
8), . . .

and more generally for k ≥ 1, chose n such that 2n ≤ k < 2n+1 and set

Ak =
[
k − 2n

2n ,
k − 2n + 1

2n
)

Therefore

µ ({|fk(x)| > 0}) = µ(Ak) = 1
2n <

2
k

=⇒ fk
µ→ 0

But the nowhere does the sequence converge pointwise to 0.

Theorem 2.3.5. Let fk
µ→ f . Then there exists a subsequence (fkn)n∈N that converges to f µ-a.e..

Proof. Since fk
µ→ f , for all n ∈ N there exists a kn ∈ N such that

µ
({
x ∈ Ω

∣∣|fk(x)− f(x)| > 2−n
})
< 2−n, ∀k ≥ kn

Define for h ≥ 1

An :=
{
x ∈ Ω

∣∣|fkn(x)− f(x)| > 2−n
}

and Eh :=
⋃
n≥h

An

4In contrast to the lecturer, I will be using fk
µ→ f as shorthand for “fk

µ→ f as k → ∞” as it should be clear from context.
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by subadditivity, we have

µ(Eh) ≤
∞∑
n=h

µ(An) < 2−h+1

For any x ∈ Ω \ Eh we have that

∀n ≥ h : x /∈ An, =⇒ ∀n ≥ h : |fkn(x)− f(x)| ≤ 2−n

This means that for all h ∈ N the sequence (fkn)n∈N converges to f(x) on Ω \ Eh.
Because µ(E1) ≤ µ(Ω) <∞ and the sequence (Eh)h∈N is decreasing, we have by continuity from above:

E :=
∞⋂
h=1

Eh =⇒ µ(E) = lim
h→∞

µ(Eh) = 0

Since (fkn)n∈N converges to f on Ω \ Eh, the sequence (fkn |E)n∈N converges to f on Ω \ E.

3 Integration
Assume for this chapter, that µ is a Radon measure on Rn and Ω ⊆ Rn is µ-measurable.

3.1 Definitions and Basic Properties
Definition 3.1.1. A function g : Ω → R is called a simple function, if the image of g is at most
countable.

Because summing up series with both positive and negative coefficients can lead to some convergence
issues (for example the sequence an = (−1)n), we split a function into its positive and negative parts.
Define

f+ := max(f, 0), f− := max(−f, 0)
=⇒ f = f+ − f−, |f | = f+ + f−

Definition 3.1.2.

(a) For g : Ω→ [0,∞] is a non-negative, simple, µ-measurable function, we define

∫
Ω
gdµ :=

∑
0≤y≤∞

y · µ
(
g−1{y}

)

where we use the convention 0 · ∞ = 0. (We want the integral of the function 0 to be zero.)

(b) A simple, µ-measurable function g : Ω→ [−∞,+∞] is called a µ-integrable simple function, if
either

∫
Ω g

+dµ <∞ or
∫

Ω g
−dµ <∞. Then define∫

Ω
gdµ :=

∫
Ω
g+dµ−

∫
Ω
g−dµ =

∑
−∞≤y≤∞

y · µ
(
g−1{y}

)
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(c) For any function f : Ω→ [−∞,∞] define the upper integral

∫
Ω
fdµ := inf

{∫
Ω
gdµ

∣∣g ≥ fµ-a.e., g is a µ-integrable simple function
}

aswell as the lower integral

∫
Ω
fdµ := sup

{∫
Ω
edµ

∣∣e ≤ fµ-a.e., e is a µ-integrable simple function
}

(d) A µ-measurable function f : Ω→ R is called µ-integrable, if the upper- and lower integral coincide,
in which case we write ∫

Ω
fdµ :=

∫
Ω
fdµ =

∫
Ω
fdµ

Warning: in some contexts, functions with integral ±∞ are called “not integrable”. For our purposes,
they are.

Remark 3.1.3. It is easy to show that ∫
Ω
fdµ ≤

∫
Ω
fdµ

In Exercise Sheet 09, we prove that the multiple definitions of an integral are “consistent”, that is: for a
µ-integrable simple fucntion we have ∫

Ω
fdµ =

∫
Ω
fdµ =

∫
Ω
fdµ

where the last integral is understood as the definition used in (b)

Proposition 3.1.4. Let µ be Radon and let f : Ω→ [0,∞] be µ-measurable. Then f is µ-integrable.

Proof. If
∫

Ω fdµ =∞, then it is trivial. Now, if
∫

Ω fdµ <∞, it means that f(x) <∞ µ-a.e.

• Case µ(Ω) <∞: For all ε > 0, set for k ∈ N

Ak := {x ∈ Ω
∣∣kε ≤ f(x) < (k + 1)ε} = f−1 [kε, (k + 1)ε)

Since f(x) <∞ µ-a.e. it means that for Ω̃ := ⋃
k∈NAk = f−1[0,∞), we have µ(Ω \ Ω̃) = 0.

To sandwich f between µ-integrable simple functions, we define

e(x) := ε
∞∑
k=0

kχAk(x)

g(x) := ε
∞∑
k=0

(k + 1)χAk(x)
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which gives us e(x) ≤ f(x) < g(x) µ-a.e. and∫
Ω
edµ ≤

∫
Ω
fdµ ≤

∫
Ω
fdµ ≤

∫
Ω
gdµ = ε

∑
k∈N

(k + 1)µ(Ak)

= ε
∑
k∈N

kµ(Ak) + ε
∑
k∈N

µ(Ak) =
∫

Ω
edµ+ ε · µ(Ω̃)

where in the last step we used that the Ak were mutually disjoint and were preimages of Borel sets
and thus µ-measurable. Because µ(Ω̃) ≤ µ(Ω) <∞, we can let ε→ 0 and get the result.

• General Case: Let Ω ⊆ Rn be a µ-measurable set. Then take any countable covering of Rn with
disjoint dyadic cubes Rn = ⋃∞

l=1Ql and set Ωl := Ω ∩Ql.
Since µ(Ωl) <∞, we are in the first case, so for all ε > 0 we can find µ-integrable simple functions
el, gl : Ωl → [0,∞] with el ≤ f ≤ gl µ-a.e. and∫

Ωl
eldµ ≤

∫
Ωl
gldµ ≤

∫
Ωl
eldµ+ ε

2l

We then define 5

e :=
∞∑
l=1

el · χΩl , and g :=
∞∑
l=1

gl · χΩl

which are again µ-integrable simple functions satisfying e ≤ f ≤ g for µ-a.e. x ∈ Ω and∫
Ω
edµ ≤

∫
Ω
fdµ ≤

∫
Ω
fdµ ≤

∫
Ω
gdµ =

∞∑
l=1

∫
Ωl
gldµ ≤

∞∑
l=1

∫
Ωl
eldµ+

∞∑
l=1

ε

2l =
∫

Ω
edµ+ ε

letting ε→ 0, we get the result.

