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1 Introduction

1.1 DEFINITION (Mutually Singular). Two positive measures µ1 and µ2 on a measurable space

(X,M) are mutually singular in case there is a measurable set A so that

µ1(Ac) = 0 and µ2(A) = 0 . (1.1)

We denote the mutual singularity of µ1 and µ2 by writing µ1 ⊥ µ2.

Note that when (1.1) is satisfied, for any E ∈M,

µ1(E) = µ1(A ∩ E) and µ2(E) = µ2(Ac ∩ E) .

in this sense, “µ1 lives on A, and µ2 lives on the complement of A”.

1.2 EXAMPLE. Let (X,M) = (R,BR). Let µ1 be Lebesgue measure on R, and let µ2 be the

point mass at the origin, often called the Dirac mass. That is, for all E ∈ BR, µ2(E) = 1 if 0 ∈ E
and µ2(E) = 0 otherwise. Then with A = R\{0}, (1.1) is satisfied, and so µ1 and µ2 are mutually

singular.

The measure µ2 is the Lebesgue-Stieltjes measure associated to the right continuous function

F where

F (t) =

{
1 t ≥ 0

0 t < 0

through µ2((a, b]) = F (b)− F (a).

For a second – more interesting – example, let (X,M) = ([0, 1],B[0,1]), and let F : [0, 1]→ [0, 1]

be the Cantor function, which is continuous and monotone non-decreasing. Hence there is a unique

Lebesgue-Stieltjes measure µ2 such that µ2((a, b]) = F (b) − F (a) for all a < b in [0, 1]. Let C be

the Cantor set. Then µ2(Cc) = 0 while the Lebesgue measure of C is zero. Thus, taking µ1 to be

Lebesgue measure, and A = Cc, (1.1) is again satisfied, and µ1 and µ2 are mutually singular.

1.3 DEFINITION (Absolutely continuous). Let µ1 and µ2 be two measures on a measurable

space (X,M). Then µ1 is absolutely continuous with respect to µ2 in case for all measurable sets

A,

µ2(A) = 0 ⇒ µ1(A) = 0 . (1.2)

1 c© 2013 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.
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1.4 EXAMPLE. Let (X,M) be a measure space, and let µ2 be a measure on (X,M). Let h ≥ 0

be an integrable function on (XM, µ2). Define a mesure µ1 on (X,M) by

µ1(E) =

∫
E
hdµ2

for all E ∈M. Then, as we have seen, µ1 is a finite measure on (X,M) with µ1(X) = ‖h‖1.

If µ2(E) = 0, then 1Eh = 0 a.e. with respect to µ2, and so

µ1(E) =

∫
E
hdµ2 =

∫
X

1Ehdµ2 = 0

since the integral of a measurable integrand that equals zero almost everywhere is zero.

The Radon-Nikodym Theorem, proved below, says that when µ1 and µ2 are finite, all examples

of absolute continuity are of this type.

The Lebesgue Decomposition Theorem provides conditions under which, given two measure

µ and ν on (X,M), there exists two measures: µ(s) and µ(ac) such that µ(s) ⊥ ν, µ(ac) << ν,

and µ = µ(s) + µ(ac). The next lemma says that whenever such a decomposition of µ exists,

the components µ(s) and µ(ac) are uniquely determined. Thus, it makes sense to refer to them,

respectivley, as the singular and absolutely contininuous parts of µ with respect to ν.

1.5 LEMMA (Uniquenes of the Lebesgue Decomposition). Let µ and ν be two measures on

(X,M). Suppose there exist measures λj and ρj, j = 1, 2, such that λj ⊥ ν, ρj << ν and

µ = λj + ρj for j = 1, 2. Then λ1 = λ2 and ρ1 = ρ2.

Proof. By definition, there exists sets Aj inM such that

ν(Aj) = 0 andλj(A
c
j) = 0 for j = 1, 2 .

Let b− A1 ∪ A2. Then ν(B) ≤ ν(A1) + ν(A2) = 0. Hence ν(B) = 0. Consequently, ρj(B) = 0 for

j = 1, 2. Next, Bc = Ac1 ∩Ac2 ⊂ Acj for j = 1, 2. Hence λj(B
c) = 0 for j = 1, 2.

Now, for any E ∈M, and each j = 1, 2.

ρj(E) = ρj(E ∩B) + ρj(E ∩Bc) = ρj(E ∩Bc) = ρj(E ∩Bc) + λj(E ∩Bc) = µ(E ∩B)

where we have used, successively, the fact that ρj(E ∩ B) = 0, λj(E ∩ Bc) = 0, and µ = λj + ρj .

Thus, ρj(E) = µ(E∩B) for j = 1, 2, which shows that ρ1 = ρ2. Finaly λj = µ−ρj , so λ1 = λ2.

2 The Main Theorems

2.1 THEOREM (Lebesgue Decomposition Theorem). Let µ1 and µ2 be two finite measures on a

measurable space (X,M) Then there are measures µ
(s)
1 and µ

(ac)
1 so that

µ1 = µ
(s)
1 + µ

(ac)
1

where µ
(s)
1 and µ2 are mutually singular, and where µ

(ac)
1 is absolutely continuous with respect to

µ2. Moreover, this decomposition into a singular and absolutely continuous parts is unique.
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2.2 THEOREM (Radon–Nikodym Theorem). Let µ1 and µ2 be two finite measures on a on a

measurable space (X,M). If µ1 is absolutely continuous with respect to µ2, there is a function h

that is integrable with respect to µ2 such that for all E ∈M,

µ1(E) =

∫
E
hdµ1 , (2.1)

and moreover, h is unique up to a.e. equivalence.

The following proof of these theorems is due to Von Neumann.

Proof. Let µ1 and µ2 be two finite measures on M. Define the positive finite Borel measure ν by

ν = µ1 + µ2 .

