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The Radon-Nikodym Theorem

Remark: We had previously asked about when, given a measure
space (X ,A, µ), and any measure λ on A, does there exists an
f ∈M+(X ,A) with the property that for every E ∈ A,

λ(E ) =

∫
E
f dµ

for all E ∈ A.

Fact: If such an f exists then it must be the case that λ� µ.

Problem: Does the converse hold?
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The Radon-Nikodym Theorem

Theorem: [Radon-Nikodym Theorem]
Let λ and µ be σ-finite measures on (X ,A). Suppose that λ is
absolutely continuous with respect to µ. Then there exists
f ∈M+(X ,A) such that

λ(E ) =

∫
E
f dµ

for every E ∈ A. Moreover f is uniquely determined µ-almost
everywhere.
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The Radon-Nikodym Theorem

Example: Let µ be the counting measure on (R,P(R)). Consider
the measure λ on (R,P(R)) given by

λ(E ) =

{
0 if E is countable.

∞ if E is uncountable.

Then it is easy to see that there is no function f : X → R∗+ such
that λ = µf .
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The Radon-Nikodym Theorem

Proof: Case 1) Assume that λ and µ are both finite.

For each c > 0 let {P(c),N(c)} be a Hahn decomposition for the signed
measure λ− cµ. Let A1 = N(c)

and for each k ∈ N, let

Ak+1 = N((k + 1)c) \
k⋃

i=1

Ai .

It follows that {Ai}∞i=1 is pairwise disjoint and

k⋃
i=1

N(ic) =
k⋃

i=1

Ai .

Consequently, we have

Ak = N(kc) ∩
k−1⋂
i=1

P(ic).

If E ∈ A and E ⊆ Ak , then E ⊆ N(kc) and E ⊆ P((k − 1)c). As such
we have (k − 1)cµ(E ) ≤ λ(E ) ≤ kcµ(E ). (∗)
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The Radon-Nikodym Theorem

Cont’d: Next, let

B = X \
∞⋃
i=1

Ai = X \
∞⋃
i=1

N(ic) =
∞⋂
i=1

P(ic).

Since B ⊆ P(kc) for all k ∈ N, we get that

0 ≤ kcµ(B) ≤ λ(B) ≤ λ(X ) <∞

for each k ∈ N. Therefore, µ(B) = 0 and since λ� µ we have that
λ(B) = 0, as well.

We now define for each c > 0,

fc(x) =

{
(k − 1)c if x ∈ Ak ,

0 if x ∈ B.
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The Radon-Nikodym Theorem

Cont’d:
For each E ∈ A, we have

E = (E ∩ B) ∪ (
∞⋃
k=1

(E ∩ Ak)).

Applying
(k − 1)cµ(E ) ≤ λ(E ) ≤ kcµ(E ) (∗)

to each of the component pieces above, we have that∫
E

fc dµ ≤ λ(E ) ≤
∫
E

(fc + c) dµ =

∫
E

fc dµ+ cµ(X ).

Now for each n ∈ N, let
gn = f 1

2n
.

We get ∫
E

gn dµ ≤ λ(E ) ≤
∫
E

gn dµ+
µ(X )

2n
(∗∗).
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The Radon-Nikodym Theorem

Cont’d: If we let m ≥ n then (∗∗) tells us that∫
E

gn dµ ≤ λ(E ) ≤
∫
E

gm dµ+
µ(X )

2m
and

∫
E

gm dµ ≤ λ(E ) ≤
∫
E

gn dµ+
µ(X )

2n
.

Combining these two give us that

|
∫
E

gn dµ−
∫
E

gm dµ| ≤ µ(X )

2n

for each E ∈ A. In particular this holds for E1 = {x ∈ X | gn − gm ≥ 0}
and E2 = {x ∈ X | gn − gm < 0}. This allows us to deduce that∫

X

|gn − gm| dµ ≤
2µ(X )

2n
=
µ(X )

2n−1

and hence that {gn}∞n=1 is Cauchy in L1(X ,A, µ).

