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Proposition 7.9

Proposition 7.9

Proposition 7.9. Let E be measurable and 1 ≤ p ≤ ∞. Then the
subspace of simple functions in Lp(E ) is dense in Lp(E ).

Proof. Let g ∈ Lp(E ). Suppose p = ∞. Then g is bounded on E \ E0

where m(E0) = 0.

We infer from the Simple Approximation Lemma (see
page 61; really, it is Problem 3.12) that there is a sequence of simple
functions on E \ E0 that converges uniformly on E \ E0 to g , and therefore
converges with respect to the L∞ norm. So simple functions are dense in
L∞(E ).

Now suppose 1 ≤ p <∞. Since g is measurable, by the Simple
Approximation Theorem, there is a sequence {ϕn} of simple functions on
E such that {ϕn} → g pointwise on E and |ϕn| ≤ |g | on E for all n ∈ N.
By the Integral Comparison Test, each ϕn ∈ Lp(E ).
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Proposition 7.9

Proposition 7.9 (continued)

Proposition 7.9. Let E be measurable and 1 ≤ p ≤ ∞. Then the
subspace of simple functions in Lp(E ) is dense in Lp(E ).

Proof (continued). Since ϕ(t) = tp is convex for p ≥ 1, then for all
n ∈ N we have |ϕn − g |p ≤ 2p{|ϕn|p + |g |p} ≤ 2p+1|g |p on E . Since |g |p
is integrable over E (i.e.,

∫
E |g |

p <∞), by the Lebesgue Dominated
Convergence Theorem

‖ϕn − g‖p
p =

∫
E
|ϕn − g |p →

∫
E
|g − g |p = 0

and so {ϕn} → g with respect to the Lp norm and simple functions are
dense in Lp(E ) (by Exercise 7.36, say).
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Proposition 7.10

Proposition 7.10

Proposition 7.10. Let [a, b] be a closed, bounded interval and
1 ≤ p <∞. Then the subspace of step functions on [a, b] is dense in
Lp([a, b]).

Proof. By Proposition 7.9, simple functions are dense in Lp([a, b]), so we
only need to show that step functions are dense in the simple functions
with respect to the Lp norm. Each simple function is a linear combination
of characteristic functions on measurable sets.

Therefore, if each such
characteristic function can be arbitrarily closely approximated by a step
function with respect to the Lp norm then, since a linear combination of
step functions are step functions, any simple function can also be
approximated arbitrarily closely with respect to the Lp norm by a step
function.
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Proposition 7.10

Proposition 7.10 (cont.)

Proposition 7.10. Let [a, b] be a closed, bounded interval and
1 ≤ p <∞. Then the subspace of step functions on [a, b] is dense in
Lp([a, b]).

Proof (continued). Let g = χA where A ⊂ [a, b] is measurable and let
ε > 0. By Theorem 2.12, there is a finite disjoint collection of open
intervals {Ik}n

k=1 for which, with U = ∪· nk=1Ik , the symmetric difference
A4U = (A \ U) ∪ (U \ A) satisfies m(A4U) < εp. Since U is a finite
disjoint union of open intervals, then χU is a step function. Moreover,

‖χA − χU‖p =

{∫
[a,b]

|χA − χU |p
}1/p

=

{∫
[a,b]

|χA − χU |

}1/p

≤
{∫

A4U
1

}1/p

= (m(A4U))1/p < (εp)1/p = ε.

So step function χU approximates characteristic function χA to within
ε > 0 with respect to the Lp norm, and the result follows.
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Theorem 7.11

Theorem 7.11

Theorem 7.11. Let E be measurable and 1 ≤ p <∞. Then Lp(E ) is
separable.

Proof. Consider S([a, b]), the set of step functions on [a, b]. Define
S ′([a, b]) to the subset of S([a, b]) which consists of step functions ψ on
[a, b] that take on rational values and for which there is a partition
P = {x0, x1, . . . , xn} of [a, b] with ψ constant on (xk−1, xk) for 1 ≤ k ≤ n
and xk rational for 1 ≤ k ≤ n − 1 (x0 = a and xn = b “always”).

Then
S ′([a, b]) is countable and S ′([a, b]) is dense in S([a, b]) with respect to
the Lp norm by Exercise 7.40. By Proposition 7.10, S([a, b]) is dense in
Lp([a, b]) and so S ′([a, b]) is dense in Lp([a, b]) (we have
S ′([a, b]) ⊂ S([a, b]) ⊂ Lp([a, b])). For each n ∈ N, define Fn to be the
functions on R that vanish outside [−n, n] and whose restrictions to
[−n, n] belong to S ′([−n, n]). Define F = ∪n∈NFn. Then F is countable
and F ⊂ Lp(R). For any f ∈ Lp(E ), define fn = f χ[−n,n] and notice that
limn→∞ fn = f (pointwise).
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Theorem 7.11

Theorem 7.11 (cont.)

Theorem 7.11. Let E be measurable and 1 ≤ p <∞. Then Lp(E ) is
separable.

Proof (continued). By the Monotone Convergence Theorem,

lim
n→∞

∫
R
|fn|p =

∫
R
|f |p.

Therefore by Theorem 7.7, {fn} → f with respect to the Lp(R) norm.

So
F is dense in Lp(R) with respect to the Lp(R) norm by Exercise 7.36.
Finally, for any measurable set E , replace F and each Fn with functions
restricted to E to get that F (restricted to E ) is dense in Lp(E ).
Therefore Lp(E ) is separable.
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Theorem 7.12

Theorem 7.12

Theorem 7.12. Let E be measurable and 1 ≤ p <∞. Then Cc(E ), the
linear space of continuous functions on E that vanish outside a bounded
set, is dense in Lp(E ).

Idea of Proof. By Theorem 7.11, we know that S ′([a, b]) is dense in
Lp([a, b]). The idea is to approximate each element of F with a
continuous function. We do so as follows

This, combined with restrictions of functions to E , proves the result.
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