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Proposition 7.4

Proposition 7.4

Proposition 7.4. Let X be a normed linear space. Then every convergent

sequence in X is Cauchy. Moreover, a Cauchy sequence in X converges if
it has a convergent subsequence.
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Proposition 7.4

Proposition 7.4

Proposition 7.4. Let X be a normed linear space. Then every convergent
sequence in X is Cauchy. Moreover, a Cauchy sequence in X converges if

it has a convergent subsequence.

Proof. Let {f,} — f in X. Then

o — fnll = |(fa = F) + (F = )|l < ||fa — FI| + ||f = finl| for all m,n € N,
Let € > 0 and N € N such that for all values of the index greater than N,

we have ||f, — f|| < /2. Then for all m,n > N, we have

= £all < o — Il + fon — fl < £/2+2/2 =,
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Proposition 7.4

Proposition 7.4. Let X be a normed linear space. Then every convergent
sequence in X is Cauchy. Moreover, a Cauchy sequence in X converges if
it has a convergent subsequence.

Proof. Let {f,} — f in X. Then

o — fnll = |(fa = F) + (F = )|l < ||fa — FI| + ||f = finl| for all m,n € N,
Let € > 0 and N € N such that for all values of the index greater than N,
we have ||f, — f|| < /2. Then for all m,n > N, we have

[ — £all < 1o — Il + fon — fl < £/2+2/2 .

Now, let {f,} be a Cauchy sequence in X with subsequence {f,, } which
converges to f in X. Let € > 0. Since {f,} is Cauchy, choose N; € N such
that ||f, — fm|| < &/2 for all m,n > Njy. Since {f,, } converges to f there is
N> € N such that if ng > N then ||f,, — f|| < /2.
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Proposition 7.4

Proposition 7.4. Let X be a normed linear space. Then every convergent
sequence in X is Cauchy. Moreover, a Cauchy sequence in X converges if
it has a convergent subsequence.

Proof. Let {f,} — f in X. Then

o — fnll = |(fa = F) + (F = )|l < ||fa — FI| + ||f = finl| for all m,n € N,
Let € > 0 and N € N such that for all values of the index greater than N,
we have ||f, — f|| < /2. Then for all m,n > N, we have

[ — £all < 1o — Il + fon — fl < £/2+2/2 .

Now, let {f,} be a Cauchy sequence in X with subsequence {f,, } which
converges to f in X. Let € > 0. Since {f,} is Cauchy, choose N; € N such
that ||f, — fm|| < &/2 for all m,n > Njy. Since {f,, } converges to f there is
N> € N such that if ny > No then ||f,, — f|| <&/2. So for

n > max{Ny, N} we have

9 9
Ifo = £l = 1[(fa = fo) + (e = O < [[fo = fo [ + [lfo, =l <5+ 5 =

So {fp} — f. L]
Real Analysis February 1, 2023 3/11



Proposition 7.5

Proposition 7.5. Let X be a normed linear space. Then every rapidly

Cauchy sequence in X is Cauchy. Furthermore every Cauchy sequence has
a rapidly Cauchy subsequence.
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Proposition 7.5

Proposition 7.5

Proposition 7.5. Let X be a normed linear space. Then every rapidly

Cauchy sequence in X is Cauchy. Furthermore every Cauchy sequence has
a rapidly Cauchy subsequence.

Proof. Let {f,} be rapidly Cauchy in X with {e,}7°, as described above.
Then

n+k—1 n+k—1 n+k—1 00
2 2
||fn+k_fn||: Z (f;’+1_f;’) < Z |’6+1_6||§ Z € SZEJ'
j:n j:n j:n j:n
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Proposition 7.5

Proposition 7.5. Let X be a normed linear space. Then every rapidly
Cauchy sequence in X is Cauchy. Furthermore every Cauchy sequence has
a rapidly Cauchy subsequence.

Proof. Let {f,} be rapidly Cauchy in X with {e,}7°, as described above.
Then

n+k—1 n+k—1 nt+k—1
Mok —fal = | 32 (=R < 2 M —fll< Y & <Zf-
Jj=n Jj=n Jj=n

Since >_72, e converges, then > 2% | £2 converges (g4 — 0, eventually
Ei < ek, and the Comparison Test). Therefore for n “sufficiently large,”

din j2 is “small” hence {f,} is a Cauchy sequence.

Real Analysis February 1, 2023 4 /11



Proposition 7.5

Proposition 7.5. Let X be a normed linear space. Then every rapidly
Cauchy sequence in X is Cauchy. Furthermore every Cauchy sequence has
a rapidly Cauchy subsequence.

