### **Real Analysis**

#### **Chapter 7. The** *L<sup>p</sup>* **Spaces: Completeness and Approximation** 7.4. Approximation and Separability—Proofs of Theorems



**Real Analysis** 



- 2 Proposition 7.10
- 3 Theorem 7.11



# **Proposition 7.9.** Let *E* be measurable and $1 \le p \le \infty$ . Then the subspace of simple functions in $L^{p}(E)$ is dense in $L^{p}(E)$ .

**Proof.** Let  $g \in L^p(E)$ . Suppose  $p = \infty$ . Then g is bounded on  $E \setminus E_0$  where  $m(E_0) = 0$ .

**Proposition 7.9.** Let *E* be measurable and  $1 \le p \le \infty$ . Then the subspace of simple functions in  $L^{p}(E)$  is dense in  $L^{p}(E)$ .

**Proof.** Let  $g \in L^{p}(E)$ . Suppose  $p = \infty$ . Then g is bounded on  $E \setminus E_{0}$  where  $m(E_{0}) = 0$ . We infer from the Simple Approximation Lemma (see page 61; really, it is Problem 3.12) that there is a sequence of simple functions on  $E \setminus E_{0}$  that converges uniformly on  $E \setminus E_{0}$  to g, and therefore converges with respect to the  $L^{\infty}$  norm. So simple functions are dense in  $L^{\infty}(E)$ .

**Real Analysis** 

**Proposition 7.9.** Let *E* be measurable and  $1 \le p \le \infty$ . Then the subspace of simple functions in  $L^{p}(E)$  is dense in  $L^{p}(E)$ .

**Proof.** Let  $g \in L^p(E)$ . Suppose  $p = \infty$ . Then g is bounded on  $E \setminus E_0$  where  $m(E_0) = 0$ . We infer from the Simple Approximation Lemma (see page 61; really, it is Problem 3.12) that there is a sequence of simple functions on  $E \setminus E_0$  that converges uniformly on  $E \setminus E_0$  to g, and therefore converges with respect to the  $L^{\infty}$  norm. So simple functions are dense in  $L^{\infty}(E)$ .

Now suppose  $1 \le p < \infty$ . Since g is measurable, by the Simple Approximation Theorem, there is a sequence  $\{\varphi_n\}$  of simple functions on E such that  $\{\varphi_n\} \to g$  pointwise on E and  $|\varphi_n| \le |g|$  on E for all  $n \in \mathbb{N}$ . By the Integral Comparison Test, each  $\varphi_n \in L^p(E)$ .

**Proposition 7.9.** Let *E* be measurable and  $1 \le p \le \infty$ . Then the subspace of simple functions in  $L^{p}(E)$  is dense in  $L^{p}(E)$ .

**Proof.** Let  $g \in L^p(E)$ . Suppose  $p = \infty$ . Then g is bounded on  $E \setminus E_0$  where  $m(E_0) = 0$ . We infer from the Simple Approximation Lemma (see page 61; really, it is Problem 3.12) that there is a sequence of simple functions on  $E \setminus E_0$  that converges uniformly on  $E \setminus E_0$  to g, and therefore converges with respect to the  $L^{\infty}$  norm. So simple functions are dense in  $L^{\infty}(E)$ .

Now suppose  $1 \le p < \infty$ . Since g is measurable, by the Simple Approximation Theorem, there is a sequence  $\{\varphi_n\}$  of simple functions on E such that  $\{\varphi_n\} \to g$  pointwise on E and  $|\varphi_n| \le |g|$  on E for all  $n \in \mathbb{N}$ . By the Integral Comparison Test, each  $\varphi_n \in L^p(E)$ .

# Proposition 7.9 (continued)

**Proposition 7.9.** Let *E* be measurable and  $1 \le p \le \infty$ . Then the subspace of simple functions in  $L^{p}(E)$  is dense in  $L^{p}(E)$ .

