The Vitali Sets

1 Non-Measurable Sets

• There are subsets of \mathbb{R} that are **non-measurable**:

They cannot be assigned a measure by any extension of λ , without giving up on Non-Negativity, Countable Additivity, or Uniformity.

2 The Axiom of Choice

Proving that there are non-measurable sets requires:

Axiom of Choice Every set of non-empty, non-overlapping sets has a choice set.

(A choice set for set A is a set that contains exactly one member from each member of A.)

3 Defining the Vitali Sets

3.1 A sketch of the construction

- Define an (uncountable) partition \mathcal{U} of [0, 1).
- Use the Axiom of Choice to pick a representative from each cell of \mathcal{U} .
- Use these representatives to define a (countable) partition C of [0, 1).
- A Vitali Set is a cell of \mathcal{C} .

3.2 Defining \mathcal{U}

 $a, b \in [0, 1)$ are in the same cell if and only if $a - b \in \mathbb{Q}$.

3.3 Defining C

- \mathcal{C} has a cell C_q for each rational number $q \in \mathbb{Q}^{[0,1)}$.
- C_0 is the set of representatives of cells of \mathcal{U} .
- C_q is the set of numbers $x \in [0, 1)$ which are at a "distance" of q from the representative of their cell in \mathcal{U} .

Here "distance" is measured by bending [0, 1) into a circle:

and traveling counter-clockwise. For instance, $\frac{1}{4}$ is at "distance" $\frac{1}{2}$ from $\frac{3}{4}$:

4 A Vitali Set Cannot Be Measured

4.1 Assumptions

Countable Additivity

$$\lambda\left(\bigcup\{A_1, A_2, A_3, \ldots\}\right) = \lambda(A_1) + \lambda(A_2) + \lambda(A_3) + \ldots$$

whenever A_1, A_2, \ldots is a countable family of disjoint sets for each of which λ is defined.

- **Non-Negativity** $\lambda(A)$ is either a non-negative real number or the infinite value ∞ , for any set A in the domain of λ .
- Uniformity $\mu(A^c) = \mu(A)$, whenever $\mu(A)$ is well-defined and A^c is the result of adding $c \in \mathbb{R}$ to each member of A.

4.2 The Proof

- Suppose otherwise: $\lambda(C_q)$ is well-defined for some $q \in \mathbb{Q}^{[0,1)}$.
- By Uniformity, $\lambda(C'_q) = \lambda(C_q)$ for any $q' \in \mathbb{Q}^{[0,1)}$.
- By Non-Negativity, $\lambda(C_q)$ is either 0, or a positive real number, or ∞ .
- By Countable Additivity, it can't be any of these:
 - Suppose $\lambda(C_q) = 0$. By Countable Additivity:

$$\lambda([0,1)) = \lambda(C_q) + \lambda(C_{q'}) + \dots$$
$$= \underbrace{0}_{\text{once for each integer}} = \underbrace{0}_{0}$$

– Suppose $\lambda(C_q) = r > 0$. By Countable Additivity:

$$\lambda([0,1)) = \lambda(C_q) + \lambda(C_{q'}) + \dots$$
$$= \underbrace{r + r + r + \dots}_{\text{once for each integer}}$$
$$= \infty$$

Moral: There is no way of assigning a measure to a Vitali set without giving up on Uniformity, Non-Negativity or Countable Additivity.

5 Revising Our Assumptions?

- Giving up on **Uniformity** means *changing the subject*: the whole point of our enterprise is to find a way of extending the notion of Lebesgue Measure without giving up on uniformity.
- Non-Negativity and Countable Additivity are not actually needed to prove the existence of non-measurable sets.
- Some mathematical theories would be seriously weakened by giving up on the **Axiom of Choice**.

24.118 Paradox and Infinity Spring 2019

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.