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The Radon-Nikodym Theorem

Remark: We had previously asked about when, given a measure
space (X, A, 1), and any measure A on A, does there exists an
f € MT(X,.A) with the property that for every E € A,

)\(E)—/Efdu

for all E € A.
Fact: If such an f exists then it must be the case that A < p.

Problem: Does the converse hold?
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The Radon-Nikodym Theorem

Theorem: [Radon-Nikodym Theorem]

Let A and u be o-finite measures on (X,.A). Suppose that \ is
absolutely continuous with respect to p. Then there exists

f € M*T(X,.A) such that

)\(E):/Efdu

for every E € A. Moreover f is uniquely determined p-almost
everywhere.
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The Radon-Nikodym Theorem

Example: Let u be the counting measure on (R, P(R)). Consider
the measure A on (R, P(R)) given by

ME) = 0 if E ?s countable.
oo if E is uncountable.

Then it is easy to see that there is no function f : X — R* such
that A = .
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The Radon-Nikodym Theorem

Proof: Case 1) Assume that A and p are both finite.

For each ¢ > 0 let {P(c), N(c)} be a Hahn decomposition for the signed
measure A\ — cu. Let AL = N(c)

and for each k € N, let
Aks1 = N((k+1)c) \ U A;.

It follows that {A;}$2; is pairwise dISJOInt and
U N(ic) = U Ai.
i=1 i=1

Consequently, we have

k—1
A = N(ke) N ﬂ P(ic).

If E € Aand E C Ay, then E C N(kc) and E C P((k —1)c). As such
we have (k — 1)cp(E) < ME) < keu(E).  (+)



The Radon-Nikodym Theorem

Cont’d: Next, let

B:X\UA,:X\UN(ic):ﬂP(ic).

Since B C P(kc) for all k € N, we get that
0 < kep(B) < M(B) < A(X) < o0

for each k € N. Therefore, (B) = 0 and since A < i we have that
A(B) =0, as well.

We now define for each ¢ > 0,

£(x) = (k—1)c !fXGAk,
0 if x € B.
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The Radon-Nikodym Theorem

Cont'd:
For each E € A, we have
E=(EnB)U(|J(ENAL).
k=1

Applying
(k—=1)cp(E) < ME) < kep(E) - (%)

to each of the component pieces above, we have that
/ fodu < A(E) < /(fc+C)du=/ fe dp + cpu(X).
E E E

Now for each n € N, let
8n = fi

2
We get

/EgndMSA(E)S/Egndquug):) ().
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The Radon-Nikodym Theorem

Cont’d: If we let m > n then (xx) tells us that

/gnduSA(E)S/gmdquMé ) and /gmdMSA(E)S/gn
E E E

1(X)
on

Combining these two give us that

X
\/gndu—/gmdu\gugn)
E E

for each E € A. In particular this holds for £; = {x € X| g, — gm > 0}
and E; = {x € X| g, — gn < 0}. This allows us to deduce that

/ |gn — &m| dp < 2M(X) = gf,)fl)

and hence that {g,}72; is Cauchy in L;(X, A, u).
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The Radon-Nikodym Theorem

Cont’d:

Assume that g, — f in L1(X, A, u). Since g, € MT(X,.A) we can
also assume that f € M™(X,.A). Moreover, for any E € A we
have

’/gndu—/fdlﬂﬁ/\gn—f|dMSHgn—f||1—>0-
E E E

It then follows from (xx) that

A(E) = lim /g,,d,u:/fdu.
n—o0 E E
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The Radon-Nikodym Theorem

Cont’d:
Suppose that f,h € M™(X,.A) are such that

/fd,u—)\(E)—/hdu
E E
for all E € A.

Let E1 = {x € X|f(x) > h(x)} and Ex = {x € X|f(x) < h(x)}.
Since

/fhdu:/ fdp/ hdp = A(E1) — A(E1) =0
Ex Ey Ex

and

/f—hd,u—/ fdu—/ hdp = \(Es) — M(B>) = 0
E> E; E>

we have that p(E1) = p(E2) = 0 and hence that f = h p-a.e.



The Radon-Nikodym Theorem

Case 2: Assume that A\ and p are o-finite.

Let {X,} C A be an increasing sequence such that X = |J X,
n=1
A(Xn) < o0 and p(X,) < oo.

For each n € N, we get a function f, € M™(X, A) such that fmxc =0,
and if E € A with E C X,, then ’

MH:A@W.

If m> n, then X,, C X, , and by our previous uniqueness result, f, = f,

p-a.e. Let
Fn=sup{fi,fo,...,fu}.