**Proof (continued).** Since  $\varphi(t) = t^p$  is convex for  $p \ge 1$ , then for all  $n \in \mathbb{N}$  we have  $|\varphi_n - g|^p \le 2^p \{ |\varphi_n|^p + |g|^p \} \le 2^{p+1} |g|^p$  on *E*. Since  $|g|^p$  is integrable over *E* (i.e.,  $\int_E |g|^p < \infty$ ), by the Lebesgue Dominated Convergence Theorem

$$\|\varphi_n - g\|_p^p = \int_E |\varphi_n - g|^p \to \int_E |g - g|^p = 0$$

and so  $\{\varphi_n\} \to g$  with respect to the  $L^p$  norm and simple functions are dense in  $L^p(E)$  (by Exercise 7.36, say).

# Proposition 7.9 (continued)

**Proposition 7.9.** Let *E* be measurable and  $1 \le p \le \infty$ . Then the subspace of simple functions in  $L^{p}(E)$  is dense in  $L^{p}(E)$ .

**Proof (continued).** Since  $\varphi(t) = t^p$  is convex for  $p \ge 1$ , then for all  $n \in \mathbb{N}$  we have  $|\varphi_n - g|^p \le 2^p \{ |\varphi_n|^p + |g|^p \} \le 2^{p+1} |g|^p$  on *E*. Since  $|g|^p$  is integrable over *E* (i.e.,  $\int_E |g|^p < \infty$ ), by the Lebesgue Dominated Convergence Theorem

$$\|\varphi_n - g\|_p^p = \int_E |\varphi_n - g|^p \to \int_E |g - g|^p = 0$$

and so  $\{\varphi_n\} \to g$  with respect to the  $L^p$  norm and simple functions are dense in  $L^p(E)$  (by Exercise 7.36, say).

# **Proposition 7.10.** Let [a, b] be a closed, bounded interval and $1 \le p < \infty$ . Then the subspace of step functions on [a, b] is dense in $L^p([a, b])$ .

**Proof.** By Proposition 7.9, simple functions are dense in  $L^{p}([a, b])$ , so we only need to show that step functions are dense in the simple functions with respect to the  $L^{p}$  norm. Each simple function is a linear combination of characteristic functions on measurable sets.

**Real Analysis** 

**Proposition 7.10.** Let [a, b] be a closed, bounded interval and  $1 \le p < \infty$ . Then the subspace of step functions on [a, b] is dense in  $L^p([a, b])$ .

**Proof.** By Proposition 7.9, simple functions are dense in  $L^p([a, b])$ , so we only need to show that step functions are dense in the simple functions with respect to the  $L^p$  norm. Each simple function is a linear combination of characteristic functions on measurable sets. Therefore, if each such characteristic function can be arbitrarily closely approximated by a step function with respect to the  $L^p$  norm then, since a linear combination of step functions are step functions, any simple function can also be approximated arbitrarily closely with respect to the  $L^p$  norm by a step function.

**Proposition 7.10.** Let [a, b] be a closed, bounded interval and  $1 \le p < \infty$ . Then the subspace of step functions on [a, b] is dense in  $L^p([a, b])$ .

**Proof.** By Proposition 7.9, simple functions are dense in  $L^p([a, b])$ , so we only need to show that step functions are dense in the simple functions with respect to the  $L^p$  norm. Each simple function is a linear combination of characteristic functions on measurable sets. Therefore, if each such characteristic function can be arbitrarily closely approximated by a step function with respect to the  $L^p$  norm then, since a linear combination of step functions are step functions, any simple function can also be approximated arbitrarily closely with respect to the  $L^p$  norm by a step function.

### Proposition 7.10 (cont.)

**Proposition 7.10.** Let [a, b] be a closed, bounded interval and  $1 \le p < \infty$ . Then the subspace of step functions on [a, b] is dense in  $L^p([a, b])$ .