Let H denote L2(X,M, ν). For all f ∈ H, by the fact that ν ≥ µ2, and then the Cauchy-Schwarz

inequality,∫
X
|f |dµ2 ≤

∫
X

1|f |dν ≤
(∫

X
1dν

)1/2(∫
X
|f |2dν

)1/2

= (ν(X))1/2

(∫
X
|f |2dν

)1/2

. (2.2)

Thus, for all f ∈ H, f ∈ L1(X,M, µ2), and we may define a linear functional L on H by

L(f) =

∫
X
fdµ2 .

It follows from (2.2) that for all f ∈ H,

|L(f)| ≤
∫
X
|f |dµ2 ≤ (ν(X))1/2‖f‖H .

Therefore, L is bounded, and by the Riesz Representation Theorem, there exists a unique

function g ∈ H such that ∫
X
fdµ2 =

∫
X
fgdν (2.3)

for all f ∈ H. Since ν = µ1 + µ2 ≥ µ2, it follows immediately that for all f ≥ 0,∫
X
fdν ≥

∫
X
fgdν ≥ 0 . (2.4)

Hence, for any E ∈M, ν(E) ≥
∫
E gdν ≥ 0, and this means that

0 ≤ g(x) ≤ 1

almost everywhere with respect to ν.

Now let A = { x : g(x) > 0 }, or, what is the same, Ac = {x : g(x) = 0}. Taking f = 1Ac in

(2.3), we see that

µ2(Ac) = 0 .

Therefore, if we define a measure µ
(s)
1 by

µ
(s)
1 (E) = µ1(Ac ∩ E) for all E ∈M , (2.5)
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µ
(s)
1 (A) = 0 .

Since µ
(s)
1 (A) = 0 and µ2(Ac) = 0, µ

(s)
1 and µ2 are mutually singular.

Next define µ
(ac)
1 by

µ
(ac)
1 = µ1 − µ(s)

1 ,

or, what is the same,

µ
(ac)
1 (E) = µ1(E ∩A)

for all E ∈ M. It remains to find h, which we shall show is given by h = (1 − g)/g on A. To see

this, use ν = µ1 + µ2 to rewrite (2.3) as∫
X
f(1− g)dµ2 =

∫
X
fgdµ1 (2.6)

for all f ∈ H.

Now let E be any measurable subset of A, and for each positive integer N define

fN = 1Emin{g−1, N} .

Since g > 0 on E, g−1 is defined and finite and

1Eg
−1 = lim

N→∞
fN (2.7)

almost everywhere. Moreover, since fN is bounded, it belongs to H. Hence from (2.6),∫
X
fN (1− g)dµ2 =

∫
X
fNgdµ1 .

By (2.7) and the Lebesgue Monotone Convergence Theorem,∫
E

1− g
g

dµ2 = lim
N→∞

∫
X
fN (1− g)dµ2

= lim
N→∞

∫
X
fNgdµ1

= µ1(E) .

Taking E = A, ∫
A

1− g
g

dµ2 = µ1(A) ≤ µ1(X) <∞ .

Hence the non–negative measurable function h defined by

h(x) =

{
0 if x ∈ Ac

(1− g(x))/g(x) if x ∈ A

is integrable with respect to µ2 and for all measurable sets E,

µ
(ac)
1 (E) = µ1(E ∩A) =

∫
E
hdµ2 . (2.8)

It follows immediately that if µ2(E) = 0, then µ
(ac)
1 (E) = 0, so that µ

(ac)
1 is indeed absolutely

continuous with respect to µ2.
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This proves the existence of the Lebesgue decomposition. The uniqueness is provided by

Lemma 1.5. Finally, since for h, h̃ ∈  L1(X,M, µ2),∫
E
hdµ2 =

∫
E
h̃dµ2

for all E ∈ M if and only if h = h̃ a.e. with respect to µ2. Thus, the function h in the Radon-

Nikodym Theorem is unique.

2.3 Remark. We have stated and proved the Lebesgue Dcomposition Theorem and the Radon-

Nikodym Theorem for finite measures. However, its application in the σ-finite case is immediate

from this since then there exists a countable partion of X into measurable sets of finie measure

for both µ1 and µ2. (Consider countable partitions for each measure separately, and then take

intersections.) The theorems may be applied on each set in the partition separately. The resulting

Radon-Nikodym derivative is then integrable on each of the sets in the partition, but may not

be integrable on the whole space. All the same, it is uniquely defined and is integrable on any

measurable set on which both µ1 and µ2 are finite.

3 Transformations of Lebesgue measure under homeomorphisms

with a Lipschitz inverse

Let K ⊂ Rn be compact, and let µ denote the restriction of Lebesgue measure m to K. That is,

for all Borel sets E, µ(E) = m(E ∩K).

Let T : Rn → Rn be a homeomorphism such that T−1 is a Lipschitz transformation on the

compact set T (K). That is, there exists a finite M such that

|T−1(x)− T−1(y)| ≤M |x− y|

for all x, y ∈ T (K). Equivalently

|T (x)− T (y)| ≥ 1

M
|x− y|

for all x, y ∈ K.

For example if T is defined on an open set U containing K , and is continuously differentiable

on U , and the Jacobian determinant det(DT (x)) is non-zero everywhere on K, these conditions

conditions are readily verified.

Our main goal in this section is to show that for such a transformation T , T#µ is absolutely

continuous with respect to Lebesgue measure. In a later section we shall return to the computation

of the Radon-Nikodym derivative and show that is equals | det(DT (x))|.
To prove that T#µ << m, we recall that for all Borel sets E,

T#µ(E) = m(T−1(E))

by the very definition of T#µ. Thus T#µ << m if and only if for all Borel sets E with m(E) = 0,

it is the case that m(T−1(E)) = 0. Since our hypothesis is that T−1 is Lipschitz on T (K), it suffices

to prove the following, in which we reverse the roles of T and its inverse to keep the notation simple.
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3.1 THEOREM. Let K ⊂ Rn be compact and suppose that T is a Lipschitz function on K. Let

µ∗ denote Lebesgue outer measure on Rn. If E ⊂ K is such that µ∗(E) = 0, then µ∗(T (E)) = 0.