Brian Forrest The Radon-Nikodym Theorem



The Radon-Nikodym Theorem

Cont’d:
Assume that gn → f in L1(X ,A, µ). Since gn ∈M+(X ,A) we can
also assume that f ∈M+(X ,A). Moreover, for any E ∈ A we
have

|
∫
E
gn dµ−

∫
E
f dµ| ≤

∫
E
|gn − f | dµ ≤ ‖gn − f ‖1 → 0.

It then follows from (∗∗) that

λ(E ) = lim
n→∞

∫
E
gn dµ =

∫
E
f dµ.
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The Radon-Nikodym Theorem

Cont’d:
Suppose that f , h ∈M+(X ,A) are such that∫

E
f dµ = λ(E ) =

∫
E
h dµ

for all E ∈ A.

Let E1 = {x ∈ X |f (x) > h(x)} and E2 = {x ∈ X |f (x) < h(x)}.
Since∫

E1

f − h dµ =

∫
E1

f dµ−
∫
E1

h dµ = λ(E1)− λ(E1) = 0

and ∫
E2

f − h dµ =

∫
E2

f dµ−
∫
E2

h dµ = λ(E2)− λ(E2) = 0

we have that µ(E1) = µ(E2) = 0 and hence that f = h µ-a.e.
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The Radon-Nikodym Theorem

Case 2: Assume that λ and µ are σ-finite.

Let {Xn} ⊆ A be an increasing sequence such that X =
∞⋃
n=1

Xn,

λ(Xn) <∞ and µ(Xn) <∞.

For each n ∈ N, we get a function fn ∈M+(X ,A) such that fn|Xc
n

≡ 0,

and if E ∈ A with E ⊆ Xn, then

λ(E ) =

∫
E

fn dµ.

If m ≥ n, then Xn ⊆ Xm , and by our previous uniqueness result, fn = fm
µ-a.e. Let

Fn = sup{f1, f2, . . . , fn}.

Then {Fn} is an increasing sequence of positive measurable functions
with Fn = fn µ-a.e and Fn(x) = 0 for all x ∈ X c

n . Let

f = lim
n→∞

Fn.
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The Radon-Nikodym Theorem

Cont’d: If E ∈ A, then

λ(E ∩ Xn) =

∫
E
fn dµ =

∫
E
Fn dµ.

Given that E ∩ Xn ↗ E , continuity from below and the Monotone
Convergence Theorem shows us that

λ(E ) = lim
n→∞

λ(E ∩ Xn) = lim
n→∞

∫
E
Fn dµ =

∫
E
f dµ.

The uniqueness of f is determined as in the finite case.
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The Radon-Nikodym Theorem

Remark: A close look at the proof of the RNT shows that the
process used to construct the function f resembles differentiation.

Example: Let F : R→ R be a continuously differentiable function
with F ′(x) > 0. Then F is strictly increasing.

Let µF be the Lebesgue-Stieltjes measure on (R,B(R)) generated
by F . Then µF is σ-finite and µF � m. Moreover, the
Fundamental Theorem of Calculus shows that

µF ((a, b]) = F (b)−F (a) =

∫ b

a
F ′(x) dx =

∫
[a,b]

F ′ dm =

∫
(a,b]

F ′ dm.

From here we can deduce that if E ∈ B(R), then

µF (E ) =

∫
E
F ′ dm.

In particular, the function we would have obtained in via the
Radon-Nikodym Theorem is m-a.e equal to F ′.
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The Radon-Nikodym Theorem

Definition: The function f whose existence was established in the
Radon-Nikodym Theorem is called the Radon-Nikodym dervivative
of λ with respect to µ and it is denoted by dλ

dµ .

Remark:

1) dλ
dµ is integrable if and only if λ is a finite measure.