**Proof (continued).** Let  $g = \chi_A$  where  $A \subset [a, b]$  is measurable and let  $\varepsilon > 0$ . By Theorem 2.12, there is a finite disjoint collection of open intervals  $\{I_k\}_{k=1}^n$  for which, with  $\mathcal{U} = \bigcup_{k=1}^n I_k$ , the symmetric difference  $A \triangle \mathcal{U} = (A \setminus \mathcal{U}) \cup (\mathcal{U} \setminus A)$  satisfies  $m(A \triangle \mathcal{U}) < \varepsilon^p$ . Since  $\mathcal{U}$  is a finite disjoint union of open intervals, then  $\chi_{\mathcal{U}}$  is a step function. Moreover,

$$\|\chi_{A} - \chi_{\mathcal{U}}\|_{p} = \left\{ \int_{[a,b]} |\chi_{A} - \chi_{\mathcal{U}}|^{p} \right\}^{1/p} = \left\{ \int_{[a,b]} |\chi_{A} - \chi_{\mathcal{U}}| \right\}^{1/p}$$
$$\leq \left\{ \int_{A \bigtriangleup \mathcal{U}} 1 \right\}^{1/p} = (m(A \bigtriangleup \mathcal{U}))^{1/p} < (\varepsilon^{p})^{1/p} = \varepsilon.$$

So step function  $\chi_{\mathcal{U}}$  approximates characteristic function  $\chi_A$  to within  $\varepsilon > 0$  with respect to the  $L^p$  norm, and the result follows.

### Proposition 7.10 (cont.)

**Proposition 7.10.** Let [a, b] be a closed, bounded interval and  $1 \le p < \infty$ . Then the subspace of step functions on [a, b] is dense in  $L^p([a, b])$ .

**Proof (continued).** Let  $g = \chi_A$  where  $A \subset [a, b]$  is measurable and let  $\varepsilon > 0$ . By Theorem 2.12, there is a finite disjoint collection of open intervals  $\{I_k\}_{k=1}^n$  for which, with  $\mathcal{U} = \bigcup_{k=1}^n I_k$ , the symmetric difference  $A \triangle \mathcal{U} = (A \setminus \mathcal{U}) \cup (\mathcal{U} \setminus A)$  satisfies  $m(A \triangle \mathcal{U}) < \varepsilon^p$ . Since  $\mathcal{U}$  is a finite disjoint union of open intervals, then  $\chi_{\mathcal{U}}$  is a step function. Moreover,

$$\begin{aligned} \|\chi_{A} - \chi_{\mathcal{U}}\|_{p} &= \left\{ \int_{[a,b]} |\chi_{A} - \chi_{\mathcal{U}}|^{p} \right\}^{1/p} = \left\{ \int_{[a,b]} |\chi_{A} - \chi_{\mathcal{U}}| \right\}^{1/p} \\ &\leq \left\{ \int_{A \bigtriangleup \mathcal{U}} 1 \right\}^{1/p} = (m(A \bigtriangleup \mathcal{U}))^{1/p} < (\varepsilon^{p})^{1/p} = \varepsilon. \end{aligned}$$

So step function  $\chi_{\mathcal{U}}$  approximates characteristic function  $\chi_A$  to within  $\varepsilon > 0$  with respect to the  $L^p$  norm, and the result follows.

# **Theorem 7.11.** Let *E* be measurable and $1 \le p < \infty$ . Then $L^p(E)$ is separable.

**Proof.** Consider S([a, b]), the set of step functions on [a, b]. Define S'([a, b]) to the subset of S([a, b]) which consists of step functions  $\psi$  on [a, b] that take on rational values and for which there is a partition  $P = \{x_0, x_1, \ldots, x_n\}$  of [a, b] with  $\psi$  constant on  $(x_{k-1}, x_k)$  for  $1 \le k \le n$  and  $x_k$  rational for  $1 \le k \le n - 1$  ( $x_0 = a$  and  $x_n = b$  "always").