Proof. Suppose that µ∗(E) = 0. Then for every ε > 0, there exist a countable covering of E by

dyadic rational half open rectangles Rj such that

∞∑
j=1

m(Rj) ≤ ε . (3.1)

Let R = (a1, b1]×· · ·× (an, bn] be any finite volume dyadic rational half open rectangle. Letting

2m be the largest denominator among the numbers {a1, . . . an, b1, . . . .bn}, Then R is a finite union

of half open cubes of side length 2−m. Thus, without loss of generality, we may suppose that each

rectangle Rj in (3.1) is a cube.

Let L be the Lipschitz constant of T . If ` is the side length of a cube R, then the diameter of

the set T (R) is at most L
√
n`. Let B denote the unit ball in Rn. Any set of diameter

√
n`L is

contained in a ball of radius L
√
n`/2, and hence has a Lebesgue out measure of at most

mn(B)

[
L
√
n`

2

]n
= mn(B)

[
L
√
n

2

]n
mn(R)

since mn(R) = `n. Since {T (Rj}j∈N is a cover of T (E), it follows that

µ∗(T (E)) ≤
∞∑
j=1

mn(B)

[
L
√
n

2

]n ∞∑
j=1

mn(Rj) ≤ mn(B)

[
L
√
n

2

]n
ε .

Since ε > 0 is arbitrary, µ∗(T (E)) = 0.

4 The Lebesgue Differentiation Theorem

4.1 DEFINITION (Hardy-Littlewood maximal function). A function f on Rn is locally integrable

with respect to Lebesgue measure m on Rn in case
∫
K |f |dm <∞ for all compact K ⊂ Rn. For f

locally integrable, the Hardy-Littlewood maximal function Mf is defined by

Mf(x) = sup
r>0

1

m(Br(x))

∫
Br(x)

f(y)dm(y) . (4.1)

Fix r, r′ > 0 and x, x′ ∈ Rn. As x′ → x in Rn and r′ → r in (0,∞), m(Br′(x
′)∆Br(x)) → 0.

Since f is integrable on B2r(x), for all ε > 0, there is a δ > 0 so that whenever E ⊂ B2r(x) and

m(E) < δ,
∫
E |f |dm < ε. It follows that there is an η > 0 so that whenever |r − r′|+ |x− x′| < η,∣∣∣∣∣

∫
Br′ (x

′)
fdm−

∫
Br(x)

fdm

∣∣∣∣∣ ≤
∫
Br′ (x

′)∆Br(x)
|f |dm < ε .

It follows that for each r > 0, the function fr(x) given by

fr(x) =
1

m(Br(x))

∫
Br(x)

f(y)dm(y) (4.2)
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is jointly continuous in r and x.

As a result of the continuity in r, the supremum in (4.1) is the same as the supremum over ratio-

nal r > 0, and then, since the supremum of a countable set of measurable functions is measurable,

Mf ∈ L+(Rn,L,m).

4.2 LEMMA. For f ∈ L1(Rn,L,m) and r > 0, let the function fr be defined by (4.2). Then for

all r > 0, fr ∈ L1(Rn,L,m) and

lim
r→0
‖fr − f‖1 = 0 . (4.3)

Proof. Since continuous and compactly supported functions are dense in L1(Rn,L,m), for all ε > 0,

there exists a continuous, compactly supported function g such that ‖g−f‖1 < ε. Since continuous,

compactly supported functions are uniformly continuous, for all η > 0, there exists a δ > 0 so that

whenever |y − x| < δ, |g(y)− g(x)| < η. But then with gr defined in terms of g by (4.2) with g in

place of f , |gr(x)− g(x)| < η for all x and all r < δ. In other words, limr→0 gr = g, uniformly in x.

Now let R > 0 be such that the support of g is contained in BR(0). Then for all r < 1, the support

of gr is contained in BR+1(0). Since uniform convergence on compact sets implies L1 convergence,

limr→0 ‖gr − g‖1 = 0. We now return to f itself.

The function 1Br(x)(y), as a function of x and y, is measurable on Rn × Rn, and hence

1Br(x)(y)|f(y)| is measurable on Rn × Rn. By Tonelli’s Theorem,∫
Rn

|fr|dm ≤
1

m(Br(0))

∫
Rn

(∫
Rn

1Br(x)(y)|f(y)|dm(x)

)
dm(y) =

∫
Rn

|f(y)|dm(y) = ‖f‖1 .

Applying the same argument to f − g, with g as above, and noting that (f − g)r = fr − gr, we see

that

‖fr − gr‖1 ≤ ‖f − g‖1 ≤ ε . (4.4)

Now we use Minkowski’s inequality: ‖fr − f‖1 ≤ ‖fr − gr‖1 + ‖gr − g‖1 + ‖g− f‖1. Combining

this with (4.4), we have

‖fr − f‖1 ≤ ‖gr − g‖1 + 2ε .

This together with the first part of the proof shows that lim supr→0 ‖fr − f‖1 ≤ 2ε, and then since

ε > 0 is arbitrary, proves the lemma.

Since a subsequence of every L1 convergent sequence converges almost everywhere, there exists

a sequence {rk}k∈N with limk→∞ rk = 0 such that

lim
k→∞

frk(x) = f(x) for a.e. x . (4.5)

The Lebesgue Differentiation Theorem says much more: It says that

lim
r→0

fr(x) = f(x) for a.e. x . (4.6)

In fact, from this central result, we shall extract several important corollaries.

4.3 THEOREM (The Lebesgue Differentiation Theorem). Let f ∈ L1(Rn,L,m). Then there is

a set E ∈ L with m(E) = 0 such that for all x ∈ Ec,

f(x) = lim
r→0

1

m(Br(x))

∫
Br(x)

f(y)dm(y) .
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We shall prove this theorem using two results with that each have many other applications:

The Hardy-Littlewood maximal function bound and the Finite Vitali Covering Lemma. This line

of argument is different from that of Lebesgue, and is due to Wiener.

4.4 LEMMA (Finite Vitali Covering Lemma). Let (X, d) be a metric space. Let {B1, . . . , BN} be

a finite collection of open balls in X. Let U =
⋃N
j=1Bj. Let Bj = Brj (xj). Define B̂j = B3rj (xj).