Proposition 3.1.5 (Monotonicity). Let f1, f2 : Ω→ R be µ-integrable with f1 ≤ f2 µ-a.e.. Then∫
Ω
f1dµ ≤

∫
Ω
f2dµ

Proof. If a µ-integrable simple function g satisfies g ≥ f2 µ-a.e., then it also satisfies g ≥ f1 µ-a.e..
Looking at the definition of µ-integrable functions,∫

fdµ = inf
{∫

Ω
gdµ

∣∣g ≥ fµ-a.e., g is a µ-integrable simple function
}

then we are taking the infimum over a larger set for f1 than for f2, so∫
Ω
f1dµ =

∫
Ω
f1dµ ≤

∫
Ω
f2dµ =

∫
Ω
f2dµ

As an immediate consequence, we have
5There is some minor abuse of notation but it’s easy to extend the domain of el, gl to Ω.
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Corollary 3.1.6. Let f1, f2 : Ω→ R µ-integrable with f1 = f2 µ-a.e.∫
Ω
f1dµ =

∫
Ω
f2dµ

Definition 3.1.7. Let f : Ω→ R be a function

• f is called µ-summable, if f is µ-measurable and∫
Ω
|f |dµ <∞

• f is called locally µ-summable in Ω, if for all compact sets K ⊆ Ω, f |K is µ-summable.

Proposition 3.1.8. Let f : Ω→ R.

• If f is µ-summable, then it is µ-integrable.

• If f(x) = 0 µ-a.e., then f is µ-integrable and
∫

Ω fdµ = 0.

Proof.

(a) We show that
∫

Ω fdµ =
∫

Ω fdµ. Since f is µ-measurable, f± = max(±f, 0) are also µ-measurable.
Moreover, since 0 ≤ f± ≤ |f |, by Proposition 3.1.4, they are µ-integrable and satisfy

∫
Ω f
±dµ <∞.

This means that for all ε > 0, there exist µ-integrable simple functions e± ≤ f± ≤ g± µ-a.e. with∫
Ω
e±dµ ≤

∫
Ω
f±dµ ≤

∫
Ω
g±dµ ≤

∫
Ω
e±dµ+ ε

2

Setting e := e+ − g− and g := g+ − e−, we see that again e ≤ f ≤ g µ-a.e. and∫
Ω
edµ ≤

∫
Ω
fdµ ≤

∫
Ω
fdµ ≤

∫
Ω
gdµ =

∫
Ω
g+dµ−

∫
Ω
e−dµ

≤
∫

Ω
e+dµ+ ε

2 +
∫

Ω
g−dµ+ ε

2 =
∫

Ω
edµ+ ε

Letting ε→ 0 shows that f is µ-integrable.

(b) If f(x) = 0 µ-a.e. we can set e = g = 0 and see that e ≤ f ≤ g µ-a.e., which shows

0 =
∫

Ω
edµ ≤

∫
Ω
fdµ ≤

∫
Ω
fdµ ≤

∫
Ω
gdµ = 0

Proposition 3.1.9. Let f : Ω→ [0,∞] be µ-measurable.

(a)
∫

Ω fdµ = 0 =⇒ f(x) = 0 µ-a.e.

(b)
∫

Ω fdµ <∞ =⇒ f(x) <∞ µ-a.e.
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Proof. (a) Contraposition: Assume f(x) is not µ-a.e. zero. Then the µ-measurable sets

Ak =
{
x ∈ Ω

∣∣f(x) ≥ 1
k

}
, k ≥ 1

form an increasing sequence and their union

A∞ :=
∞⋃
k=1

Ak = {x ∈ Ω
∣∣f(x) > 0}

has non-zero measure 0 < µ(A∞) = limk→∞ µ(Ak).
This means that there exists some K ≥ 1 such that µ(AK) > 0. Then the simple function s := 1

KχAK
satisfies s ≤ f , which implies

0 < 1
K
µ(AK) =

∫
Ω
sdµ ≤

∫
Ω
fdµ

(b) Contraposition: Assume there exists an A ⊆ Ω with f(x) =∞, ∀x ∈ A,µ(A) > 0 then the simple
function s :=∞ · χA satisfies s ≤ f , and thus∫

Ω
fdµ ≥

∫
Ω
sdµ =∞ · µ(A) =∞

3.2 More Properties of the Integral
Theorem 3.2.1 (Tchebyshev Inequality). Let f : Ω→ R be µ-summable. Then for every a > 0:

µ

(
{x ∈ Ω

∣∣|f(x)| > a} ≤ 1
a

∫
Ω
|f |dµ

)
Proof. Apply monotonicity (Proposition 3.1.5) on the functions

f1 = a · χ
{x∈Ω

∣∣|f(x)|>a}
≤ f2 = |f |

here, f1 takes on the value a, whenever |f(x)| > a, and 0 elsewhere.

Corollary 3.2.2. Let f, fk : Ω→ R be µ-integrable with

lim
k→∞

∫
Ω
|fk − f |dµ = 0

Then fk
µ→ f and there exists a subsequence (fkn)n∈N with fkn → f µ-a.e.

Proof. Applying Tchebyshev’s inequality on the function fk − f , it means that for all ε > 0

µ
(
{x ∈ Ω

∣∣|fk − f | > ε}
)
≤ 1
ε

∫
Ω
|fk − f |dµ

since the right hand side converges to 0 as k →∞, it follows that fk
µ→ f (as in Definition 2.3.1).

The second part follows from Theorem 2.3.5.

Lemma 3.2.3. This Lemma is taken from Exercise Sheet 09.
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(a) For two µ-integrable simple functions f, g, there exist sequences {an}n∈N , {bn}n∈N ⊆ R, with
µ-measurable, mutually disjoint sets (Cn)n∈N such that

f =
∑
n∈N

anχCn , g =
∑
n∈N

bnχCn

(b) For a µ-integrable (simple) function of the form f = ∑
n∈N anχAn for An pairwise disjoint and

µ-measurable, it holds ∫
Ω
fdµ =

∑
n∈N

anµ(An)

(c) Let f, g : Ω→ [−∞,∞] be µ-summable simple functions, a, b ∈ R. Then af + bg is a µ-summable
simple function and ∫

Ω
(af + bg)dµ = a

∫
Ω
fdµ+ b

∫
Ω
gdµ

Proof Sketch. For a detailed proof, see Master solution of Exercise Sheet 09.

(a) Since the images of f and g are countable, let (an)n∈N, (bn)n∈N be their values. Set An :=
f−1{an}, Bn := g−1{bn}. By taking all intersections of the form Cij := Ai ∩Bj and reindexing them
(for example, with Cantor’s Diagonal map) we get a sequence (Cm)m∈N of disjoint, µ-measurable
sets.

