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Proposition 7.4

Proposition 7.4

Proposition 7.4. Let X be a normed linear space. Then every convergent
sequence in X is Cauchy. Moreover, a Cauchy sequence in X converges if
it has a convergent subsequence.
Proof. Let {fn} → f in X . Then
‖fn − fm‖ = ‖(fn − f ) + (f − fm)‖ ≤ ‖fn − f ‖+ ‖f − fm‖ for all m, n ∈ N.
Let ε > 0 and N ∈ N such that for all values of the index greater than N,
we have ‖fn − f ‖ < ε/2. Then for all m, n > N, we have
‖fm − fn‖ ≤ ‖fn − f ‖+ ‖fm − f ‖ < ε/2 + ε/2 = ε.

Now, let {fn} be a Cauchy sequence in X with subsequence {fnk
} which

converges to f in X . Let ε > 0. Since {fn} is Cauchy, choose N1 ∈ N such
that ‖fn − fm‖ < ε/2 for all m, n ≥ N1. Since {fnk

} converges to f there is
N2 ∈ N such that if nk ≥ N2 then ‖fnk

− f ‖ < ε/2. So for
n ≥ max{N1,N2} we have

‖fn − f ‖ = ‖(fn − fnk
) + (fnk

− f )‖ ≤ ‖fn − fnk
‖+ ‖fnk

− f ‖ < ε

2
+
ε

2
= ε.

So {fn} → f .
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Proposition 7.5

Proposition 7.5

Proposition 7.5. Let X be a normed linear space. Then every rapidly
Cauchy sequence in X is Cauchy. Furthermore every Cauchy sequence has
a rapidly Cauchy subsequence.

Proof. Let {fn} be rapidly Cauchy in X with {εk}∞k=1 as described above.
Then

‖fn+k − fn‖ =

∥∥∥∥∥∥
n+k−1∑

j=n

(fj+1 − fj)

∥∥∥∥∥∥ ≤
n+k−1∑

j=n

‖fj+1 − fj‖ ≤
n+k−1∑

j=n

ε2j ≤
∞∑
j=n

ε2j .

Since
∑∞

k=1 εk converges, then
∑∞

k=1 ε
2
k converges (εk → 0, eventually

ε2k ≤ εk , and the Comparison Test). Therefore for n “sufficiently large,”∑∞
j=n ε

2
j is “small” hence {fn} is a Cauchy sequence.

Now assume {fn} is Cauchy in X . For any fnk
we may find, by the Cauchy

property, fnk+1
such that ‖fnk+1

− fnk
‖ ≤ (1/2)k ≡ ε2k . Then∑∞

k=1 εk =
∑∞

k=1(1/
√

2)k converges (geometric series). So {fnk
} is

rapidly Cauchy.
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Theorem 7.6

Theorem 7.6

Theorem 7.6. Let E be measurable and 1 ≤ p ≤ ∞. Then every rapidly
Cauchy sequence in Lp(E ) converges both with respect to the Lp norm
and pointwise a.e. on E to a function in Lp(E ).

Proof. The case p = ∞ is Exercise 7.33. Assume 1 ≤ p <∞. Let {fn}
be a rapidly Cauchy sequence in Lp(E ). Without loss of generality, each fn
is finite valued.

Choose {εk}∞k=1 as described above. Then
‖fk+1 − fk‖p ≤ ε2k and so ∫

E
|fk+1 − fk |p ≤ ε2p

k (∗)

for k ∈ N. Fix index k. Now for x ∈ E , we have |fk+1(x)− fk(x)| ≥ εk if
and only if |fk+1(x)− fk(x)|p ≥ εpk , so by Chebychev’s Inequality (see
Section 4.3. The Lebesgue Integral of a Measurable Nonnegative
Function) we have. . .
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Theorem 7.6

Theorem 7.6 (continued 1)

Proof (continued). . . .

m({x ∈ E | |fk+1(x)−fk(x)| ≥ εk}) = m({x ∈ E | |fk+1(x)−fk(x)|p ≥ εpk})

≤ 1

εpk

∫
E
|fk+1 − fk |p ≤ εpk by (∗).

Since p ≥ 1, the series
∑∞

k=1 ε
p
k converges (εk → 0, so eventually εpk < εk

and by the Comparison Test). By the Borel-Cantelli Lemma (see Section
2.5. Continuity and the Borel-Cantelli Lemma), since∑∞

k=1 m({x ∈ E | |fk+1(x)− fk(x)| ≥ εk}) ≤
∑∞

k=1 ε
p
k <∞, almost all

x ∈ E belong to finitely many of the sets on the left hand side. That is,
there is set E0 ⊂ E where m(E0) = 0, and for x ∈ E \ E0 we have x in
finitely many of the sets on the left hand side.