Proof. Let {f,} be rapidly Cauchy in X with {e,}7°, as described above.
Then

n+k—1 n+k—1 n+k—1 00
Mok —fall = | 3 (=) < X M —fll< D <> e
j=n Jj=n Jj=n J=n

Since >_72, e converges, then > 2% | £2 converges (g4 — 0, eventually
Ei < ek, and the Comparison Test). Therefore for n “sufficiently large,”

din 512 is “small” hence {f,} is a Cauchy sequence.

Now assume {f,} is Cauchy in X. For any f, we may find, by the Cauchy

property, fn, ., such that ||fo, ., — fo || < (1/2)% = 2. Then

S ek = D021 (1/V2)k converges (geometric series). So {f,, } is

rapidly Cauchy. Ol
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Theorem 7.6

Theorem 7.6. Let E be measurable and 1 < p < co. Then every rapidly
Cauchy sequence in LP(E) converges both with respect to the LP norm
and pointwise a.e. on E to a function in LP(E).
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Theorem 7.6

Theorem 7.6. Let E be measurable and 1 < p < co. Then every rapidly
Cauchy sequence in LP(E) converges both with respect to the LP norm
and pointwise a.e. on E to a function in LP(E).

Proof. The case p = oo is Exercise 7.33. Assume 1 < p < co. Let {f,}
be a rapidly Cauchy sequence in LP(E). Without loss of generality, each f,
is finite valued.
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Theorem 7.6

Theorem 7.6. Let E be measurable and 1 < p < co. Then every rapidly
Cauchy sequence in LP(E) converges both with respect to the LP norm
and pointwise a.e. on E to a function in LP(E).

Proof. The case p = oo is Exercise 7.33. Assume 1 < p < co. Let {f,}
be a rapidly Cauchy sequence in LP(E). Without loss of generality, each f,
is finite valued. Choose {e,}7°, as described above. Then

kaJrl — kap < 612< and so

/E fiss — filP < &2 ()

for k € N. Fix index k.
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Theorem 7.6

Theorem 7.6. Let E be measurable and 1 < p < co. Then every rapidly
Cauchy sequence in LP(E) converges both with respect to the LP norm
and pointwise a.e. on E to a function in LP(E).

Proof. The case p = oo is Exercise 7.33. Assume 1 < p < co. Let {f,}
be a rapidly Cauchy sequence in LP(E). Without loss of generality, each f,
is finite valued. Choose {e,}7°, as described above. Then

ka+1 — kap < 612< and so

/E fiss — filP < &2 ()

for k € N. Fix index k. Now for x € E, we have |fx11(x) — f(x)| > e if
and only if |fii1(x) — fi(x)|P > €f, so by Chebychev's Inequality (see
Section 4.3. The Lebesgue Integral of a Measurable Nonnegative
Function) we have. ..
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Theorem 7.6 (continued 1)

Proof (continued). ...

m({x € E | [fir1()—hx)] = ei}) = m({x € E | [fia(x) ()P = £2})

1
Sp/ |fk+1—fk|p§€£ by ().

Since p > 1, the series >~ ; & converges (g4 — 0, so eventually e} < &
and by the Comparison Test).

Real Analysis February 1, 2023 6 /11


https://faculty.etsu.edu/gardnerr/5210/notes/2-5.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/2-5.pdf

Theorem 7.6 (continued 1)

Proof (continued). ...

m({x € E | [ficr1 ()= fu(x)] = ex}) = m({x € E | [ficsa ()= fu(x)IP = €}})

1
Sp/ |fk+1—fk|p§€£ by ().

Since p > 1, the series >~ ; & converges (g4 — 0, so eventually e} < &
and by the Comparison Test). By the Borel-Cantelli Lemma (see Section
2.5. Continuity and the Borel-Cantelli Lemma), since

Sreim({x € E | |fur1(x) — fi(x)| > ex}) < 352 el < oo, almost all

x € E belong to finitely many of the sets on the left hand side. That is,
there is set Ey C E where m(Ep) =0, and for x € E \ Eg we have x in
finitely many of the sets on the left hand side.
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Theorem 7.6 (continued 1)

Proof (continued). ...

m({x € E | [ficr1 ()= fu(x)] = ex}) = m({x € E | [ficsa ()= fu(x)IP = €}})