(b) Although the values (an)n∈N might not be necessarily be different, we can take the union of all Am
corresponding to a value cm ∈ R to write

f−1{cm} =
⋃

n∈N:an=cm
An

using the fact that the An are µ-measurable and disjoint and by definition of the integral for simple
functions, we have∫

Ω
fdµ =

∑
m∈N

cmµ
(
f−1{cm}

)
=
∑
m∈N

cmµ

( ⋃
n:an=cm

An

)
=
∑
m∈N

cm
∑

n∈N:an=cm
µ(An) =

∑
n∈N

anµ(An)

(c) From part (a), we can find µ-measurable subsets Cn and sequences an, bn such that

f =
∑
n∈N

anχCn , g =
∑
n∈N

bnχCn

Since the Cn are mutually disjoint, the function af + bg, can be written as

af + bg =
∑
n∈N

(aan + bbn)χCn

which shows that af + bg is a simple function because the Cn are disjoint. By (b), we get∫
Ω

(af + bg)dµ =
∑
n∈N

(aan + bbn)µ(Cn) = a
∑
n∈N

anµ(Cn) + b
∑
n∈N

bnµ(Cn) = a

∫
Ω
fdµ+ b

∫
Ω
gdµ

To show that af + bg is µ-summable, apply additivity to |f |, |g| and use the triangle inequality:∫
Ω
|f + g|dµ ≤

∫
Ω
|f |+ |g|dµ =

∫
Ω
|f |dµ+

∫
Ω
|g|dµ <∞
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Remark 3.2.4. We can actually weaken the condition on f, g. The reason we used that f, g are µ-summable
in the first place was so that the right hand side of the equation∫

Ω
(af + bg)dµ = a

∫
Ω
fdµ+ b

∫
Ω
gdµ

is well defined. This becomes more clear when we write out

a

∫
Ω
fdµ+ b

∫
Ω
gdµ = a

[∫
Ω
f+dµ−

∫
Ω
f−dµ

]
+ b

[∫
Ω
g+dµ−

∫
Ω
g−dµ

]
We can see that it is enough to require that either∫

Ω
f+dµ <∞ and

∫
Ω
g+dµ <∞

or
∫

Ω
f−dµ <∞ and

∫
Ω
g−dµ <∞

which is the case when f, g are µ-summable. Of course, that means that af + bg may no longer be
µ-summable.

Theorem 3.2.5. Let f, g : Ω→ R be µ-summable, λ ∈ R. Then

(a) f + g is µ-summable and ∫
Ω

(f + g)dµ =
∫

Ω
fdµ+

∫
Ω
gdµ

(b) λf is µ-summable and

∫
Ω
λfdµ = λ

∫
Ω
fdµ

Proof. (a) Let f, g as above. Then for any ε > 0, we can choose simple µ-integrable functions fε, fε, gε, gε
such that fε ≤ f ≤ f ε, gε ≤ g ≤ gε µ-a.e. and∫

Ω
f εdµ−

∫
Ω
fdµ < ε

∫
Ω
fdµ−

∫
Ω
fεdµ < ε∫

Ω
gεdµ−

∫
Ω
gdµ < ε

∫
Ω
gdµ−

∫
Ω
gεdµ < ε

and since f, g are µ-summable, and f ≤ f ε =⇒ (f ε)− ≤ f−, we get∫
Ω

(fε)+ ≤
∫

Ω
f+dµ ≤

∫
Ω
|f |dµ <∞∫

Ω
(f ε)− ≤

∫
Ω
f−dµ ≤

∫
Ω
|f |dµ <∞

Ditto for (gε)+ and (gε)−. By the previous Lemma (using the weakened condition), it follows that
fε + gε and f ε + gε are µ-integrable and∫

Ω
(f ε + gε)dµ =

∫
Ω
f εdµ+

∫
Ω
gεdµ∫

Ω
(f ε + gε)dµ =

∫
Ω
fεdµ+

∫
Ω
gεdµ
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which gives us the estimate∫
Ω
fdµ+

∫
Ω
gdµ− 2ε ≤

∫
Ω
fεdµ+

∫
Ω
gεdµ =

∫
Ω

(fε + gε)dµ ≤
∫

Ω
(f + g)dµ

≤
∫

Ω
(f + g)dµ ≤

∫
Ω

(f ε + gε)dµ =
∫

Ω
f εdµ+

∫
Ω
gεdµ

≤
∫

Ω
fdµ+

∫
Ω
gdµ+ 2ε

Letting ε→ 0, it follows that (f + g) is µ-integrable with∫
Ω

(f + g)dµ =
∫

Ω
fdµ+

∫
Ω
gdµ

To show that (f + g) is µ-summable, we apply the previous result to |f | and |g| with the triangle
inequality: ∫

Ω
|f + g|dµ ≤

∫
Ω
|f |+ |g|dµ ≤=

∫
Ω
|f |dµ+

∫
Ω
|g|dµ <∞

(b) Let λ ∈ R. For all ε > 0, we can again find µ-integrable simple functions fε ≤ f ≤ f ε with∫
Ω
f εdµ−

∫
Ω
fdµ < ε and

∫
Ω
fdµ−

∫
Ω
fεdµ < ε

• If λ = 0, then it’s trivial.
• If λ ≥ 0, then

λfε ≤ λf ≤ λf ε

and using the previous Lemma, we can make the estimates

λ

∫
Ω
fdµ− λε ≤ λ

∫
Ω
fεdµ ≤

∫
Ω

(λf)dµ

≤
∫

Ω
(λf)dµ ≤

∫
Ω
λf εdµ = λ

∫
Ω
f εdµ

≤ λ
∫

Ω
fdµ+ λε

and thus λf is µ-integrable with ∫
Ω

(λf)dµ = λ

∫
Ω
fdµ

and applying this result to |λf |, we get∫
Ω
|λf |dµ =

∫
Ω
|λ||f |dµ = |λ|

∫
Ω
|f |dµ <∞

which shows that λf is µ-summable.
• If λ < 0, then we have λfε ≥ λf ≤ λf ε and the proof is analogous to the case λ > 0.
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Corollary 3.2.6 (Continuous triangle inequality). Let f : Ω→ R be µ-summable. Then

|
∫

Ω
fdµ| ≤

∫
Ω
|f |dµ

Proof. From the previous theorem and monotonicity, it follows from −|f | ≤ f ≤ |f | that

−
∫

Ω
|f |dµ =

∫
Ω
−|f |dµ ≤

∫
Ω
fdµ ≤

∫
Ω
|f |dµ

Given a function f : Ω→ R, there are two ways to restrict a function to a subset A ⊆ Ω.

Lemma 3.2.7. Let f : Ω→ R be µ-summable and A ⊆ Ω µ-measurable.
Then f |A and fχA are µ-summable (on A and Ω) and∫

A
f |Adµ =

∫
Ω
fχAdµ

Proof. We first show this for simple functions and then generalize from there.