In other words, for each
x ∈ E \ E0 there is an index K (x) (think of it as the index of the “last” set
containing x) such that |fk+1(x)− fk(x)| < εk for all k > K (x).
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Theorem 7.6

Theorem 7.6 (continued 2)

Proof (continued). Then for all n ≥ K (x) and all k ∈ N we have

|fn+k(x)− fn(x)| ≤
n+k−1∑

j=n

|fj+1(x)− fj(x)| ≤
∞∑
j=n

εj .

Since
∑∞

j=1 εj converges, for n sufficiently large, the right hand side of this
inequality can be made small, and so the sequence of real numbers (for
fixed x) {fk(x)} is Cauchy and therefore convergent. Define f (x) as
limn→∞ fn(x) = f (x). It follows as in the proof of Theorem 7.5 that

‖fn+k − fn‖p ≤
∑∞

j=n ε
2
j or

∫
E |fn+k − fn|p ≤

(∑∞
j=n ε

2
j

)p
for all n, k ∈ N.

When k →∞, fn+k → f a.e. on E and so, by Fatou’s Lemma,∫
E limk→∞ |fn+k−fn|p =

∫
E |f−fn|p ≤ limk→∞

∫
|fn+k−fn|p ≤

(∑∞
j=n ε

2
j

)p

for all n ∈ N.

Therefore f − fn ∈ Lp(E ) and since fn ∈ Lp(E ), then
f ∈ Lp(E ). The right hand side of this inequality can be made arbitrarily
small by making n sufficiently large, and so {fn} → f in Lp(E ). So {fn}
converges to f in Lp and a.e. pointwise by the construction of f .

() Real Analysis February 1, 2023 7 / 11



Theorem 7.6

Theorem 7.6 (continued 2)

Proof (continued). Then for all n ≥ K (x) and all k ∈ N we have

|fn+k(x)− fn(x)| ≤
n+k−1∑

j=n

|fj+1(x)− fj(x)| ≤
∞∑
j=n

εj .

Since
∑∞

j=1 εj converges, for n sufficiently large, the right hand side of this
inequality can be made small, and so the sequence of real numbers (for
fixed x) {fk(x)} is Cauchy and therefore convergent. Define f (x) as
limn→∞ fn(x) = f (x). It follows as in the proof of Theorem 7.5 that

‖fn+k − fn‖p ≤
∑∞

j=n ε
2
j or

∫
E |fn+k − fn|p ≤

(∑∞
j=n ε

2
j

)p
for all n, k ∈ N.

When k →∞, fn+k → f a.e. on E and so, by Fatou’s Lemma,∫
E limk→∞ |fn+k−fn|p =

∫
E |f−fn|p ≤ limk→∞

∫
|fn+k−fn|p ≤

(∑∞
j=n ε

2
j

)p

for all n ∈ N. Therefore f − fn ∈ Lp(E ) and since fn ∈ Lp(E ), then
f ∈ Lp(E ). The right hand side of this inequality can be made arbitrarily
small by making n sufficiently large, and so {fn} → f in Lp(E ). So {fn}
converges to f in Lp and a.e. pointwise by the construction of f .

() Real Analysis February 1, 2023 7 / 11



Theorem 7.6

Theorem 7.6 (continued 2)

Proof (continued). Then for all n ≥ K (x) and all k ∈ N we have

|fn+k(x)− fn(x)| ≤
n+k−1∑

j=n

|fj+1(x)− fj(x)| ≤
∞∑
j=n

εj .

Since
∑∞

j=1 εj converges, for n sufficiently large, the right hand side of this
inequality can be made small, and so the sequence of real numbers (for
fixed x) {fk(x)} is Cauchy and therefore convergent. Define f (x) as
limn→∞ fn(x) = f (x). It follows as in the proof of Theorem 7.5 that

‖fn+k − fn‖p ≤
∑∞

j=n ε
2
j or

∫
E |fn+k − fn|p ≤

(∑∞
j=n ε

2
j

)p
for all n, k ∈ N.

When k →∞, fn+k → f a.e. on E and so, by Fatou’s Lemma,∫
E limk→∞ |fn+k−fn|p =

∫
E |f−fn|p ≤ limk→∞

∫
|fn+k−fn|p ≤

(∑∞
j=n ε

2
j

)p

for all n ∈ N. Therefore f − fn ∈ Lp(E ) and since fn ∈ Lp(E ), then
f ∈ Lp(E ). The right hand side of this inequality can be made arbitrarily
small by making n sufficiently large, and so {fn} → f in Lp(E ). So {fn}
converges to f in Lp and a.e. pointwise by the construction of f .