1
Sp/ |fk+1—fk|p§€£ by ().

Since p > 1, the series >~ ; & converges (g4 — 0, so eventually e} < &
and by the Comparison Test). By the Borel-Cantelli Lemma (see Section
2.5. Continuity and the Borel-Cantelli Lemma), since

Sreim({x € E | |fur1(x) — fi(x)| > ex}) < 352 el < oo, almost all

x € E belong to finitely many of the sets on the left hand side. That is,
there is set Ey C E where m(Ep) =0, and for x € E \ Eg we have x in
finitely many of the sets on the left hand side. In other words, for each

x € E\ Ep there is an index K(x) (think of it as the index of the “last” set
containing x) such that |fx11(x) — fi(x)| < ek for all k > K(x).
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Theorem 7.6 (continued 2)

Proof (continued). Then for all n > K(x) and all k € N we have
n+k—1

[t k(x) = fa(X)] < Z [fi+1(x) = fi(x)| < Zfr

Since Zj’il gj converges, for n sufﬁuently large, the right hand side of this
inequality can be made small, and so the sequence of real numbers (for
fixed x) {fx(x)} is Cauchy and therefore convergent.
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Theorem 7.6 (continued 2)

Proof (continued). Then for all n > K(x) and all k € N we have
n+k—1

[t k(x) = fa(X)] < Z [fi+1(x) = fi(x)| < Zfr

Since Zj’il gj converges, for n sufﬁuently large, the right hand side of this
inequality can be made small, and so the sequence of real numbers (for
fixed x) {fx(x)} is Cauchy and therefore convergent. Define f(x) as
limp_oo fa(x) = f(x ) It follows as in the proof of Theorem 7.5 that
p

Uik — Fallp < 202 or [g|fork — falP < (Zj’inaf) for all n, k € N.
When k — oo, frix — f a.e. on E and so, by Fatou's Lemma,

o P
fE Ilmk—>oo |fn+k f |P fE |f f |P < ||mk~>oo f ’fn—l-k f ’P < (Zj:n 512)
for all n € N.
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Theorem 7.6 (continued 2)

Proof (continued). Then for all n > K(x) and all k € N we have
n+k—1

[t k(x) = fa(X)] < Z [fi+1(x) = fi(x)| < Zfr

Since Zj’il gj converges, for n sufﬁuently large, the right hand side of this
inequality can be made small, and so the sequence of real numbers (for
fixed x) {fx(x)} is Cauchy and therefore convergent. Define f(x) as
limp_oo fa(x) = f(x ) It follows as in the proof of Theorem 7.5 that

p
Uik — Fallp < 202 or [g|fork — falP < (Zj’inaf) for all n, k € N.
When k — oo, frix — f a.e. on E and so, by Fatou's Lemma,

Je imics lfosk—fl? = e |F—l? < limy o [ [fos—fal? < (352,22)"
for all n € N. Therefore f — f, € LP(E) and since f, € LP(E), then

f € LP(E). The right hand side of this inequality can be made arbitrarily
small by making n sufficiently large, and so {f,} — f in LP(E). So {f,}
converges to f in LP and a.e. pointwise by the construction of f. O
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The Riesz-Fischer Theorem

The Riesz-Fischer Theorem. Let E be measurable and 1 < p < occ.
Then LP(E) is a Banach space. Moreover, if {f,} — f in LP then there is
a subsequence of {f,} which converges pointwise a.e. on E to f.
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The Riesz-Fischer Theorem

The Riesz-Fischer Theorem. Let E be measurable and 1 < p < occ.
Then LP(E) is a Banach space. Moreover, if {f,} — f in LP then there is
a subsequence of {f,} which converges pointwise a.e. on E to f.

Proof. We need to show completeness. Suppose {f,} is a Cauchy

sequence in LP. By Proposition 7.5, there is a subsequence {f,, } of {f,}
that is rapidly Cauchy.
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The Riesz-Fischer Theorem

The Riesz-Fischer Theorem. Let E be measurable and 1 < p < occ.
Then LP(E) is a Banach space. Moreover, if {f,} — f in LP then there is
a subsequence of {f,} which converges pointwise a.e. on E to f.