• Let g : Ω → R be a µ-summable simple function. By Lemma 3.2.3, there exist mutually disjoint,
µ-measurable sets (Ai)i∈I with values (ai)i∈N such that g = ∑

i∈N aiχAi . Moreover, we know (by the
same Lemma) that the integrals of g|A and gχA are

g|A =
∑
i∈N

aiχAi∩A =⇒
∫
A
g|Adµ =

∑
i∈N

aiµ(Ai ∩A)

gχA =
∑
i∈N

aiχAiχA =
∑
i∈N

aiχAi∩A =⇒
∫

Ω
gχAdµ =

∑
i∈N

aiµ(Ai ∩A)

And they are µ-summable because µ(Ai ∩A) ≤ µ(Ai) and |gχA| ≤ |g|.

• Let f : Ω→ R µ-summable. For all ε > 0 we can find simple µ-integrable functions g, h such that
g ≤ f ≤ h µ-a.e. (and thus also g|A ≤ f |A ≤ h|A µ-a.e.) such that∫

Ω
hdµ− ε ≤

∫
Ω
fdµ ≤

∫
Ω
gdµ+ ε

To show that f |A is µ-integrable, we can check (using linearity of the integral) that

0 ≤
∫
A
f |Adµ−

∫
A
f |Adµ ≤

∫
A
h|Adµ−

∫
A
g|Adµ

=
∫

Ω
hχAdµ−

∫
Ω
gχAdµ =

∫
Ω

(h− g)χAdµ ≤
∫

Ω
(h− g)dµ

=
∫

Ω
hdµ−

∫
Ω
gdµ ≤

∫
Ω
fdµ−

∫
Ω
fdµ+ 2ε = 2ε

Letting ε→ 0 shows that f |A is µ-integrable.
To show that fχA is µ-integrable, check

0 ≤
∫

Ω
fχAdµ−

∫
Ω
fχAdµ ≤

∫
Ω
hχAdµ−

∫
Ω
gχAdµ =

∫
Ω

(h− g)χAdµ

≤
∫

Ω
(h− g)dµ =

∫
Ω
hdµ−

∫
Ω
gdµ ≤ 2ε
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Now we only need to show that their integrals are equal. On the one hand, we have∫
A
f |Adµ−

∫
Ω
fχAdµ ≤

∫
A
h|Adµ−

∫
Ω
gχAdµ =

∫
Ω
hχAdµ−

∫
Ω
gχAdµ =

∫
Ω

(h− g)χAdµ ≤ 2ε

and on the other hand, we have∫
A
f |Adµ−

∫
Ω
fχAdµ ≥

∫
A
g|Adµ−

∫
Ω
hχAdµ =

∫
Ω
gχAdµ−

∫
Ω
hχAdµ =

∫
Ω

(g − h)χAdµ ≥ −2ε

Which means

|
∫
A
f |Adµ−

∫
Ω
fχAdµ| ≤ 2ε

Since we have just showed that both ways of restricting a µ-summable function yield the same integral,
we will from now on write ∫

A
fdµ :=

∫
A
f |Adµ =

∫
Ω
fχAdµ

Corollary 3.2.8. Let f : Ω→ R be a µ-summable function and A ⊆ Ω with µ(A) = 0. Then∫
A
fdµ = 0

Proof. Since µ(A) = 0 it is µ-measurable and fχA = 0 µ-a.e.. By Proposition 3.1.9 we have
∫

Ω fχAdµ = 0
and from the previous Lemma, the result follows.

Proposition 3.2.9. Let f : Ω→ R be µ-summable, Ω = A ∪B, for A,B ⊆ Ω µ-measurable.

(a) If A ∩B = ∅, then ∫
Ω
fdµ =

∫
A
fdµ+

∫
B
fdµ

(b) And more generally, for A ∩B 6= ∅:∫
Ω
fdµ =

∫
A
fdµ+

∫
B
fdµ−

∫
A∩B

fdµ

Proof. (a) Clearly, f = fχA + fχB, So by linearity and Lemma 3.2.7 , we have∫
Ω
fdµ =

∫
Ω
fχA + fχBdµ =

∫
Ω
fχAdµ+

∫
Ω
fχBdµ =

∫
A
fdµ+

∫
B
fdµ

(b) We can partition Ω into the disjoint sets Ω = (A \B) t (B \A) t (A ∩B) together with

χA = χA\B + χA∩B and χB = χB\A + χA∩B

we can write

1 = χΩ = χA\B + χB\A + χA∩B

= χA − χA∩B + χB − χA∩B + χB∩A

= χA + χB − χA∩B

So by (a), we have
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3.3 Comparison between Lebesgue and Riemann-Integral
3.3.1 The Riemann Integral

Definition 3.3.1. Let I = [a, b] ⊆ R and P = {a = x0, x1, . . . xn = b} a partition of I.
For a bounded function f : I → R and P a partition on I, we define the upper and lower Riemann
sums by

S(P, f) :=
n∑
i=1

(xi − xi−1) sup
x∈(xi−1,xi]

f(x)

s(P, f) :=
n∑
i=1

(xi − xi−1) inf
x∈(xi−1,xi]

f(x)

For P the set of all partitions of I, define

R
∫ b

a
f(x)dx := inf{S(P, f), P ∈ P}

R
∫ b

a
f(x)dx := sup{S(P, f), P ∈ P}

and we say that a bounded function f : I → R is Riemann integrable (or short: R-integrable) if

R
∫ b

a
f(x)dx = R

∫ b

a
f(x)dx =:

∫ b

a
f(x)dx

The following definition is neither standard nor part of the original lecture.

Definition 3.3.2. Let I ⊆ R be an interval. A step-function is a function ϕ : I → R of the form

ϕ =
n∑
i=1

ciχ(xi−1,xi]

where P = {x1, . . . , xn} is a partition of I and c1, . . . , cn ∈ R.

Since the interval (xi−1, xi] is L1-measurable, step-functions are L1-integrable and∫
[a,b]

ϕdL1 =
n∑
i=1

ci(xi − xi−1)

For any partition P , we can express the upper and lower Riemann sums S(P, f) and s(P, f) using the
L1-integral of step functions. By defining6

P (x) =
n∑
i=1

sup
x∈(xi−1,xi]

f(x)χ(xi−1,xi]

P (x) =
n∑
i=1

inf
x∈(xi−1,xi]

f(x)χ(xi−1,xi]

it’s easy to see that

S(P, f) =
∫

[a,b]
P (x)dL1 and s(P, f) =

∫
[a,b]

P (x)dL1

6The orginal lecture wrote ϕ,ϕ instead of P , P . That confused me so I changed it.
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However, we aren’t quite satisfied. If you wanted to construct P or P , we would have to calculate
supx∈(xi−1,xi] f(x) for each interval which isn’t so handy.
It’s clear that P (x) ≤ f(x) ≤ P (x) and for any other step function ϕ(x) to the same partition P will
satisfy

ϕ ≥ f =⇒ ϕ ≥ P and ϕ ≤ f =⇒ ϕ ≤ P

which means

S(P, f) = inf
{∫

[a,b]
ϕdL1∣∣ϕ : I → R is a step function to the partition P,ϕ ≥ f

}

s(P, f) = sup
{∫

[a,b]
ϕdL1∣∣ϕ : I → R is a step function to the partition P,ϕ ≤ f

}

so we finally get the alternative characterisation of the Riemann-integral using the Lebesgue integral of
step functions:

R
∫ b

a
f(x)dx = inf

{∫
[a,b]

ϕdL1∣∣ϕ : I → R is a step-function, ϕ ≥ f
}

R
∫ b

a
f(x)dx = sup

{∫
[a,b]

ϕdL1∣∣ϕ : I → R is a step-function, ϕ ≥ f
}

One can visualize the difference between the Riemann and Lebesgue-integral as follows:

The Riemann integral considers the area under a curve as made out of vertical rectangles, whereas the
Lebesgue integral considers horizontal slabs under the curve.