That is, B̂j is the open ball in X with the same center as Bj, but 3 times the radius.

There exits a subset J ⊂ {1, . . . , N} such that:

(1) The balls Bj with j ∈ J are mutually disjoint.

(2) U ⊂
⋃
j∈J B̂j.

Proof. Let rj denote the radius of Bj . We define J inductively. Pick j1 so that rj1 ≥ rk for all

k ∈ {1, . . . , N}. Suppose that the set {j1, . . . , jm} has been selected. Let Lm be given by

Lm = {` : B`
⋂(

Bj1
⋃
· · ·
⋃
Bjm

)
= ∅} .

If Lm = ∅, define J = {j1, . . . , jm}. Otherwise, choose jm+1 such that rm+1 ≥ rk for all k ∈ Lm.

Since {B1, . . . , BN} is finite, the selection process must terminate at some finite point, and then

each ball in {B1, . . . , BN} has non-empty intersection with some Bj such that j ∈ J .

Now suppose k /∈ J . Let m be the least value of m such that

Bk
⋂(

Bj1
⋃
· · ·
⋃
Bjm

)
6= ∅ .

Then rk ≤ rm. Thus, Bk∩Bj 6= ∅ for some j ∈ J , and rj ≥ rk. By the triangle inequality, Bk ⊂ B̂j .
Since k /∈ J is arbitrary, this shows that for all k /∈ J , Bk ⊂

⋃
j∈J B̂j . It is evident that for k ∈ J ,

Bk ⊂
⋃
j∈J B̂j . This proves that U ⊂

⋃
j∈J B̂j .

4.5 Remark. There is wide variety of covering lemmas. The full Vitalli Covering Lemma applies

to uncountable covers by balls or cubes in Rn. A particularly deep and powerful covering lemma

is that of Besicovich. For our present purpose, the simple Lemma 4.4 suffices.

4.6 THEOREM (Hardy-Littlewood Maximal Theorem). Let f ∈ L1(Rn,L,mn), and let Mf

denote the Hardy-Littlewood maximal function of f . Then for all α > 0,

mn ({ x : Mf(x) > α}) ≤ 3n
‖f‖1
α

.

Proof. Let K ⊂ { x : Mf(x) > α} be compact. for each x ∈ K, choose rx such that

1

m(Brx(x))

∫
Brx (x)

f(y)dm(y) > α . (4.7)

Then {Brx(x) : x ∈ K} is an open cover of K. Since K is compact, some finite subset

{B1, . . . , BN} ⊂ {Brx(x) : x ∈ K}

covers K. By the Finite Vitali Covering Lemma, there exists a set J ⊂ {1, . . . , N} with the

properties (1) and (2) described in the lemma. Then, using the notation of the lemma,

mn(K) ≤ mn

⋃
j∈J

B̂j

 ≤∑
j∈J

mn(B̂j) = 3n
∑
j∈J

mn(Bj) .



EAC December 9, 2014 9

However, by (4.7),

mn(Bj) ≤
1

α

∫
Bj

|f |dmn .

Thus

mn(K) ≤ 3n

α

∑
j∈J

∫
Bj

|f |dmn .

Finally since the Bj with j ∈ J are mutually disjoint,∑
j∈J

∫
Bj

|f |dmn =

∫
∪j∈JBj

|f |dmn ≤
∫
Rn

|f |dmn .

Altogether mn(K) ≤ 3n

α

∫
Rn

|f |dmn.

Finally, by the inner regularity of Lebesgue measure,

mn ({ x : Mf(x) > α}) = max{m(K) : K compact and K ⊂ { x : Mf(x) > α}} .

To prepare for the proof of the Lebesgue Differentiation Theorem, we make the following defi-

nitions: For f ∈ L1
loc(Rn,L,mn), we define

Ω+f(x) = lim sup
r→0

ffr , Ω−f(x) = lim inf
r→0

fr , andΩf(x) = Ω+f(x)− Ω+f(x)

where fr is defined by (4.2). Ωf(x) is called the oscillation of f at x.

It is clear that if f, g ∈ L1
loc(Rn,L,mn), then Ω+(f + g) ≤ Ω+f + Ω+g and Ω−(f + g) ≥

Ω−f + Ω−g. Consequently,

Ω(f + g) ≤ Ωf + Ωg . (4.8)

Proof of Theorem 4.3. Let f ∈ L1
loc(Rn,L,mn). Pick ε > 0. Since the restriction of f to any

compact set is integrable, and since fr(x) only depends on the values of f on Br(x), we may

assume without loss of generality that f ∈ L1. Pick a continuous compactly supported function g

such that ‖f − g‖1 < ε, and let h = f − g so that f = h+ g. Since g is continuous, Ωg(x) = 0 for

all x. Then by (4.8),

Ωf(x) = Ωh(x) (4.9)

for all x. By the definitions of the oscillation and the maximal functions, Ωh(x) ≤ 2Mh(x) for all

x. Then by Theorem 4.6, for all α > 0,

mn ({x : Ωh(x) > α }) ≤ 2
3n

α
‖h‖1 .

Combining this with (4.9) and recalling that ‖h‖1 < ε, we have

mn ({x : Ωf(x) > α }) ≤ 2
3n

α
ε .

Since ε > 0 is arbitrary, this means that mn ({x : Ωf(x) > α }) = 0 for all α > 0, and thus that

Ωf = 0 a.e. Since limr→0 fr(x) exists for all x such that Ωf(x) = 0, it remains only to identify the

limit as f . This, however, is a direct consequence of (4.5).
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Let f ∈  L1
loc(Rn,L,mn), and let c ∈ C. Applying Theorem 4.3 to g = |f − c|, we see that

lim
r→0

1

m(Br(x))

∫
Br(x)

|f(y)− c|dm(y) = |f(x)− c| (4.10)

on the complement of a set Ec with mn(Ec) = 0. Now let {ck}k∈N be a dense sequence in C. For

each k, let Eck be the exceptional set on which (4.10) do not hold with c = ck. Let E =
⋃
k∈NEk,

and note that mn(E) = 0.