**Real Analysis** 

**Theorem 7.11.** Let *E* be measurable and  $1 \le p < \infty$ . Then  $L^p(E)$  is separable.

**Proof.** Consider S([a, b]), the set of step functions on [a, b]. Define S'([a, b]) to the subset of S([a, b]) which consists of step functions  $\psi$  on [a, b] that take on rational values and for which there is a partition  $P = \{x_0, x_1, \dots, x_n\}$  of [a, b] with  $\psi$  constant on  $(x_{k-1}, x_k)$  for  $1 \le k \le n$ and  $x_k$  rational for  $1 \le k \le n-1$  ( $x_0 = a$  and  $x_n = b$  "always"). Then S'([a, b]) is countable and S'([a, b]) is dense in S([a, b]) with respect to the  $L^p$  norm by Exercise 7.40. By Proposition 7.10, S([a, b]) is dense in  $L^{p}([a, b])$  and so S'([a, b]) is dense in  $L^{p}([a, b])$  (we have  $S'([a, b]) \subset S([a, b]) \subset L^p([a, b]))$ . For each  $n \in \mathbb{N}$ , define  $\mathcal{F}_n$  to be the functions on  $\mathbb{R}$  that vanish outside [-n, n] and whose restrictions to [-n, n] belong to S'([-n, n]).

**Theorem 7.11.** Let *E* be measurable and  $1 \le p < \infty$ . Then  $L^p(E)$  is separable.

**Proof.** Consider S([a, b]), the set of step functions on [a, b]. Define S'([a, b]) to the subset of S([a, b]) which consists of step functions  $\psi$  on [a, b] that take on rational values and for which there is a partition  $P = \{x_0, x_1, \dots, x_n\}$  of [a, b] with  $\psi$  constant on  $(x_{k-1}, x_k)$  for  $1 \le k \le n$ and  $x_k$  rational for  $1 \le k \le n-1$  ( $x_0 = a$  and  $x_n = b$  "always"). Then S'([a, b]) is countable and S'([a, b]) is dense in S([a, b]) with respect to the  $L^p$  norm by Exercise 7.40. By Proposition 7.10, S([a, b]) is dense in  $L^{p}([a, b])$  and so S'([a, b]) is dense in  $L^{p}([a, b])$  (we have  $S'([a, b]) \subset S([a, b]) \subset L^p([a, b]))$ . For each  $n \in \mathbb{N}$ , define  $\mathcal{F}_n$  to be the functions on  $\mathbb{R}$  that vanish outside [-n, n] and whose restrictions to [-n, n] belong to S'([-n, n]). Define  $\mathcal{F} = \bigcup_{n \in \mathbb{N}} \mathcal{F}_n$ . Then  $\mathcal{F}$  is countable and  $\mathcal{F} \subset L^p(\mathbb{R})$ . For any  $f \in L^p(E)$ , define  $f_n = f\chi_{[-n,n]}$  and notice that  $\lim_{n\to\infty} f_n = f$  (pointwise).

**Theorem 7.11.** Let *E* be measurable and  $1 \le p < \infty$ . Then  $L^p(E)$  is separable.

**Proof.** Consider S([a, b]), the set of step functions on [a, b]. Define S'([a, b]) to the subset of S([a, b]) which consists of step functions  $\psi$  on [a, b] that take on rational values and for which there is a partition  $P = \{x_0, x_1, \dots, x_n\}$  of [a, b] with  $\psi$  constant on  $(x_{k-1}, x_k)$  for  $1 \le k \le n$ and  $x_k$  rational for  $1 \le k \le n-1$  ( $x_0 = a$  and  $x_n = b$  "always"). Then S'([a, b]) is countable and S'([a, b]) is dense in S([a, b]) with respect to the  $L^p$  norm by Exercise 7.40. By Proposition 7.10, S([a, b]) is dense in  $L^{p}([a, b])$  and so S'([a, b]) is dense in  $L^{p}([a, b])$  (we have  $S'([a, b]) \subset S([a, b]) \subset L^p([a, b]))$ . For each  $n \in \mathbb{N}$ , define  $\mathcal{F}_n$  to be the functions on  $\mathbb{R}$  that vanish outside [-n, n] and whose restrictions to [-n, n] belong to S'([-n, n]). Define  $\mathcal{F} = \bigcup_{n \in \mathbb{N}} \mathcal{F}_n$ . Then  $\mathcal{F}$  is countable and  $\mathcal{F} \subset L^{p}(\mathbb{R})$ . For any  $f \in L^{p}(E)$ , define  $f_{n} = f\chi_{[-n,n]}$  and notice that  $\lim_{n\to\infty} f_n = f$  (pointwise).