Example 3.3.3. • The Dirichlet function χQ∩[0,1] is an example of a function that is not Riemann
integrable. Because for any partition P (which is made up of finitely many sections!), one finds that
S(P, f) = 1 and s(P, f) = 0.

• Moreover, the Riemann integral doesn’t behave as nicely when considering limits of functions. For
example, for some enumeration Q ∩ [0, 1] = {r1, r2, r3, . . .} we can define

fn = χr1,...,rn

It is easy to see that fn is R-integrable with integral R
∫ 1

0 fn(x)dx = 0.
But in the limit n → ∞, the sequence of functions converges to the non R-integrable Dirichlet
function.

We will see later in this chapter that the Lebesgue integral behaves much more nicely, because the
characteristic functions of L1-measurable sets are L1-integrable.

Proposition 3.3.4. Let f : [a, b]→ R be a bounded R-integrable function. Then it is L1-integrable and

R
∫ b

a
f(x)dx =

∫
[a,b]

fdL1
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Proof. As noted earlier, step functions are L1-integrable (but not the other way around). So comparing
the alternative characterisation above with Definition 3.1.2, where we are taking the supremum/infimum
over a larger set, we have

inf
{∫

[a,b]
ϕdL1∣∣ϕ : I → R a step function, ϕ ≥ f

}

≥ inf
{∫

[a,b]
gdL1∣∣g is a L1-integrable simple function, g ≥ f µ-a.e.

}

and similarly: sup
{∫

[a,b] ϕdL1∣∣ . . .} ≤ sup
{∫

[a,b] gdL1∣∣ . . .} , so it follows that

R
∫ b

a
f(x)dx = sup

{∫
[a,b]

ϕdL1∣∣ . . .} ≤ sup
{∫

[a,b]
gdL1∣∣ . . .} ≤ ∫

[a,b]
fdµ

≤
∫

[a,b]
fdµ = inf

{∫
[a,b]

gdL1∣∣ . . .} ≤ inf
{∫

[a,b]
ϕdL1∣∣ . . .} = R

∫ b

a
f(x)dx

so f is is R-integrable, the inequalities become equalities and
∫

[a,b] fdµ =
∫

[a,b] fdµ, showing that f is
L1-integrable and that their integral coincides.

3.4 Convergence Results
In this chapter, we want to see when we can exchange limits with integrals, i.e. when

lim
k→∞

∫
Ω
fkdµ =

∫
Ω

lim
k→∞

fkdµ

It is not difficult to find counterexamples, but when this holds, it allows us to calculate many integrals.
For this section, let µ be a measure on Rn and Ω µ-measurable.

Theorem 3.4.1 (Fatou’s Lemma). Let µ be a Radon measure on Rn and fk : Ω→ [0,∞] be a sequence
of µ-measurable functions. Then

∫
Ω

lim inf
k→∞

fkdµ ≤ lim inf
k→∞

∫
Ω
fkdµ

Proof. Since the fk are µ-integrable, by Theorem 2.1.5 f := lim infk→∞ fk is aswell.
We show that for every µ-integrable simple function g ≤ f :∫

Ω
gdµ ≤ lim inf

k→∞

∫
Ω
fkdµ

Since fk ≥ 0 and by Lemma 3.2.3, we can assume without loss of generality that g ≥ 0 is of the form
g = ∑∞

j=0 ajχAj with Aj µ-measurable and pairwise disjoint and a0 = 0, ai > 0 for i > 07.
For any factor t ∈ (0, 1), define

Bj,k := {x ∈ Aj
∣∣fl(x) > taj , ∀l ≥ k}

7We can’t have it that all ai > 0, or else the domain of g isn’t Ω anymore. For example with h = 0.
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then Aj = ⋃∞
k=1Bj,k. Because the series is increasing in k, by continuity from below

lim
k→∞

µ(Bj,k) = µ(Aj)

For J, k ∈ N fix: ∫
Ω
fkdµ ≥

J∑
j=1

∫
Aj

fkdµ ≥
J∑
j=1

∫
Bj,k

fkdµ ≥ t ·
J∑
j=1

ajµ(Bj,k)

Fist, we let k →∞ and get

lim inf
k→∞

∫
Ω
fkdµ ≥ lim

k→∞
t ·

J∑
j=1

ajµ(Bj,k) = t ·
J∑
j=1

ajµ(Aj)

then let J →∞:

lim inf
k→∞

∫
Ω
fkdµ ≥ t

∞∑
j=1

ajµ(Aj) = t

∫
Ω
gdµ

and if we let t→ 1, we get

lim inf
k→∞

∫
Ω
fkdµ ≥

∫
Ω
gdµ

Example 3.4.2. The condition fk ≥ 0 in Fatou’s Lemma is necessary. Take for example µ = Ln,Ω = Rn
and fk = − 1

knχBk(0). Since the volume of the ball Bk(0) is proportional to kn, we have

lim inf
k→∞

∫
Ω
fkdµ = −C

for some constant C (that depends on n). But the function sequence converges uniformly to lim infk→∞ fk =
0.

The following theorem is also sometimes known as Beppo Levi’s Theorem. We will use the descriptive
name Monotone Convergence Theorem, or MCT for short.

Theorem 3.4.3 (Monotone Convergence Theorem). Let fk : Ω→ [0,∞] be a sequence of µ-measurable
functions non-decreasing in k (i.e. f1 ≤ . . . ≤ fk ≤ fk+1 ≤ . . .). Then∫

Ω
lim
k→∞

fkdµ = lim
k→∞

∫
Ω
fkdµ

Proof. We show inequalities in both directions.

≥: Since fk is non-decreasing, we have for all j ∈ N that
∫

Ω fjdµ ≤
∫

Ω limk→∞ fkdµ. So in the limit

lim
k→∞

∫
Ω
fkdµ ≤

∫
Ω

lim
k→∞

fkdµ

≤: By Fatou’s Lemma∫
Ω

lim
k→∞

fkdµ =
∫

Ω
lim inf
k→∞

fkdµ
Fatou
≤ lim inf

k→∞

∫
Ω
fkdµ = lim

k→∞

∫
Ω
fkdµ
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Remark 3.4.4. We could also prove MCT first and use it to prove Fatou’s Lemma.