Fix any x ∈ Ec, and any ε > 0. Choose k such that |ck−f(x)| < ε. Then for all y, |f(y)−f(x)| <
|f(y)− ck|+ ε. and hence

lim sup
r→0

1

m(Br(x))

∫
Br(x)

|f(y)− f(x)|dm(y) ≤ lim sup
r→0

1

m(Br(x))

∫
Br(x)

|f(y)− ck|dm(y) + ε < 2ε .

Thus, for all x ∈ Ec,

lim
r→0

1

m(Br(x))

∫
Br(x)

|f(y)− f(x)|dm(y) = 0 . (4.11)

4.7 DEFINITION. Let f ∈ L1
loc(Rn,L,m). The Lebesgue set of f is the set of all x such that

(4.11) is valid.

The complement of the Lebesgue set is contained a set of measure zero, as we have seen, and

hence belongs to L. It follows that the Lebesgue set belongs to L.

There is one further refinement that will be useful to us: We not limited to averaging over balls

centered on x.

4.8 DEFINITION (Nicely shrinking to a point). A set {Er}r>0 of Borel sets in Rn shrinks nicely

to x ∈ Rn in case:

(1) Er ⊂ Br(x) for each r > 0.

(2) There is a constant α > 0 such that m(Er) ≥ αm(Br(x)) for each r > 0.

Note that is is not required that x ∈ Er for any r.

The point of the definition is that for all r > 0,

1

m(Er)

∫
Er

|f(y)−f(x)|dm(y) ≤ 1

m(Er)

∫
Br(x)

|f(y)−f(x)|dm(y) ≤ 1

α

1

m(Br(x))

∫
Br(x)

|f(y)−f(x)|dm(y) .

Consequently we have the final form of the Lebesgue Differentiation Theorem:

4.9 THEOREM. Let f inL1
loc(Rn,L,m). Then for each x in the Lebesgue set of f , and each set

{Er}r>0 of sets that shrink nicely to x,

lim
r→0

1

m(Er)

∫
Er

|f(y)− f(x)|dm(y) = 0 .
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5 Lebesgue decomposition for locally finite Borel measures on Rn

Let ν be a locally finite Borel measure on Rn. Then ν is inner and outer regular, and ν(K) < ∞
for all compact K. Let ν = µ+ fdm be the Lebesgue decomposition of ν with respect to Lebesgue

measure m, so that f is the Radon-Nikodym derivative of the absolutely continuous part. Since

ν is locally finite, so are µ and fdm. Hence they too are inner and outer regular and finite on

compact sets.

The next theorem gives a more explicit form of the Lebesgue decomposition of ν with respect

to Lebesgue measure.

5.1 THEOREM (Lebesgue decomposition for locally finite Borel measures on Rn). Let ν be a

locally finite Borel measure on Rn. Then for m-almost every x ∈ Rn, and each set {Er}r>0 of sets

that shrink nicely to x,

lim
r→0

ν(Er)

m(Er)
= f(x) (5.1)

where fdm is the absolutely continuous part of ν.

Proof. ν = µ+ fdm be the Lebesgue decomposition of ν with respect to Lebesgue measure m. As

noted above, µ is outer regular. Since µ and m are mutually singular, there is a Borel set A such

that µ(A) = 0 and m(Ac) = 0. Fix k ∈ N, and define the set F by

F =

{
x ∈ A : lim sup

r→0

µ(Br(x))

m(Br(x))
>

1

k

}
.

Fix ε > 0. Let K be compact and U open with K ⊂ F ⊂ U be such that µ(U) ≤ µ(F ) + ε and

m(K) > m(F )− ε. Note that we are considering the Lebesgue measure of K, and hence using the

inner regularity of Lebesgue measure, and the µ-measure of U , and hence using the outer regularity

of µ. Since by definition F ⊂ A and µ(A) = 0, µ(U) < ε.

Be the definition of F . for each x in F , and hence each x ∈ K, there is an r > 0 such that

Rr(x) ⊂ U and
µ(Br(x))

m(Br(x))
>

1

k

Since K is compact, finitely many of the balls cover K. By the Finite Vitali Covering Lemma,

there is a finite set {x1, . . . , xN} of points in K and a corresponding set {r1, . . . , rN} of positive

numbers such that the balls {Br1(x1), . . . , BrN (xN )} are mutually disjoint, but such that

K ⊂
N⋃
j=1

B3rj (xj) .

It then follows that

m(K) ≤
N∑
j=1

m
(
B3rj (xj)

)
= 3n

N∑
j=1

m
(
Brj (xj)

)
≤ 3n

k

N∑
j=1

µ
(
Brj (xj)

)
≤ 3n

k
µ(U)

Then since m(F ) ≤ m(K) + ε and µ(U) < ε,

m(F ) ≤ ε
(

1 +
3n

k

)
.
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Since ε > 0 is arbitrary, m(F ) = 0 for all k. It now follows that on the complement of a set B of

Lebesgue measure zero,

lim sup
r→0

µ(Br(x))

m(Br(x))
= 0 .

Since whenever {Er}r>0 shrinks nicely to x, there is an α > 0 so that

µ(Er)

m(Er)
≤ 1

α

µ(Br(x))

m(Br(x))
,

we have that on the same set Bc,

lim sup
r→0

µ(Er)

m(Er)
= 0 .

Therefore, for x ∈ Bc and the Lebesgue set of x,

lim
r→0

ν(Er)

m(Er)
= lim

r→0

fdm(Er)

m(Er)
= lim

r→0

1

m(Er)

∫
Er

fdm ,

where the last equality is valid by the Lebesgue Differentiation Theorem.