# Theorem 7.11 (cont.)

# **Theorem 7.11.** Let *E* be measurable and $1 \le p < \infty$ . Then $L^p(E)$ is separable.

Proof (continued). By the Monotone Convergence Theorem,

$$\lim_{n\to\infty}\int_{\mathbb{R}}|f_n|^p=\int_{\mathbb{R}}|f|^p.$$

Therefore by Theorem 7.7,  $\{f_n\} \to f$  with respect to the  $L^p(\mathbb{R})$  norm.

# Theorem 7.11 (cont.)

**Theorem 7.11.** Let *E* be measurable and  $1 \le p < \infty$ . Then  $L^p(E)$  is separable.

Proof (continued). By the Monotone Convergence Theorem,

$$\lim_{n\to\infty}\int_{\mathbb{R}}|f_n|^p=\int_{\mathbb{R}}|f|^p.$$

Therefore by Theorem 7.7,  $\{f_n\} \to f$  with respect to the  $L^p(\mathbb{R})$  norm. So  $\mathcal{F}$  is dense in  $L^p(\mathbb{R})$  with respect to the  $L^p(\mathbb{R})$  norm by Exercise 7.36. Finally, for any measurable set E, replace  $\mathcal{F}$  and each  $\mathcal{F}_n$  with functions restricted to E to get that  $\mathcal{F}$  (restricted to E) is dense in  $L^p(E)$ . Therefore  $L^p(E)$  is separable.

# Theorem 7.11 (cont.)

**Theorem 7.11.** Let *E* be measurable and  $1 \le p < \infty$ . Then  $L^p(E)$  is separable.

Proof (continued). By the Monotone Convergence Theorem,

$$\lim_{n\to\infty}\int_{\mathbb{R}}|f_n|^p=\int_{\mathbb{R}}|f|^p.$$

Therefore by Theorem 7.7,  $\{f_n\} \to f$  with respect to the  $L^p(\mathbb{R})$  norm. So  $\mathcal{F}$  is dense in  $L^p(\mathbb{R})$  with respect to the  $L^p(\mathbb{R})$  norm by Exercise 7.36. Finally, for any measurable set E, replace  $\mathcal{F}$  and each  $\mathcal{F}_n$  with functions restricted to E to get that  $\mathcal{F}$  (restricted to E) is dense in  $L^p(E)$ . Therefore  $L^p(E)$  is separable.

**Theorem 7.12.** Let *E* be measurable and  $1 \le p < \infty$ . Then  $C_c(E)$ , the linear space of continuous functions on *E* that vanish outside a bounded set, is dense in  $L^p(E)$ .

**Idea of Proof.** By Theorem 7.11, we know that S'([a, b]) is dense in  $L^p([a, b])$ . The idea is to approximate each element of  $\mathcal{F}$  with a continuous function. We do so as follows

**Theorem 7.12.** Let *E* be measurable and  $1 \le p < \infty$ . Then  $C_c(E)$ , the linear space of continuous functions on *E* that vanish outside a bounded set, is dense in  $L^p(E)$ .

**Idea of Proof.** By Theorem 7.11, we know that S'([a, b]) is dense in  $L^p([a, b])$ . The idea is to approximate each element of  $\mathcal{F}$  with a continuous function. We do so as follows



This, combined with restrictions of functions to *E*, proves the result.

**Theorem 7.12.** Let *E* be measurable and  $1 \le p < \infty$ . Then  $C_c(E)$ , the linear space of continuous functions on *E* that vanish outside a bounded set, is dense in  $L^p(E)$ .

**Idea of Proof.** By Theorem 7.11, we know that S'([a, b]) is dense in  $L^p([a, b])$ . The idea is to approximate each element of  $\mathcal{F}$  with a continuous function. We do so as follows



This, combined with restrictions of functions to E, proves the result.