Proof of Beppo Levi without Fatou’s Lemma. Set f := limk→∞ fk. Since (fk)k∈N is non-decreasing, we
have limk→∞

∫
Ω fkdµ ≤

∫
Ω fdµ.

For any simple function h and ε > 0, set

Ωk := {x ∈ Ω
∣∣fn(x) ≥ (1− ε)h(x)}

this forms an increasing sequence (Ωk ⊆ Ωk+1). We know that WLOG, h is of the form h = ∑
i∈N ciχAi

with c0 = 0, ci > 0 for i > 0 and Ai mutually disjoint. Then we can also show that ⋃k∈N Ωk = Ω.
Suppose there exists an x0 ∈ Ω \⋃k∈N Ω. This means ∀k ∈ N : fk(x0) < (1− ε)h(x0). But then

lim
k→∞

fk(x0) = f(x0) ≤ (1− ε)h(x0) < h(x0) 

Therefore, one finds ∫
Ω
fkdµ ≥

∫
Ωk
fkdµ ≥

∫
Ωk

(1− ε)hdµ

in the limit k →∞, it follows

lim
k→∞

∫
Ω
fkdµ ≥ lim

k→∞

∫
Ωk

(1− ε)hdµ =
∫

Ω
(1− ε)hdµ

letting ε→ 0 we obtain

lim
k→∞

∫
Ω
fkdµ ≥

∫
Ω
hdµ

since h was an arbitrary simple function ≤ f , the proof follows.

Example 3.4.5. A neat application of this is the special case where the limit is sum of non-negative
functions: Let (fk)k∈N : Ω→ [0,∞] be a sequence of µ-measurable functions. Then∑∞k=1 fk is µ-measurable
and ∫

Ω

∞∑
k=1

fkdµ =
∞∑
k=1

∫
Ω
fkdµ

and to prove this, we apply MCT to the sequence of partial sums sn := ∑n
k=1 fk.

Theorem 3.4.6 (Dominated Convergence Theorem). Let f, (fk)k∈N : Ω→ R µ-measurable with fk → f
µ-a.e..
If there exists a µ-summable function g : Ω→ [0,∞] with |fk| ≤ g µ-a.e., then

lim
k→∞

∫
Ω
|fk − k|dµ = 0

and in particular

lim
k→∞

∫
Ω
fkdµ =

∫
Ω
fdµ
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Proof. First note from |f | = limk→∞|fk| ≤ g µ-a.e. it follows

|fk − f | ≤ |fk|+ |f | ≤ 2g

so f, |fk − k| are µ-summable and

lim inf
k→∞

2g − |fk − f | = 2g µ-a.e.

so with Corollary 3.1.6, Fatou’s Lemma and linearity:∫
Ω

2gdµ =
∫

Ω
lim inf
k→∞

(2g − |fk − f |)dµ
Fatou
≤ lim inf

k→∞

∫
Ω

(2g − |fk − f |)dµ

=
∫

Ω
2gdµ− lim sup

k→∞

∫
Ω
|fk − f |dµ

And since |fk − f | ≥ 0, we have

lim
k→∞

∫
Ω
|fk − f |dµ = 0

the second statement follows from linearity and the triangle inequality

0 ≤ |
∫

Ω
fkdµ−

∫
Ω
fdµ| = |

∫
Ω
fk − fdµ| ≤

∫
Ω
|fk − f |dµ

k→∞→ 0

We can also get a second proof of 3.2.2

Second Proof. Skipped

3.5 Absolute Continuity of Integrals
Let µ be a Radon measure on Rn and Ω be µ-measurable.
For any µ-summable function f : Ω→ R, we can define

ν : Σµ → R, A 7→ ν(A) :=
∫
A
fdµ

where Σµ is the σ-algebra of µ-measurable sets.

Remark 3.5.1. By Corollary 3.2.8, we have

µ(A) = 0 =⇒ ν(A) = 0

Moreover, if f ≥ 0 and µ is a Radon measure, then ν is σ-additive and again a Radon measure.
We then write

ν := µ f

this notation coincides with the restriction of measures to subsets we saw in Section 1.9, as

µ χA = µ A
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Definition 3.5.2. Let Σµ,Σν denote the σ-algebra of µ-(resp. ν)-measurable subsets. A measure ν such
that Σµ ⊆ Σν with property

µ(A) = 0 =⇒ ν(A) = 0

is called absolutely continuous with respect to µ and we write ν � µ.

The name of the definition should be reminiscent of a definition from Analysis. Let’s see why:

Theorem 3.5.3. Let f : Ω→ R be µ-summable. Then ∀ε > 0 ∃δ > 0 such that

∀A ∈ Σµ : µ(A) < δ =⇒
∫
A
|f |dµ < ε

Proof by contradiction. Assume that there exists an ε > 0 and a sequence of µ-measurable subsets Ak ⊆ Ω
with µ(Ak) < 2−k that satisfy ∫

Ak

|f |dµ ≥ ε ∀k ∈ N

for m ≥ 1 we define

Bm :=
∞⋃
k=m

Ak

This forms a decreasing sequence and by subadditivity: µ(Bm) ≤∑∞k=m < 21−m which means µ(B1) <∞
and ∫

Bm
|f |dµ ≥

∫
Ak

|f |dµ ≥ ε, ∀k ≥ m

By continuity from above, for B := ⋃∞
l=mBm we have µ(B) = limm→∞ µ(Bm) = 0. And

fm := |f |χBm =⇒ lim
m→∞

fm = |f |χB

Since |fk| ≤ |f | and |f | is µ-summable, we can use the dominated convergence theorem to show

ε ≥ lim
m→∞

∫
Bm
|f |dµ = lim

m→∞

∫
Ω
fmdµ

DCT=
∫

Ω
lim
m→∞

fmdµ =
∫
A
|f |dµ = 0 

3.6 Vitali’s Theorem
Lebesgue’s Theorem gives us a sufficient condition to pass exchange limits and integrals.
In this chapter, we will improve it and give a necessary condition to exchange limits and integrals.
In this section, let f, fk : Ω→ R be µ-summable.

Definition 3.6.1. The family {fk}k∈N is called uniformly µ-summable, if ∀ε > 0 ∃δ > 0 : ∀k ∈
N,∀A ⊆ Ω µ-measurable:

µ(A) < δ =⇒
∫
A
|fk|dµ < ε

Theorem 3.6.2 (Vitali’s Theorem). Let f, (fk)k∈N : Ω→ R. If µ(Ω) <∞, the following are equivalent:
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(a) {fk}k∈N is uniformly µ-summable and fk
µ→ f .

(b) limk→∞
∫

Ω|fk − f |dµ = 0

Proof.