Our first application is a general change-of-variables formula. We shall make use of

Rademacher’s Theorem which asserts that Lipschitz functions are differentiable almost everywhere

with respect to Lebesgue measure. Let T be a homeomorphism from Rn onto Rn that whose inverse

S is Lipschitz on every compact K ⊂ Rn. Let ν = T#m. We have proved that ν is absolutely

continuous with respect to Lebesgue measure. We now compute the Radon-Nikodym derivative in

terms of the derivative of S, DS. Recall that to says that S is differentiable at x means that there

is an n× n matrix A such that for all ε > 0, there is a δε > 0 such that

|y − x| < δε ⇒ |S(y)− [S(x) +A(y − x)| < ε|y − x| .

The matrix A, or rather the linear transformation that it represents, is called the derivative of S

at x, and is denoted DS(x).

5.2 THEOREM. Let T be a homeomorphism from Rn onto Rn that whose inverse S is Lipschitz

on every compact K ⊂ Rn. Let ν = T#m. Then

ν = |det(DS(x))|m . (5.2)

In particular, for all non-negative Borel function g on Rn,∫
Rn

gdm =

∫
Rn

(g ◦ S)|det(DS)|dm .. (5.3)

Proof. We have proved that ν is absolutely continuous with respect to Lebesgue measure. Let f

denote the Radon-Nikodym derivative. By the previous theorem, and the definition of ν, at every

point of the Lebesgue set of f ,

f(x) = lim
r→0

ν(Br(x))

m(Br(x))
= lim

r→0

m(S((Br(x)))

m(Br(x))
.

By Rademacher’s Theorem. S is differentiable almost everywhere. Suppose that x is a point in the

Lebesgue set of f at which S is differentiable. Then



EAC December 9, 2014 13

Fix ε > 0 and r < δε/2. Define

Fr = {S(y) : |y − x| < r } and Gr = {[S(x) +A(y − x) : |y − x| < r } .

Since Fr = S(Br(x)), m(Fr) = ν(Br(x)).

Suppose that det(A) = 0. Then the image of Rn under A lies in a subspace of dimension at

most n− 1. In particular G(r) is contained in a ball of radius ‖A‖r in an affine subspace of Rn of

dimension at most n− 1. Then, since every point in Fr is within a distance εr of a point of Gr, Fr
is contained in a set of Lebesgue measure at most

ωn−1(1 + ε)n−1εrn

where ωn−1 denotes the n−1 dimensional Lebesgue measure of the unit ball in Rn−1. In particular,

m(S((Br(x)))

m(Br(x))
≤ ωn−1

ωn
(1 + ε)n−1ε .

Since ε > 0 is arbitrary, this shows

lim
r→0

ν(Br(x))

m(Br(x))
= 0 = |det(A)| .

Next, suppose that det(A) 6= 0. Define S̃(x) = A−1S(x). Then the derivative of S̃ at x is I, the

n× n identity matrix, so that for all ε > 0, there is a δε > 0 such that

|y − x| < δε ⇒ |S̃(y)− [S̃(x) + (y − x)| < ε|y − x| .

Fix 1 > ε > 0 and r < δε/2. Define

F̃r = {S̃(y) : |y − x| < r } and G̃r = {[S̃(x) + (y − x) : |y − x| < r } .

Then Gr = Br(S̃(x)), and B(1−ε)r(S̃(x)) ⊂ F̃r ⊂ B(1+ε)r(S̃(x)). Consequently

(1− ε)n < m(F̃r)

m(Br(x))
< (1 + ε)n (5.4)

By what we know about the transformation of Lebesgue measure under invertible linear transfor-

mations,

m(F̃r) = m(A−1S(Br(x)) = |det(A−1)|m(S(Br(x))) = | det(A−1)|ν(Br(x)) .

Combining this with (5.4), in which ε may be arbitrarily small, it follows that

lim
r→0

ν(Br(x))

m(Br(x))
= |det(A)| .

Since A = DS(x), the proof of (5.2) is complete.

Next, by the general change of variables formula, for any non-negaitve Borel functions g, since

ν = T]m, ∫
Rn

g ◦ Tdm =

∫
Rn

gdν .

Now replace g by g ◦ S and apply (5.2).
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Our next application of Theorem 5.1 concerns monotone functions of R. Let F be a monotone

non-decreasing function from R to R. For t ∈ R, define

F (t+) = lim
h↓0

F (t+ h) ,

and define G(t) = F (t+). Note that F (t+)− F (t) ≥ 0, and for all N ∈ N

F (N)− F (−N) ≥
∑

t∈[−N,N)

(F (t+)− F (t)) . (5.5)

Dince the left side is finite, F (t+) − F (t) = 0 for all except at most countably many values of

t. The function G(t) is monotone increasing and right continuous. Let µG be the corresponding

Lebesgue-Stieltjes measure. Then

G(t+ h)−G(t) =

{
µG((t, t+ h]) h > 0

µG((t− h, t]) h < 0
.

Let {Eh}h>0 be given by Eh = (t, t+ h]. Then {Eh}h>0 shrinks nicely to t (with α = 1/2). Since

µG is a locally finite Borel measure, Thoerem 5.1 ensures that

lim
h↓0

G(t+ h)−G(t)

h
= lim

h↓0

µG(Eh)

m(Eh)
(5.6)

exists almost everyhere. Replacing Eh by (t − h, t], and repeating the argument, we see that G is

differentiable almost everywhere.

Next, let H = G − F . This function is non-zero only at the discontinuity points of F , but

these may be dense. We shall now show, again using Theorem 5.1, that for almost every t, H is

differentiable at t, and H ′(t) = 0.

Let {tj}j∈N be an enumeration of the points at which H 6= 0. Defined a Borel measure ν by

ν =

∞∑
j=1

H(tj)δtj

where δtj is the Dirac mass at tj . By (5.5), ν is locally finite. We now estimate

|H(t+ h)−H(t)| ≤ H(t+ h) +H(t) ≤ ν([t− |h|, t+ |h|])

since no matter the sign of h, t and t + h are both included in [t − |h|, t + |h|]. Define Er =

[t− r/2, t+ r/2]. Then the sets {Er}r>0 shrink nicely to t, and so

lim
|h|→0

ν(E2|h|)

m(E2|h|)
≥ 1

2
lim sup
|h|→0

|H(t+ h)−H(t)|
|h|

= 0

almost everywhere since ν is singular with respect to Lebesgue measure.

