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Proposition 7.9

Proposition 7.9. Let E be measurable and 1 < p < co. Then the
subspace of simple functions in LP(E) is dense in LP(E).
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Proposition 7.9

Proposition 7.9. Let E be measurable and 1 < p < co. Then the
subspace of simple functions in LP(E) is dense in LP(E).

Proof. Let g € LP(E). Suppose p = co. Then g is bounded on E \ Ey
where m(Ep) = 0.

Real Analysis February 18,2023 3 /9



Proposition 7.9

Proposition 7.9. Let E be measurable and 1 < p < co. Then the
subspace of simple functions in LP(E) is dense in LP(E).

Proof. Let g € LP(E). Suppose p = co. Then g is bounded on E \ Ey
where m(Ep) = 0. We infer from the Simple Approximation Lemma (see
page 61; really, it is Problem 3.12) that there is a sequence of simple
functions on E \ Ey that converges uniformly on E \ Ej to g, and therefore
converges with respect to the L° norm. So simple functions are dense in
L>°(E).
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Proposition 7.9

Proposition 7.9. Let E be measurable and 1 < p < co. Then the
subspace of simple functions in LP(E) is dense in LP(E).

Proof. Let g € LP(E). Suppose p = co. Then g is bounded on E \ Ey
where m(Ep) = 0. We infer from the Simple Approximation Lemma (see
page 61; really, it is Problem 3.12) that there is a sequence of simple
functions on E \ Ey that converges uniformly on E \ Ej to g, and therefore

converges with respect to the L° norm. So simple functions are dense in
L>°(E).

Now suppose 1 < p < oo. Since g is measurable, by the Simple
Approximation Theorem, there is a sequence {¢,} of simple functions on
E such that {¢p} — g pointwise on E and |p,| < |g| on E for all n € N,
By the Integral Comparison Test, each ¢, € LP(E).
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Proposition 7.9

Proposition 7.9 (continued)

Proposition 7.9. Let E be measurable and 1 < p < co. Then the
subspace of simple functions in LP(E) is dense in LP(E).

Proof (continued). Since ¢(t) = tP is convex for p > 1, then for all
n € N we have [, — g|P < 2°{|¢on|" + [g|P} < 2P*[g|P on E.

Real Analysis February 18, 2023

4/9



Proposition 7.9 (continued)

Proposition 7.9. Let E be measurable and 1 < p < co. Then the
subspace of simple functions in LP(E) is dense in LP(E).

Proof (continued). Since ¢(t) = tP is convex for p > 1, then for all

n € N we have |, — g|P < 2P{|¢nlP + |g|P} < 2PTL|g|P on E. Since |g|P
is integrable over E (i.e., [z |g|P < c0), by the Lebesgue Dominated
Convergence Theorem

uson—gu,f;:/m—gvu/|g—gr":o
E E

and so {pn} — g with respect to the LP norm and simple functions are
dense in LP(E) (by Exercise 7.36, say). O
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Proposition 7.10

Proposition 7.10

Proposition 7.10. Let [a, b] be a closed, bounded interval and

1 < p < oo. Then the subspace of step functions on [a, b] is dense in
LP([a, b]).
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Proposition 7.10

Proposition 7.10. Let [a, b] be a closed, bounded interval and
1 < p < oo. Then the subspace of step functions on [a, b] is dense in

LP([a, b]).

Proof. By Proposition 7.9, simple functions are dense in LP(][a, b]), so we
only need to show that step functions are dense in the simple functions
with respect to the LP norm. Each simple function is a linear combination
of characteristic functions on measurable sets.
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Proposition 7.10

Proposition 7.10. Let [a, b] be a closed, bounded interval and
1 < p < oo. Then the subspace of step functions on [a, b] is dense in
LP([a, b]).

Proof. By Proposition 7.9, simple functions are dense in LP(][a, b]), so we
only need to show that step functions are dense in the simple functions
with respect to the LP norm. Each simple function is a linear combination
of characteristic functions on measurable sets. Therefore, if each such
characteristic function can be arbitrarily closely approximated by a step
function with respect to the LP norm then, since a linear combination of
step functions are step functions, any simple function can also be
approximated arbitrarily closely with respect to the LP norm by a step
function.
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Proposition 7.10 (cont.)

Proposition 7.10. Let [a, b] be a closed, bounded interval and
1 < p < oo. Then the subspace of step functions on [a, b] is dense in
LP([a, b]).

Proof (continued). Let g = x4 where A C [a, b] is measurable and let
€ > 0. By Theorem 2.12, there is a finite disjoint collection of open
intervals {/,}7_; for which, with & = U]_, I, the symmetric difference
AANU = (A\U) U (U \ A) satisfies m(AAU) < eP.
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Proposition 7.10 (cont.)

Proposition 7.10. Let [a, b] be a closed, bounded interval and
1 < p < oo. Then the subspace of step functions on [a, b] is dense in
LP([a, b]).