(b) =⇒ (a) If
∫

Ω|fk − f |dµ → 0, by Corollary 3.2.2 it follows fk
µ→ f . To show that {fk}k∈N is uniformly

µ-summable, let ε > 0.
By our assumption (b), there exist a k0 such that∫

Ω
|fk − f |dµ < ε ∀k ≥ k0

by the previous theorem (Theorem 3.5.3), there exists a δ > 0 such that ∀A ⊆ Ω µ-measurable

µ(A) < δ =⇒
∫
A
|f |dµ < ε and max

1≤k≤k0

∫
A
|fk|dµ < ε

and for the remaining k ≥ k0, if µ(A) < δ, we get∫
A
|fk|dµ ≤

∫
A
|f |dµ+

∫
A
|fk − f |dµ ≤ 2ε

which shows that {fk}k∈N is uniformly µ-summable.

(a) =⇒ (b) We first show that (b) holds for some subsequence (fkn)n∈N, and then show it for the entire sequence.
By Theorem 2.3.5, fk

µ→ f means that there exists a subsequence (fkn)n∈N that converges to f µ-a.e.
By assumption (a), for all ε > 0 there exists a δ > 0 such that

µ(A) < δ =⇒
∫
A
|f |dµ < ε and

∫
A
|fk|dµ < ε, ∀k ∈ N

Feeding δ into Egoroff’s Theorem, we get a B ⊆ Ω with

µ(Ω \B) < δ and sup
x∈B
|fkn(x)− f(x)| → 0 as n→∞

Now we can bound the integral
∫

Ω|fkn − f |dµ. Because the above limit approaches limit, set n0 ∈ N
such that

sup
x∈B
|fkn(x)− f(x)| < ε

µ(Ω)

Thus, for all n ≥ n0, we have∫
Ω
|fkn − f |dµ =

∫
Ω\B
|fkn − f |dµ+

∫
B
|fkn − f |dµ

≤
∫

Ω\B
|fkn |+ |f |dµ+

∫
B

sup
x∈B
|fkn − f |dµ

< 2ε+ ε

µ(Ω)µ(B) ≤ 3ε

Letting ε→ 0, we find limn→∞
∫

Ω|fkn − f |dµ = 0.
We will prove by contradiction that it also holds for the entire sequence.
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Suppose lim supk→∞
∫
Ω|fk − f |dµ > 0. Then there exists a subsequence (fkn)n∈N such that

lim
n→∞

∫
Ω
|fkn − f |dµ = lim sup

k→∞

∫
Ω
|fk − f |dµ > 0

But nonetheless, {fkn}n∈N is still uniformly µ-summable and fkn
µ→ f as n → ∞, repeating the

argument from before, there exists a sub-subsequence (fkn′ )n′∈N such that

lim
n′→∞

∫
Ω
|fkn′ − f |dµ = 0

which contradicts the previous equation.

Remark 3.6.3. Since the proof in (a) =⇒ (b) relied on Egoroff’s Theorem, the condition µ(Ω) <∞ is
necessary. The other implication always holds.
Consider the sequence given by fk = 1

kχ[0,k]. Clearly, fk
µ→ 0, but∫

R
|fk − 0|dµ =

∫
[0,k]

1
k
dµ = 1 6= 0

As promised earlier, we can now improve Lebesgue’s Theorem.

Missing 30 minutes

Theorem 3.6.4.

3.7 Lp(Ω, µ) spaces
Again, let µ be a Radon measure on Rn and Ω µ-measurable.
Recall that the supremum/infimum of a set are defined in terms of upper/lower bounds.

supX := min{a ∈ R
∣∣a ≥ x,∀x ∈ X}

When talking about measure spaces, we want to ignore measure-zero sets:

Definition 3.7.1. Let X ⊆ R. We say that a ∈ R is a µ-essential upper bound of X, if

µ
(
{x ∈ X

∣∣x > a}
)

= 0

Similar to the defintion of sup, define the µ-essential supremum to be smallest µ-essential upper bound

µ− ess supX := inf{a ∈ R
∣∣µ ({x ∈ X∣∣x > a}

)
= 0}

Analogously, one can define the µ-essential infimum.

Definition 3.7.2. Let f : Ω→ R be µ-measurable. For 1 ≤ p <∞, define their p-norm

‖f‖Lp(Ω,µ) :=
(∫

Ω
|f |pdµ

)1/p
≤ ∞
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and for p =∞:

‖f‖L∞(Ω,µ) := µ− ess supx∈Ω|f(x)| = inf
{
c ∈ [0,∞]

∣∣|f | ≤ cµ-a.e.
}

We call the space of functions, for which their p-norm is finite the Lp-space

Lp(Ω, µ) := {f : Ω→ R
∣∣fµ-measurable, ‖f‖Lp(Ω,µ) <∞}

If Ω and µ are clear from context, we will write ‖f‖Lp or even ‖f‖p8instead of ‖f‖Lp(Ω,µ).
We call a function f pintegrable, if ‖f‖p <∞.9

Remark 3.7.3. For f ∈ Lp(Ω, µ) we have |f(x)| ≤ ‖f‖∞ for µ-almost all x ∈ Ω

. Missing

Remark 3.7.4. The space Lp(Ω, µ) is not necessarily closed under multiplication. Set p = 1, Ω = (0, 1]
and µ = L1 and

f(x) = g(x) = 1√
x
∈ L1(Ω, µ)

then their product is (fg)(x) = 1
x , which is not L1-integrable on (0, 1].

Moreover, ‖ · ‖p is not a norm on Lp(Ω, µ) as it is not positive definite.
To remedy this, we consider equivalence classes of functions in Lp(Ω, µ) where two functions are considered
equivalent if and only if they are equal µ-a.e..

Theorem 3.7.5. Let Lp(Ω, µ) denote the quotient space Lp(Ω, µ)/ ∼, where

f ∼ g ⇐⇒ f = g µ-a.e.

Then Lp with norm ‖ · ‖p is a Banach space. That is: a complete, and normed vector space.

For now, we will only prove that prove positive homogeneity.
The rest will be split into multiple Lemmas and Theorems.

Proof. Missing

Lemma 3.7.6 (Young Inequality). Let 1 < p, q < ∞ such that 1
p + 1

q = 1. (We say that p, q are
conjugated). Then

∀a, b ≥ 0 ab ≤ ap

p
+ bq

q

Proof. If b is zero, it’s trivial. Fix b > 0 and consider the map

f : [0,∞)→ R, a 7→ ab− ap

p

8The lecturer never used this, but I will.
9This was not used by the lecturer, but this was used in MMP I, for example.
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Because lima→∞ f(a) = −∞, f is bounded from above and must have a maximum at a = a∗ determined
by f ′(a∗) = b− ap−1 = 0.
After checking the second derivative, one finds that a∗ = b

1
p−1 is indeed a maximum of f . So ∀a ≥ 0

ab− ap

p
= f(a) ≤ f(a∗) = b

1
p−1 b− b

p
p−1

p
=
(

1− 1
p

)
b

p
p−1 = bq

q

Corollary 3.7.7 (Hölder Inequality). Let 1 ≤ p, q ≤ ∞ be conjugate, f ∈ Lp(Ω, µ), g ∈ Lq(Ω, µ). Then
fg ∈ L1(Ω, µ) and

‖fg‖1 ≤ ‖f‖p‖g‖q

Proof. WLOG we can assume p ≤ q.