Thus excluding sets of measure zero where G is not diferentiable and where H is not differ-

entiable with derivative H ′ = 0, we have a set of full measure on which F is differentiable, and

F ′ = G′ +H ′ = G′. We have proved:
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5.3 THEOREM. Let F be a monotone non-decreasing function from R to R. Let G(t) = F (t+).

Then F and G are differentiable almost everywhere, and G′ = F ′ almost everywhere.

Now suppose that G is a monotone nondecreasing and right continuous function from R to R.

Let µG be the associated Lebesgue-Stieljes measure. Let

µG = λ+ gm

be its Lebesgue decomposition with respect to Lebesgue measure m where g is the Radon-Nikodym

derivative and λ is the singular component. By Theorem 5.1 and (5.6) once more, for almost every

t,

g(t) = G′(t) .

Thefore, for any a < b,

G(b)−G(a) = µG((a, b]) = λ((a, b]) +

∫
[a,b]

G′(t)dm(t) .

We see that the Funadamental Theorem of Calculus is valid for G on all intervals [a, b] if and only

if µG is absolutely continuous with respect to Lebesgue measure.

The absolute continuity of G can be characterized directly in terms of G. Suppose that µG is

absolutely continuous with respect to m. Let g be the Radon-Nikodym derivative. Then since {g}
is uniformly integrable, for all ε > 0, there is a δ > 0 so that when E is a Borel set with m(E) < δ,

then
∫
E gdm < ε. This means that whenever m(E) < δ, µG(E) < ε. In particular, if E is any finite

union of disjoint intervals E =
⋃N
j=1(aj , bj ],

N∑
j=1

(bj − aj) < δ ⇒
N∑
j=1

(G(bj)−G(aj)) < ε . (5.7)

On the other hand, suppose that for all ε > 0, there exists a δ > 0 such that (5.7) is valid for

any finite union of disjoint intervals E =
⋃N
j=1(aj , bj ].

Then for any set F with m(F ) < δ, there is a countable cover of F be a sequence of disjoint

intervals {(aj , bj ]}j∈N such that
∞∑
j=1

m((aj , bj ]) < δ ,

since the Lebesgue outer measure of F is the same as m(F ). It follows that for all N ,
∑N

j=1(G(bj)−
G(aj)) < ε, and then by continuity from below that

µG

 ∞⋃
j=1

(aj , bj ]

 < ε .

Since F ⊂
⋃∞
j=1(aj , bj ], this shows µG(F ) < ε.

This brings us to the following definition:
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5.4 DEFINITION (Absolutely continuous functions). A fuction F : R→ C is absolutely contin-

uous in case for every ε > 0 there is a δ > 0 such that whenever {(aj , bj)}j=1,...,n is any finite set of

disjoint open intervals satisfying
n∑
j=1

(bj − aj) < δ . (5.8)

it is the case that
n∑
j=1

|F (bj)− F (aj)| < ε . (5.9)

If for some −∞ < a < b < ∞, and the condition is satisfied whenever each of the intervals lie in

[a, b], we say that F is absolutely continuous on [a, b].

If F is absolutely continuous, and is a linear combination of real valued, and monotone non-

decreasing functions, we then we have that F is differentiable almost everywhere, and for all a < b,

F (b)− F (a) =

∫
[a,b]

F ′(t)dm(t) .

We now introduce the class of cuntions for which such a decomposition is valid:

5.5 DEFINITION (Functions of bounded variation on R). Let F : R→ C. For each x ∈ R define

TF (x) = sup


n∑
j=1

|F (xj)− F (xj−1)| : n ∈ N , −∞ < x0 < · · · < xn = x

 : . (5.10)

so that TF is a function with values n [0,∞]. We say that F is a bounded variation function in case

sup
x∈R

TF (x) <∞ .

We denote the set of all bounded variation functions by BV .

Note that for −∞ < a < b <∞,

TF (b)− TF (a) = sup


n∑
j=1

|F (xj)− F (xj−1)| : n ∈ N , −∞ , a = x0 < · · · < xn = b

 : .

(5.11)

It follows that TF is monotone non-decreasing. We say that F ∈ BV [a, b] if TF (b)− TF (a) <∞.

5.6 LEMMA (Decomposition Lemma). If F ∈ BV , then for all x < y,

TF (y)− TF (x) ≥ |F (y)− F (x)| . (5.12)

If F ∈ BV is real, TF + F and TF − F are monotone non-decreasing.

Proof. Pick x < y, ε > 0. Choose −∞ < x0 < · · · < xn = x so that

n∑
j=1

|F (xj)− F (xj−1)| ≥ TF (x)− ε . (5.13)
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Then −∞ < x0 < · · · < xn−1 < x < y is is one set of endpoints of a partition of (−∞, y] into

intervals, and so

TF (y) ≥
n∑
j=1

|F (xj)− F (xj−1)|+ |F ((y)− F (x)| . (5.14)

Combining (5.13) and (5.14) we have

TF (y) ≥ TF (x)− ε+ |F (y)− F (x)| .

Since ε > 0 is arbitrary, (5.12) is proved. When F is real this is equivalent to

TF (y)± F (y) ≥ TF (x)± F (x) .

which is what we sought to prove.

5.7 DEFINITION (The space NBV ). The set of normalized BV functions, NBV , is given by

NBV = { F ∈ BV : F is right continuous and F (−∞) = 0 } .

By what we have shown above, for every BV function F , F − F (−∞) is almost everywhere

equal to an NBV function F̃ , and moreover F ′ = F̃ a.e. m.

Next, note that for F1, F2 ∈ BV , for all x,

TF1+F2(x) ≤ TF1(x) + TF2(x) .

From this is follows easily that BV is a vector space over C.

We next introduce a natural metric on BV . Define dBV on NBV ×NBV by

dBV (F1, F2) = TF1−F2(∞) .

Since

|F1(x)− F2(x)| ≤ TF1−F2(x) ≤ TF1−F2(∞) , (5.15)

dBV (F1, F2) = 0 if and only if F1(x) = F2(x) for all x. Since symmetry and the triangle inequality

hold, dBV is a metric.