Proof (continued). Let g = x4 where A C [a, b] is measurable and let
€ > 0. By Theorem 2.12, there is a finite disjoint collection of open
intervals {/,}7_; for which, with & = U]_, I, the symmetric difference
AANU = (A\U) U (U \ A) satisfies m(AAU) < eP. Since U is a finite
disjoint union of open intervals, then xy, is a step function. Moreover,

1/p 1/p
\XA—Xu|p={/ XA—XLIP} :{/ |XA—XM|}
[a,b] [a,b]

= {/AAM 1}1/p = (m(ALAU))P < (P)HP =,

So step function x;; approximates characteristic function x4 to within
€ > 0 with respect to the LP norm, and the result follows. []
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Theorem 7.11

Theorem 7.11. Let E be measurable and 1 < p < co. Then LP(E) is
separable.
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Theorem 7.11

Theorem 7.11

Theorem 7.11. Let E be measurable and 1 < p < co. Then LP(E) is
separable.

Proof. Consider S([a, b]), the set of step functions on [a, b]. Define
S'([a, b]) to the subset of S([a, b]) which consists of step functions 1) on
[a, b] that take on rational values and for which there is a partition

P = {x0,x1,...,xn} of [a, b] with ¢ constant on (xx_1,xx) for 1 < k <n
and xj rational for 1 < k < n—1 (xg = a and x, = b "always").
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Theorem 7.11

Theorem 7.11. Let E be measurable and 1 < p < co. Then LP(E) is
separable.

Proof. Consider S([a, b]), the set of step functions on [a, b]. Define
S'([a, b]) to the subset of S([a, b]) which consists of step functions 1) on
[a, b] that take on rational values and for which there is a partition

P = {x0,x1,...,xn} of [a, b] with ¢ constant on (xx_1,xx) for 1 < k <n
and xj rational for 1 < k < n—1 (xg = a and x, = b “"always”). Then
S'([a, b]) is countable and S’([a, b]) is dense in S([a, b]) with respect to
the LP norm by Exercise 7.40. By Proposition 7.10, S([a, b]) is dense in
LP([a, b]) and so S’([a, b]) is dense in LP([a, b]) (we have

S'([a, b]) C S([a, b]) C LP([a, b])). For each n € N, define F,, to be the
functions on R that vanish outside [—n, n] and whose restrictions to
[—n, n] belong to S'([—n, n]).
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Theorem 7.11

Theorem 7.11. Let E be measurable and 1 < p < co. Then LP(E) is
separable.

Proof. Consider S([a, b]), the set of step functions on [a, b]. Define
S'([a, b]) to the subset of S([a, b]) which consists of step functions 1) on
[a, b] that take on rational values and for which there is a partition

P = {x0,x1,...,xn} of [a, b] with ¢ constant on (xx_1,xx) for 1 < k <n
and xj rational for 1 < k < n—1 (xg = a and x, = b “"always”). Then
S'([a, b]) is countable and S’([a, b]) is dense in S([a, b]) with respect to
the LP norm by Exercise 7.40. By Proposition 7.10, S([a, b]) is dense in
LP([a, b]) and so S’([a, b]) is dense in LP([a, b]) (we have

S'([a, b]) C S([a, b]) C LP([a, b])). For each n € N, define F,, to be the
functions on R that vanish outside [—n, n] and whose restrictions to
[—n, n] belong to S’([—n, n]). Define F = UpenFn. Then F is countable
and F C LP(R). For any f € LP(E), define f, = fx[_n ) and notice that
limp_o00 fn = f (pointwise).
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Theorem 7.11 (cont.)

Theorem 7.11. Let E be measurable and 1 < p < co. Then LP(E) is
separable.

Real Analysis February 18,2023 8 /9



Theorem 7.11 (cont.)

Theorem 7.11. Let E be measurable and 1 < p < co. Then LP(E) is
separable.

Proof (continued). By the Monotone Convergence Theorem,

lim /yfnv’:/mp.
n—oo R R

Therefore by Theorem 7.7, {f,} — f with respect to the LP(R) norm.
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Theorem 7.11 (cont.)

Theorem 7.11. Let E be measurable and 1 < p < co. Then LP(E) is
separable.

Proof (continued). By the Monotone Convergence Theorem,

lim /yfnv’:/mp.
n—oo R R

Therefore by Theorem 7.7, {f,} — f with respect to the LP(R) norm. So
F is dense in LP(R) with respect to the LP(IR) norm by Exercise 7.36.
Finally, for any measurable set E, replace F and each F, with functions
restricted to E to get that F (restricted to E) is dense in LP(E).
Therefore LP(E) is separable. O
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Theorem 7.12
Theorem 7.12. Let E be measurable and 1 < p < co. Then C(E), the

linear space of continuous functions on E that vanish outside a bounded
set, is dense in LP(E).
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Theorem 7.12

Theorem 7.12

Theorem 7.12. Let E be measurable and 1 < p < co. Then C(E), the

linear space of continuous functions on E that vanish outside a bounded
set, is dense in LP(E).

Idea of Proof. By Theorem 7.11, we know that S’([a, b]) is dense in

LP([a, b]). The idea is to approximate each element of F with a
continuous function. We do so as follows

WA
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Theorem 7.12

Theorem 7.12

Theorem 7.12. Let E be measurable and 1 < p < co. Then C(E), the

linear space of continuous functions on E that vanish outside a bounded
set, is dense in LP(E).

Idea of Proof. By Theorem 7.11, we know that S’([a, b]) is dense in

LP([a, b]). The idea is to approximate each element of F with a
continuous function. We do so as follows

| WA

—-n n

This, combined with restrictions of functions to E, proves the result. O
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