• Case p = 1, q = ∞. By Remark 3.7.3, we have |fg| ≤ |f |‖g‖∞ µ-a.e., so by monotonicity of the
integral ∫

Ω
|fg|dµ ≤

∫
Ω
|f |‖g‖∞dµ ≤ ‖g‖∞

∫
Ω
|f |dµ︸ ︷︷ ︸

=‖f‖1

• Case 1 < p, q <∞. If ‖f‖p = 0 or ‖g‖q = 0, we can use Proposition 3.1.9 and we get zeros on both
sides of the equality. So assume ‖f‖p, ‖g‖q > 0.

Set f̃ := |f |
‖f‖p and g̃ := |g|

‖g‖q Notice that
∫

Ω
f̃pdµ = 1

(‖f‖p)p
∫

Ω
|f |pdµ = (‖f‖p)p

(‖f‖p)p
= 1

and likewise
∫
Ω g̃

qdµ = 1. Apply the Young inequality to f̃(x) and g̃(x). We get

f̃ g̃ ≤ f̃p

p
+ g̃q

q

taking the integal on both sides:

1
‖f‖p‖g‖q

∫
Ω
|fg|dµ︸ ︷︷ ︸

=‖fg‖1

=
∫

Ω
f̃ g̃dµ ≤ 1

p

∫
Ω
f̃pdµ+ 1

q

∫
Ω
g̃qdµ = 1

p
+ 1
q

= 1

and the proof follows.

Say we know that a function f : Ω→ R lives in some Lp-space. It would be nice to know if f ∈ Lr for
some other 1 ≤ r ≤ ∞.
The next Corollary of the Hölder inequality shows that the different Lp-spaces are nested inside eachother.

Corollary 3.7.8.

(a) Let f ∈ Lp, g ∈ Lq with 1
r = 1

p + 1
q ≤ 1. Then fg ∈ Lr and ‖fg‖r ≤ ‖f‖p‖g‖q.
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(b) If µ(Ω) <∞, then

1 ≤ r ≤ s ≤ ∞ =⇒ Ls(Ω, µ) ⊆ Lr(Ω, µ)

Proof.

(a) If p = q = r = ∞, it’s clear. If r < ∞, apply the Hölder inequality to |f |r ∈ Lp/r and |g|r ∈ Lq/r.
We can do this because 1

p/r + 1
q/r = 1.

(b) If µ(Ω) <∞, the function 1 is p-integrable for any 1 ≤ p ∈ ∞ as it has integral µ(Ω). Then note
that 1

r = 1
s + s−r

rs . So appying (a), we get

f ∈ Ls(Ω, µ) =⇒ ‖f‖r = ‖f · 1‖r
(a)
≤ ‖f‖s · ‖1‖ rs

s−r︸ ︷︷ ︸
=µ(Ω)

<∞

which shows f ∈ Lr(Ω, µ)

Remark 3.7.9. In general, the inclusion in (b) is strict in the sense that there are functions in Lr that
do not belong to Ls with r < s.
A simple example is

Ω = (0, 1), f(x) = log 1
x
∈ Lp, f /∈ L∞

In our quest to prove Lp(Ω, µ) is a Banach Space, we still need to show the Triangle inequality and closure
under addition:

Corollary 3.7.10 (Minkowski Inequality). Let 1 ≤ p ≤ ∞ and f, g ∈ Lp(Ω, µ). Then f + g ∈ Lp and

‖f + g‖p ≤ ‖f‖p + ‖g‖p

Proof. The cases p = 1 and p =∞ are easy:

|(f + g)(x)| ≤ |f(x)|+ |g(x)| ≤ ‖f‖∞ + ‖g‖∞

For 1 < p <∞, we use that the function x 7→ xp is convex. In particular:(
a+ b

2

)p
≤ ap + bp

2

Setting a = 2f(x) and b = 2g(x), we get the estimate

|(f + g)(x)|p ≤ 2p−1 (|f(x)|p + |g(x)|p) , ∀x ∈ Ω

This shows that f + g ∈ Lp and |f + g|p−1 ∈ L
p
p−1 .

Missing until rest of chapter

Missing Lecture

Missing first half
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4 Product Measure and Multiple Integrals
4.1 Fubini’s Theorem
Let X,Y be sets.

Definition 4.1.1. Let µ be a measure on X and ν a measure on Y . We define their product measure
µ× ν : P(X × Y )→ [0,∞]

(µ× ν)(S) := inf
{ ∞∑
i=1

µ(Ai)ν(Bi)
∣∣S ⊆ ∞⋃

i=1
Ai ×Bi, Ai ∈ Σµ, Bi ∈ Σν

}

Remark 4.1.2. There is another way of obtaining the product measure. If we were to define for
A ∈ Σµ, B ∈ Σν the function

λ(A×B) := µ(A)ν(B)

then λ would be a pre-measure on the algebra of finite disjoint unions. The product measure would then
be the Carathéodory-Hahn extension of λ.

Example 4.1.3. For X = Rm, Y = Rn, with µ = Lm, ν = Ln. We can show that µ× ν = Lm+n.

Theorem 4.1.4 (Fubini). Let µ, ν be Radon measures on X = Rm, Y = Rn, and µ × ν the product
measure on X × Y = Rm+n. Then

(a) For every A ∈ Σµ, B ∈ Σν their product A×B is µ× ν-measurable and

(µ× ν)(A×B) = µ(A)ν(B)

(b) For S ∈ Σµ×ν with (µ × ν)(S) < ∞, for ν-almost all y ∈ πy(S), the set Sy = {x
∣∣(x, y) ∈ S} is

µ-measurable and the mapping

y 7→ µ(Sy) =
∫
X
χSydµ

is ν-summable with ∫
Y
µ(Sy)dν =

∫
Y

∫
X
χSydµdν = (µ× ν)(S)

by symmetry in X,Y , the analogue also holds for Sx.

(c) µ× ν is a Radon measure.

(d) If f : X × Y → R is µ × ν-summable, then the mappings fy := f(−, y) and fx := f(x,−) are
µ-summable for ν-a.a y and µ-summable, for ν-a.a. y, respectively. Moreover, the mappings

y 7→
∫
X
f(x, y)dµ, x 7→

∫
Y
f(x, y)dν

are ν- and µ-summable and ∫
X×Y

fd(µ× ν) =
∫
Y

(∫
X
f(x, y)dµ

)
dµ

=
∫
X

(∫
Y
f(x, y)dν

)
dµ

Proof. No Proof
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