Proof. We need to show completeness. Suppose {f,} is a Cauchy
sequence in LP. By Proposition 7.5, there is a subsequence {f,, } of {f,}
that is rapidly Cauchy. By Theorem 7.6, {f,, } converges to an f € LP(E)
both with respect to the LP norm and a.e. pointwise on E. By Proposition
7.4, {f,} converges to f with respect to the LP norm. O
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Theorem 7.7

Theorem 7.7. Let E be measurable and 1 < p < co. Suppose {f,} is a
sequence in LP(E) that converges pointwise a.e. on E to f € LP(E). Then
{fa} — f with respect to the LP norm if and only if

lim / P = / 7P,
n—oo E E

thatis ||, — [l

Proof. Without loss of generality, we assume f and each f, is real-valued
and the convergence is pointwise on E. By Minkowski's Inequality,

[fallp = Mo = £+ Fllp < ifa = Fllp + [[Fllp, or [fallp = [IFllp < [1fa = 1l
Also [[f]lp = [|f = fo + fallp < [[fallp + [If = fallp or

—[1f = fallp, < llfallp = [Illp- Therefore [[|fa]|p — [|£]lp] < [ — fallp-
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Theorem 7.7

Theorem 7.7. Let E be measurable and 1 < p < co. Suppose {f,} is a
sequence in LP(E) that converges pointwise a.e. on E to f € LP(E). Then
{fa} — f with respect to the LP norm if and only if

lim / P = / 7P,
n—oo E E

thatis ||, — [l

Proof. Without loss of generality, we assume f and each f, is real-valued
and the convergence is pointwise on E. By Minkowski's Inequality,

[fallp = o = £+ Fllp < [ = fllp + [ Fllp or [Ifallp = [Fllp < 1fa = fllp-
Also [[Fllp = [IF ~ fo -+ Fallp < [ fallo + I — foll or

1 = fullp < Iallo — 1Fllp- Therefore [[[fll, — [1Fllol < I — foll. So if
{fa} — f with respect to the LP norm, then ||f,||, — ||f||,. To prove the
converse, suppose ||f,||p — ||f]|p and {f,} — f pointwise on E.
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Theorem 7.7 (continued 1)

Proof (continued). Define ¢(t) = [t|P. Then ¢ is “convex” (i.e.,
concave up since p > 1) and ¥((a + b)/2) < (¢(a) + ¢(b))/2 for all a, b.
Hence 0 < (|a|]P + |b|P)/2 — |(a — b)/2|P for all a, b (here, we are using
¥((a+(=0))/2) < (¥(a) + ¢ (-b))/2).
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Theorem 7.7 (continued 1)

Proof (continued). Define ¢(t) = [t|P. Then ¢ is “convex” (i.e.,
concave up since p > 1) and ¥((a + b)/2) < (¢(a) + ¢(b))/2 for all a, b.
Hence 0 < (|a|]P + |b|P)/2 — |(a — b)/2|P for all a, b (here, we are using
P((a+ (=b))/2) < (¥(a) + ¥(—b))/2). Therefore, for each n, hy, is
nonnegative and measurable on E where

hn(x) = (Ifa(X)|P + [F(x)|P)/2 — |fa(x) — f(x)|P/2P. Then h, — |f|P since
f, — f pointwise.
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Theorem 7.7 (continued 1)

Proof (continued). Define ¢(t) = [t|P. Then ¢ is “convex” (i.e.,
concave up since p > 1) and ¥((a + b)/2) < (¢(a) + ¢(b))/2 for all a, b.
Hence 0 < (|a|]P + |b|P)/2 — |(a — b)/2|P for all a, b (here, we are using
P((a+ (=b))/2) < (¥(a) + ¥(—b))/2). Therefore, for each n, hy, is
nonnegative and measurable on E where

hn(x) = (Ifa(X)|P + [F(x)|P)/2 — |fa(x) — f(x)|P/2P. Then h, — |f|P since
f, — f pointwise. So by Fatou’'s Lemma and since ||f,|[, — [|f]|p.

P p _£p
/|fyp<|.m.nf/h,,_|.mmf/ (f”| nalU e L/l )
. 2 2

)L )
/E|f|p /|f|P I|msup/ |fo— fIP /IfI” |.msup/|f2_pf|p,
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Theorem 7.7 (continued 2)

Theorem 7.7. Let E be measurable and 1 < p < co. Suppose {f,} is a
sequence in LP(E) that converges pointwise a.e. on E to f € LP(E). Then
{fa} — f with respect to the LP norm if and only if

im_ [ 16 = [ 17,
n—oo E E
that is [[fl[p — [[£l,-
Proof (continued). Therefore limsup [ |(f, — f)/2|P <0, or

limsup [ |f, — f|P < 0orlim [ |f, — f|P =0 (since |f, — f| nonnegative)
and therefore ||f, — f||, — 0, or {f,} — f with respect to the L norm. []
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