Next, by (5.15), if {Fk} is a Cauchy sequence in NBV equipped with the BV metric, for each

x, {Fk(x)} is a Cauchy sequence in C. Hence F (x) = limk→∞ Fk(x) exists for each x. It is easy to

show that F ∈ NBV and that limk→∞ dBV (Fk, F ) = 0. Thus, NBV equipped with the BV metric

is a complete metric space. In fact, the metric is given by a norm: For F ∈ NBV , we define

‖F‖BV = TF (∞) .

and we have that dBV (F1, F2) = ‖F1 − F2‖BV and that for z ∈ C and F ∈ NBV , ‖zF‖BV =

|z|‖F‖BV .

5.8 LEMMA. Fix a, b ∈ R with −∞ < a < b <∞. Let F : [a, b]→ R be absolutely continuous on

[a, b]. Then:

(1) F and TF are uniformly continuos on [a, b].

(2) F ∈ BV [a, b].
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Proof. Fix ε > 0 and let δ > 0 be such that whenver {(aj , bj)}j=1,...,n is a finite set of disjoint open

intervals such that (5.8) is satisfied, (5.9) is satisfied. It follows that if y > x and y − x < δ, then

for every x = x0 < · · · < xn = y,
∑n

j=1(xj − xj−1) < δ, and hence,

TF (y)− TF (x) ≤ ε ,

which shows that TF is uniformly continuous. By Lemma 5.6, |F (y)− F (x)| ≤ TF (y)− TF (x) ≤ ε,
and so F too is uniformly continuous.

Next, fix ε = 1 and let δ > 0 be such that

n∑
j=1

(bj − aj) < δ ⇒
n∑
j=1

|F (bj)− F (aj)| < ε .

If δ ≥ b − a, this together with the definition (5.11) imply that TF (b) − TF (a) ≤ 1. Otherwise,

TF (a+ δ)− TF (a) ≤ 1, and then covering [b− a] by at most (b− a)/δ intervales of length at most

δ, we see that TF (b)− TF (a) ≤ (b− a)/δ.

5.9 THEOREM. Let −∞ < a < b <∞, and suppose that F : [a, b]→ R is absolutely continuous

on [a, b]. Then F is differentaible for m a.e. x ∈ (a, b), and F ′(x) is integrable, and for every

a ≤ x < y ≤ b,
F (y)− F (x) =

∫
[x,y]

F ′(t)dm . (5.16)

Conversely, if F is is differentaible for m a.e. x ∈ (a, b), and F ′(x) is integrable on [a.b], and

(5.16) is valid for all a ≤ x < y ≤ b, then F is absolutely continuous on [a, b].

Proof. Let F be absolutely continuous on [a, b]. Then by Lemma 5.8, F ∈ BV [a, b], and both F

and TF are contnuous. Hence we have the decomposition F = F1−F2 where F1 = (TF +F )/2 and

F2 = (TF − F )/2. Both F1 and F2 are monotone non-decreasing continuous functions and is TF .

Let µF1 , µF2 and µTF be the correspinding Lebesgue-Stieltjes measures on [a, b]. We claim that

both F1 and F2 are absolutely continouous. From here, the Fundamenta Theorem of Calculus may

be applied separately to each of F1 and F2.

To see that F1 is absolutely continuous, let dµF1 = dλF1 +f1dm be the Lebesgue decomposition

of µF1 . Let A be a Borel subset of R such that λF1(Ac) = 0 and m(A) = 0.

Then for all δ > 0, there is a covering of A by a ountable disjoint sequence {(aj , bj ]}j∈N of half

open intervals such that
∑∞

j=1(bj − aj) < δ. By continuiuty from below, there is a finite N such

that

1

2
λF1(R) ≤

N∑
j=1

λF1((aj , bj ])) and

N∑
j=1

(bj − aj) < δ .

But for any interval (x, y)

λF1((x, y]) ≤ µF1((x, y]) ≤ µTF ((x, y]) = TF (y)− TF (x) .

Thus,

1

2
λF1(R) ≤

n∑
j=1

(TF (bj)− TF (aj)) .
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In turn, each TF (bj)− TF (aj) may be arbitraily well approcximated by a sum of the form

nj∑
k=1

|F (xk−1 − F (xk)| aj = x0 < · · · < xnj = bj ,

and thus by subdividing the intervals further we have that

1

2
λF1(R)− ε ≤

N∑
j=1

(F (bj)− F (aj)) .

where we are no summing over the refined sets of intervals, and still have
∑N

j=1(bj − aj) < δ. Since

F is absolutely continuous, we conclude that for an appropriate choice of δ > 0.

λF1([a, b]) ≤ 4ε .

Since ε > 0 is arbitrary, λF1 = 0 and the same conclusion holds for λF2 . Hence both µF1 and µF2

are absolutely contnuous. Thus, for any a ≤ x < y ≤ b,

Fj(y)− Fj(x) =

∫
[x,y]

fjdm

for j = 1, 2, which as we have shown at the begiining means that F is differentiable a.e. m and

F ′(x) = f1(x)− f2(x) a.e. m. The rest is stright-forward.

6 Exercises

1. Let φ : [0, 1] → [0, 1] be strictly increasing and continuously differentiable with φ(0) = 0 and

φ(1) = 1. Let F : [0, 1] → [0, 1] be a function of bounded variation. Let G = φ ◦ F ◦ φ−1. Show

that G ∈ BV [0, 1], and that there is a constant K depending only on φ, and not F , such that

‖G‖BV ≤ K‖F‖BV .

Find the least value of K for which this is true.

2. Let F and G be absolutely continuous on [0, 1]. Is it necessarily true that FG is absolutely

continuous on [0, 1]? Justify your answer.

3. Let m be Lebesgue measure on R. Let T : [0, 1]→ R be an absolutely continuous functions. Let

A be Borel subset of [0, 1] such that m(A) = 0. Prove that m(T (A)) = 0.


