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1 Introduction

Our setting is a compact metric space X which you can, if you wish, take to
be a compact subset of R", or even of the complex plane (with the Euclidean
metric, of course). Let C'(X) denote the space of all continuous functions on
X with values in C (equally well, you can take the values to lie in R). In
C(X) we always regard the distance between functions f and ¢ in C'(X) to
be

dist (f, g) = max{[f(z) — g(z)[ : v € X}.
It is easy to check that “dist” is a metric (henceforth: the “max-metric”)
on C'(X), in which a sequence is convergent iff it converges uniformly on X.
Similarly, a sequence in C'(X) is Cauchy iff it is Cauchy uniformly on X.
Thus the max-metric, which from now on we always assume to be part of
the definition of C'(X), makes that space complete. These notes prove the
fundamental theorem about compactness in C'(X):

1.1 The Arzela-Ascoli Theorem If a sequence { f,,}7° in C(X) is bounded
and equicontinuous then it has a uniformly convergent subsequence.

In this statement,

(a) “F C C(X) is bounded” means that there exists a positive constant
M < oo such that |f(z)| < M for each x € X and each f € F, and

(b) “F C C(X) is equicontinuous” means that: for every £ > 0 there exists
d > 0 (which depends only on ¢) such that for z,y € X:

dz,y) <d=|f(z) - fly)l <e VfeF,

where d is the metric on X.

1.2 Exercise. The Arzela-Ascoli Theorem is the key to the following re-
sult: A subset F of C(X) is compact if and only if it is closed, bounded, and
equICONEINUOUS.

1.3 Exercise. You can think of R" as (real-valued) C'(X) where X is a
set containing n points, and the metric on X is the discrete metric (the
distance between any two different points is 1). The metric thus induced
on R™ is equivalent to, but (unless n = 1) not the same as, the Euclidean
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one, and a subset of R™ is bounded in the usual Euclidean way if and only
if it is bounded in this C'(X). Show that every bounded subset of this C'(X)
is equicontinuous, thus establishing the Bolzano-Weierstrass theorem as a
generalization of the Arzela-Ascoli Theorem.

2 Proof of the Arzela-Ascoli Theorem.

STEP I. We show that the compact metric space X is separable, i.e., has a
countable dense subset S.
Given a positive integer n and a point x € X, let

B(z,1/n) ={y € X : d(z,y) < 1/n},

the open ball of radius 1/n, centered at x. For a given n, the collection of
all these balls as x runs through X is an open cover of z, so (because X is
compact) there is a finite subcollection that also covers X. Let S, denote
the collection of centers of the balls in this finite subcollection. Thus S, is
a finite subset of X that is “1/n-dense” in the sense that every point of X
lies within 1/n of a point of S,. Clearly the union S of all the sets S, is
countable, and dense in X.

STEP II. We find a subsequence of {f,} that converges pointwise on S.
This is a standard diagonal argument. Let’s list the (countably many)
elements of S as {x1,xs,...}. Then the numerical sequence {f,(z1)}>2,
is bounded, so by Bolzano-Weierstrass it has a convergent subsequence,
which we’ll write using double subscripts: {f1,(z1)}22,. Now the numer-
ical sequence {f1,(z2)}52, is bounded, so it has a convergent subsequence
{fan(22)}52,. Note that the sequence of functions { fo , }7° , since it is a sub-
sequence of { f1,}5% ;, converges at both z; and x5. Proceeding in this fashion
we obtain a countable collection of subsequences of our original sequence:

fl,l f1,2 fl,3
f2,1 f2,2 f2,3
Js1 fs2 [33

where the sequence in the n-th row converges at the points x,... ,z,, and
each row is a subsequence of the one above it.
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Thus the diagonal sequence {f,,} is a subsequence of the original se-
quence {f,} that converges at each point of S.

STEP III. Completion of the proof.

Let {g,} be the diagonal subsequence produced in the previous step,
convergent at each point of the dense set S. Let ¢ > 0 be given, and choose
d > 0 by equicontinuity of the original sequence, so that d(z,y) < J implies
|gn(z) — gn(y)| < €/3 for each x,y € z and each positive integer n. Fix
M > 1/6 so that the finite subset Sy; C S that we produced in Step I is
d-dense in X. Since {g,} converges at each point of Sy, there exists N > 0
such that

(%) n,m> N = |g,(s) —gm(s)| <e&/3 Vs e Sy.
Fix x € X. Then x lies within ¢ of some s € Sy, so if n,m > M:
190(x) = gm(@)] < [9n(x) = gn(5)] + |gn(s) = gm(5)] + |gm(s) = gm ()]

The first and last terms on the right are < £/3 by our choice of § (which was
possible because of the equicontinuity of the original sequence), and the same
estimate holds for the middle term by our choice of N in (*). In summary:
given £ > 0 we have produced N so that for each x € X,

m,n > N = |g,(z) — gm(z)| <e/3+¢/3+¢c/3=¢.

Thus on X the subsequence {g,} of {f,} is uniformly Cauchy, and there-
fore uniformly convergent. This completes the proof of the Arzela-Ascoli
Theorem. 0J



