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Young’s Inequality

Young’s Inequality

Young’s Inequality.
For 1 < p < ∞ and q the conjugate of p, for any positive a and b,

ab ≤ ap

p
+

bq

q
.

Proof. Consider g(x) = xp/p + 1/q − x . Then g ′(x) = xp−1 − 1 and so
g ′(x) < 0 when x ∈ (0, 1) and g ′(x) > 0 when x ∈ (1,∞). Therefore g
has a minimum at x = 1 (of 0). So g(x) ≥ 0 for x > 0. Therefore
x ≤ xp/p + 1/q for x > 0. With x = a/bq−1 > 0 we have

a

bq−1
≤ 1

p

( a

bq−1

)p
+

1

q

=
1

p

ap

bq
+

1

q
since p(q − 1) = q,

or ab ≤ ap/p + bq/q.
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Theorem 7.1. Hölder’s Inequality

Theorem 7.1. Hölder’s Inequality

Theorem 7.1. Let E be a measurable set, 1 ≤ p < ∞, and q the
conjugate of p. If f ∈ Lp(E ) and g ∈ Lq(E ), then fg is integrable over E
and ∫

E
|fg | ≤ ‖f ‖p‖g‖q.

This is Hölder’s Inequality. Moreover, if f 6= 0, then the function

f ∗ =

{
‖f ‖1−p

p sgn(f )|f |p−1 if p > 1
sgn(f ) if p = 1

is an element of Lq(E ), ∫
E

ff ∗ = ‖f ‖p (4)

and ‖f ∗‖q = 1.
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Theorem 7.1. Hölder’s Inequality

Theorem 7.1. Hölder’s Inequality (continued 1)

Proof. If p = 1 and q = ∞ then
‖fg‖1 =

∫
E |fg | ≤ ‖g‖∞

∫
E |f | = ‖f ‖1‖g‖∞, and Hölder’s Inequality

holds. With p = 1, f ∗ = sgn(f ) and so ff ∗ = |f | and∫
E ff ∗ =

∫
E |f | = ‖f ‖1 = ‖f ‖p. Also,

‖f ∗‖q = ‖f ∗‖∞ = ess supx∈E |f ∗(x)| = 1.

Consider p > 1. The results are trivial if f = 0 or g = 0. “It is clear” that
if Hölder’s Inequality is true for “normalized” f /‖f ‖p and g/‖g‖q, then it
is true for all f and g (as appropriate). So without loss of generality,
assume ‖f ‖p = ‖g‖q = 1. Since |f |p and |g |q are integrable over E , then
f and g are finite a.e. on E (Proposition 4.13).

By Young’s Inequality
|fg | = |f ||g | ≤ |f |p/p + |g |q/q on E . By the Integral Comparison Test, fg
is integrable over E and

‖fg‖1 =

∫
E
|fg | ≤ 1

p

∫
E
|f |p +

1

q

∫
E
|g |q =

1

p
+

1

q
= 1 = ‖f ‖p‖g‖q.
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Theorem 7.1. Hölder’s Inequality

Theorem 7.1. Hölder’s Inequality (continued 2)

Proof (continued). Finally,

ff ∗ = f ‖f ‖1−p
p sgn(f )|f |p−1 = ‖f ‖1−p

p |f |p,∫
E

ff ∗ = ‖f ‖1−p
p

∫
E
|f |p = ‖f ‖1−p

p ‖f ‖p
p = ‖f ‖p,

and

‖f ∗‖q =

{∫
E

∣∣‖f ‖1−p
p sgn(f )|f |p−1

∣∣q}1/q

=

{∫
E
|f |p
}1/q

since q(p − 1) = p

=

({∫
E
|f |p
}1/p

)p/q

= (1)p/q = 1.
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Minkowski’s Inequality

Minkowski’s Inequality

Minkowski’s Inequality.
Let E be measurable and 1 ≤ p ≤ ∞. If f and g belong to Lp(E ), then
f + g ∈ Lp(E ) and

‖f + g‖p ≤ ‖f ‖p + ‖g‖p.

Proof. We have already seen that the Triangle Inequality holds for p = 1
(in Example 7.1.B) and for p = ∞ (see Example 7.1.C). So, without loss
of generality, we suppose p ∈ (1,∞). We saw in Example 7.1.A that for all
a, b ∈ R we have |a + b|p ≤ 2p{|a|p + |b|p}, and so by monotonicity of
integration (Theorem 4.10), f + g ∈ Lp(E ).