2) In the case that λ is σ- finite, with X =
∞⋃
n=1

Xn and each Xn

being such that λ(Xn) <∞, we have that

λ(Xn) =

∫
Xn

dλ

dµ
dµ

so dλ
dµ must be finite µ-a.e on Xn. As such, we may assume

that dλ
dµ is actually finite everywhere on X .

Brian Forrest The Radon-Nikodym Theorem



The Radon-Nikodym Theorem

Cont’d:

3) Let (X ,A, λ) = (R,M(R),m) be the ususal Lebesgue measure
space and let µ be defined on (R,M(R)) to be the restriction of the
counting measure on (R,P(R)) to (R,M(R)).

Then m� µ, since µ(E ) = 0 implies E = ∅. However, there is no
f ∈M+(R,M(R)) such that

m(E ) =

∫
E

f dµ.

This shows that the Radon-Nikodym Theorem can fail if µ is not
σ-finite.

Note: It is an exercise to show that the Radon-Nikodym Theorem
can be extended to the case where λ is arbitrary.
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The Radon-Nikodym Theorem

4) Let µ, λ, ν be σ-finite measures on (X ,A) with λ� µ and ν � µ.

(i) If c > 0, then cλ� µ and

d(cλ)

dµ
= c

dλ

dµ
.

(ii) We have (λ+ ν)� µ and

d(λ+ ν)

dµ
=

dλ

dµ
+

dν

dµ
.

(iii) If ν � λ and λ� µ, then ν � µ and

dν

dµ
=

dν

dλ
· dλ
dµ

.

(iv) If µ� λ and λ� µ, then

dν

dµ
=

1
dµ
dν

.

Note: All of the equalities above apply almost everywhere.
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The Radon-Nikodym Theorem

5) If λ is a signed measure and µ is a σ-finite measure with
λ� µ, then λ+ � µ and λ− � µ. In this case, we let

dλ

dµ
def
=

dλ+

dµ
− dλ−

dµ
.
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Lebesgue Decompostion Theorem

Theorem: [Lebesgue Decomposition Theorem]
Let λ and µ be σ-finite measures on (X ,A). Then there exists two
measures λ1 and λ2 on (X ,A) such that λ = λ1 + λ2, λ1 ⊥ µ and
λ2 � µ. Moreover, these measures are unique.
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Lebesgue Decompostion Theorem

Proof: Let
ν = λ+ µ.

Then ν is σ-finite, λ� ν and µ� ν .

It follows that there are functions f , g ∈M+(X ,A) such that

λ(E ) =

∫
E
f dν and µ(E ) =

∫
E
g dν.

for every E ∈ A.
Let

A = {x ∈ X | g(x) = 0} and B = {x ∈ X | g(x) > 0}.

Then {A,B} is a partition of X . Let

λ1(E ) = λ(E ∩ A) and λ1(E ) = λ(E ∩ B)

for every E ∈ A. Clearly λ = λ1 + λ2.
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Lebesgue Decompostion Theorem

Cont’d: Since

µ(A) = µ(E ) =

∫
E
g dν

we have that λ1 ⊥ µ.

If µ(E ) = 0, then ∫
E
g dν = 0

so g(x) = 0 for ν-almost every in E .

It follows that ν(E ∩ B) = 0 and hence that

λ2(E ) = λ(E ∩ B) = 0

since λ� ν. That is λ2 � µ.
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Lebesgue Decompostion Theorem

Cont’d: To see that λ1 and λ2 are unique we first assume that
both λ and µ are finite. Assume also that we can find λ1 and λ2
and ν1 and ν2 with

λ = λ1 + λ2, λ1 ⊥ µ and λ2 � µ,

and
λ = ν1 + ν2, ν1 ⊥ µ and ν2 � µ.

Then
γ = λ1 − ν1 = ν2 − λ2

is such that γ ⊥ µ and γ � µ and hence γ = 0 .

The case where λ and µ are σ-finite is left as an exercise.
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