() Real Analysis February 1, 2023 7 / 11



The Riesz-Fischer Theorem

The Riesz-Fischer Theorem

The Riesz-Fischer Theorem. Let E be measurable and 1 ≤ p ≤ ∞.
Then Lp(E ) is a Banach space. Moreover, if {fn} → f in Lp then there is
a subsequence of {fn} which converges pointwise a.e. on E to f .

Proof. We need to show completeness. Suppose {fn} is a Cauchy
sequence in Lp. By Proposition 7.5, there is a subsequence {fnk

} of {fn}
that is rapidly Cauchy.

By Theorem 7.6, {fnk
} converges to an f ∈ Lp(E )

both with respect to the Lp norm and a.e. pointwise on E . By Proposition
7.4, {fn} converges to f with respect to the Lp norm.
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The Riesz-Fischer Theorem. Let E be measurable and 1 ≤ p ≤ ∞.
Then Lp(E ) is a Banach space. Moreover, if {fn} → f in Lp then there is
a subsequence of {fn} which converges pointwise a.e. on E to f .
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Theorem 7.7

Theorem 7.7. Let E be measurable and 1 ≤ p <∞. Suppose {fn} is a
sequence in Lp(E ) that converges pointwise a.e. on E to f ∈ Lp(E ). Then
{fn} → f with respect to the Lp norm if and only if

lim
n→∞

∫
E
|fn|p =

∫
E
|f |p,

that is ‖fn‖p → ‖f ‖p.

Proof. Without loss of generality, we assume f and each fn is real-valued
and the convergence is pointwise on E . By Minkowski’s Inequality,
‖fn‖p = ‖fn − f + f ‖p ≤ ‖fn − f ‖p + ‖f ‖p, or ‖fn‖p − ‖f ‖p ≤ ‖fn − f ‖p.
Also ‖f ‖p = ‖f − fn + fn‖p ≤ ‖fn‖p + ‖f − fn‖p or
−‖f − fn‖p ≤ ‖fn‖p − ‖f ‖p. Therefore |‖fn‖p − ‖f ‖p| ≤ ‖f − fn‖p. So if
{fn} → f with respect to the Lp norm, then ‖fn‖p → ‖f ‖p. To prove the
converse, suppose ‖fn‖p → ‖f ‖p and {fn} → f pointwise on E .
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Theorem 7.7 (continued 1)

Proof (continued). Define ψ(t) = |t|p. Then ψ is “convex” (i.e.,
concave up since p ≥ 1) and ψ((a + b)/2) ≤ (ψ(a) + ψ(b))/2 for all a, b.
Hence 0 ≤ (|a|p + |b|p)/2− |(a− b)/2|p for all a, b (here, we are using
ψ((a + (−b))/2) ≤ (ψ(a) + ψ(−b))/2). Therefore, for each n, hn is
nonnegative and measurable on E where
hn(x) = (|fn(x)|p + |f (x)|p)/2− |fn(x)− f (x)|p/2p. Then hn → |f |p since
fn → f pointwise.

So by Fatou’s Lemma and since ‖fn‖p → ‖f ‖p,∫
E
|f |p ≤ lim inf

∫
E

hn = lim inf

∫
E

(
|fn|p + |f |p

2
− |fn − f |p

2p

)

= lim inf

(∫
E

|fn|p

2

)
+

∫
E

|f |p

2
− lim sup

(∫
E

|fn − f |p

2p

)
=

∫
E

|f |p

2
+

∫
E

|f |p

2
− lim sup

∫
E

|fn − f |p

2p
=

∫
E
|f |p − lim sup

∫
E

|fn − f |p

2p
.
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Theorem 7.7 (continued 2)

Theorem 7.7. Let E be measurable and 1 ≤ p <∞. Suppose {fn} is a
sequence in Lp(E ) that converges pointwise a.e. on E to f ∈ Lp(E ). Then
{fn} → f with respect to the Lp norm if and only if

lim
n→∞

∫
E
|fn|p =

∫
E
|f |p,

that is ‖fn‖p → ‖f ‖p.

Proof (continued). Therefore lim sup
∫
E |(fn − f )/2|p ≤ 0, or

lim sup
∫
E |fn − f |p ≤ 0 or lim

∫
E |fn − f |p = 0 (since |fn − f | nonnegative)

and therefore ‖fn− f ‖p → 0, or {fn} → f with respect to the Lp norm.
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