The result holds if f + g ≡ 0,
so suppose without loss of generality, f + g 6≡ 0. Consider the conjugate of
f + g , (f + g)∗ = ‖f + g‖1−p

p sgn(f + g)|f + g |p−1. We now have

‖f + g‖p =

∫
E
(f + g)(f + g)∗ by Theorem 7.1

=

∫
E

f (f + g)∗ +

∫
E

g(f + g)∗.
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Minkowski’s Inequality

Minkowski’s Inequality (continued)

Proof (continued). Now
∫
E |f (f + g)∗| ≤ ‖f ‖p‖(f + g)∗‖q by Hölder’s

Inequality and f (f + g)∗ ≤ |f (f + g)∗| on E , so by the Integral
Comparison Test (Proposition 4.16),∫

E
f (f + g)∗ ≤

∣∣∣∣∫
E

f (f + g)∗
∣∣∣∣ ≤ ∫

E
|f (f + g)∗| ≤ ‖f ‖p‖(f + g)∗‖q.

Similarly
∫
E g(f + g)∗ ≤ ‖g‖p‖(f + g)∗‖q. Hence

‖f + g‖p =

∫
E

f (f + g)∗ +

∫
E

g(f + g)∗

≤ ‖f ‖p‖(f + g)∗‖q + ‖g‖p‖(f + g)∗‖q

= ‖f ‖p + ‖g‖q since ‖(f + g)∗‖q = 1 by Hölder’s Inequality

(the “Moreover” part).
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Minkowski’s Inequality

Minkowski’s Inequality (continued)
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Corollary 7.3

Corollary 7.3

Corollary 7.3. Let E be measurable, m(E ) < ∞, and 1 ≤ p1 < p2 ≤ ∞.
Then Lp2(E ) ⊂ Lp1(E ). Furthermore, ‖f ‖p1 ≤ c‖f ‖p2 for all f ∈ Lp2(E )
where c = (m(E ))(p2−p1)/(p1p2) if p2 < ∞ and c = (m(E ))1/p1 if p2 = ∞.

Proof. Assume p2 < ∞. Define p = p2/p1 > 1 and let q be the conjugate
of p. Let f ∈ Lp2(E ). Then |f |p1 ∈ Lp(E ) and g = χE ∈ Lq(E ) since
m(E ) < ∞.

By Hölder’s Inequality,∫
E
|f |p1 =

∫
E

(|f |p1g) ≤ ‖ |f |p1‖p‖g‖q ={∫
E
(|f |p1)p

}1/p {∫
E
|g |q

}1/q

=

{∫
E
|f |p2

}p1/p2
{∫

E
(χE )q

}1/q

=

‖f ‖p1
p2

(m(E ))1/q and so
{∫

E |f |
p1
}1/p1 ≤ ‖f ‖p2(m(E ))1/(qp1) where

1

qp1
=

1(
p

p−1

)
p1

=
1(

p2/p1

p2/p1−1

)
p1

=
p2/p1 − 1

p2
=

p2 − p1

p1p2
.
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Corollary 7.3

Corollary 7.3 (continued)

Corollary 7.3. Let E be measurable, m(E ) < ∞, and 1 ≤ p1 < p2 ≤ ∞.
Then Lp2(E ) ⊂ Lp1(E ). Furthermore, ‖f ‖p1 ≤ c‖f ‖p2 for all f ∈ Lp2(E )
where c = (m(E ))(p2−p1)/(p1p2) if p2 < ∞ and c = (m(E ))1/p1 if p2 = ∞.

Proof (continued). If p2 = ∞ and f ∈ Lp2(E ) = L∞(E ), then∫
E
|f |p1 ≤ m(E )(ess sup(f ))p1 = m(E )‖f ‖p1

∞ < ∞

and f ∈ Lp1 . Also,

‖f ‖p1 =

{∫
E
|f |p1

}1/p1

≤ {m(E )‖f ‖p1
∞}

1/p1 = (m(E ))1/p1‖f ‖∞ = c‖f ‖p1

where c = (m(E ))1/p1 .
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