Then {F,} is an increasing sequence of positive measurable functions
with F, = f, p-a.e and Fp(x) =0 for all x € Xf. Let

f=lim F,.

n—oo
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The Radon-Nikodym Theorem

Cont'd: If E € A, then

)\(Ean):/fndM:/Fndu.
E E

Given that EN X, A~ E, continuity from below and the Monotone
Convergence Theorem shows us that

The uniqueness of f is determined as in the finite case.
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The Radon-Nikodym Theorem

Remark: A close look at the proof of the RNT shows that the
process used to construct the function f resembles differentiation.

Example: Let F : R — R be a continuously differentiable function
with F/(x) > 0. Then F is strictly increasing.

Let ur be the Lebesgue-Stieltjes measure on (R, B(R)) generated
by F. Then pf is o-finite and g < m. Moreover, the
Fundamental Theorem of Calculus shows that

b
pe((a, b)) = F(b)—F(a) = / F'(x) dx —/ F'dm= / F'dm.
a [avb] (a,b]
From here we can deduce that if E € B(R), then
pr(E) = / F'dm.
E

In particular, the function we would have obtained in via the
Radon-Nikodym Theorem is m-a.e equal to F’.
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The Radon-Nikodym Theorem

Definition: The function f whose existence was established in the
Radon-Nikodym Theorem is called the Radon-Nikodym dervivative
of A\ with respect to p and it is denoted by Z—l’).

Remark:

1) g—z is integrable if and only if X is a finite measure.

x
2) In the case that X is o- finite, with X = |J X, and each X,
n=1

being such that A\(X,) < oo, we have that

dX
AXp) = —du
( n) X, dﬂ
so 3—2 must be finite p-a.e on X,,. As such, we may assume

that g—; is actually finite everywhere on X.
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The Radon-Nikodym Theorem

Cont'd:

3) Let (X, A, ) = (R,M(R), m) be the ususal Lebesgue measure
space and let i be defined on (R, M(R)) to be the restriction of the
counting measure on (R, P(R)) to (R, M(R)).

Then m < p, since u(E) = 0 implies E = ). However, there is no
f € MH(R,M(R)) such that

m(E) = /E fdp.

This shows that the Radon-Nikodym Theorem can fail if x is not
o-finite.

Note: It is an exercise to show that the Radon-Nikodym Theorem
can be extended to the case where A is arbitrary.
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The Radon-Nikodym Theorem

4) Let p, A\, v be o-finite measures on (X,.A) with A < p and v < p.
(i) If ¢ >0, then c\ < p and

d(cA)  dA

an cd—u.

(i) We have (A +v) < p and
dA+v) _ dA n dv
dp  dp o dp
(iii) f v < Xand A < p, then v < p and
dv  dv dX

du — dX du’

(iv) If w < X and A < p, then

dv 1
— =
du L

Note: All of the equalities above apply almost everywhere.
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The Radon-Nikodym Theorem

5) If X is a signed measure and (i is a o-finite measure with
A < p, then AT < and A~ < p. In this case, we let

d\ der dAt  dA™

du du du
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Lebesgue Decompostion Theorem

Theorem: [Lebesgue Decomposition Theorem]

Let A and u be o-finite measures on (X, .A). Then there exists two
measures A; and Ay on (X,.A) such that A = A\; + A2, A1 L p and
A2 < . Moreover, these measures are unique.
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Lebesgue Decompostion Theorem

Proof: Let
v=A+p.

Then v is o-finite, A < v and p K< v .
It follows that there are functions f, g € M* (X, A) such that

)\(E):/Efdu and ,u(E):/Eng.

for every E € A.
Let

A={xe X|g(x)=0} and B={xeX]|g(x)>0}.
Then {A, B} is a partition of X. Let
M(E)=AENA) and M\(E)=XENB)

for every E € A. Clearly A = A1 + \o.



Lebesgue Decompostion Theorem

Cont’d: Since

u(A) =€) = [ v
we have that A\; L u.
If w(E) =0, then

/gduzO
E

so g(x) = 0 for v-almost every in E.

It follows that v(E N B) = 0 and hence that
XM(E)=XENB)=0

since A < v. That is Ay < p.
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Lebesgue Decompostion Theorem

Cont’d: To see that A\; and A, are unique we first assume that
both A\ and p are finite. Assume also that we can find A\; and A,
and 1 and v with

A=A14+ A2, A1 L pand Ao < p,

and
A=v1+wp, 11 L pand vy < p.

Then
Y=M—ri=12— X

is such that v L p and v < i and hence y =0 .

The case where A and p are o-finite is left as an exercise.
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