
THE ARZELA–ASCOLI THEOREM

Let Ω be a region in C. Let ΩQ denote its subset of points with rational coordi-
nates,

ΩQ = {x+ iy ∈ Ω : x, y ∈ Q}.
This subset is useful because it is small in the sense that is countable, but large in
the sense that it is dense in Ω.

Definition 0.1. A family F of complex-valued functions on Ω is pointwise bounded
if

for each z ∈ Ω, sup
f∈F
{|f(z)|} <∞.

This does not imply that any f ∈ F is bounded on Ω, as demonstrated by the
family

F = {fn : n ∈ Z+} where fn(z) = z/n for z ∈ C.
Nor is it implied if every f ∈ F is bounded on Ω, as demonstrated by the family

F = {fn : n ∈ Z+} where fn(z) = n for z ∈ C.

Definition 0.2. A family F of complex-valued functions on Ω is equicontinous if
for every ε > 0 and z ∈ Ω, there exists some δ > 0 such that for all z̃ ∈ Ω,

|z̃ − z| < δ =⇒ |f(z̃)− f(z)| < ε for all f ∈ F .

The idea here is that each f ∈ F is pointwise continuous on Ω, and at each point
z ∈ Ω, given ε > 0, the same δ > 0 works simultaneously for all f ∈ F in the
definition of continuity at z.

Theorem 0.3 (Arzela–Ascoli). Let Ω be a region in C, and let F be a pointwise
bounded, equicontinuous family of complex-valued functions on Ω. Then every se-
quence {fn} in F has a convergent subsequence, the convergence being uniform on
compact subsets.

Proof. Let {fn} be a sequence in F .
First we use the given pointwise boundedness to prove that {fn} has a subse-

quence that converges on ΩQ. The idea is a variant of Cantor’s diagonal argument.
Since ΩQ is countable, write

ΩQ = {z1, z2, z3, . . . }.
The complex sequence

{f1(z1), f2(z1), f3(z1), . . . }
is bounded, and so it contains a convergent subsequence. Relabel the convergent
subsequence as follows:

{f1,1(z1), f1,2(z1), f1,3(z1), . . . } converges.

Next, the complex sequence

{f1,1(z2), f1,2(z2), f1,3(z2), . . . }
1



2 THE ARZELA–ASCOLI THEOREM

is again bounded, so it too contains a convergent subsequence. Relabel it:

{f2,1(z2), f2,2(z2), f2,3(z2), . . . } converges.

And the complex sequence

{f2,1(z3), f2,2(z3), f2,3(z3), . . . }

is bounded, so it contains a convergent subsequence:

{f3,1(z3), f3,2(z3), f3,3(z3), . . . } converges.

Continuing this process gives rise to an array,

f1,1 f1,2 f1,3 · · ·
f2,1 f2,2 f2,3 · · ·
f3,1 f3,2 f3,3 · · ·

...
...

...
. . .

The first row is a sequence of functions that converges at z1. The second row is a
subsequence of the first row, and it converges at z1 and at z2. The third row is a
subsequence of the second row, and it converges at z1, at z2, and at z3. And so on.
Consider the sequence down the diagonal,

{f1,1, f2,2, f3,3, . . . }.

This is a subsequence of the original sequence {fn}, and it converges at each z ∈ ΩQ.
After relabeling, we may assume that the original sequence {fn} converges on ΩQ.

Next we use the given equicontinuity to prove that in fact {fn} converges on all
of Ω. This is a typical three-epsilon argument. Given any z ∈ Ω and any ε > 0,
consider the δ > 0 provided by equicontinuity. Since ΩQ is dense in Ω, there exists
a point zQ ∈ ΩQ such that

|zQ − z| < δ.

Since the complex sequence {fn(zQ)} converges, it is Cauchy, meaning that there
exists a starting index N such that for all integers n and m,

n,m > N =⇒ |fn(zQ)− fm(zQ)| < ε.

Consequently, the complex sequence {fn(z)} is Cauchy as well,

n,m > N =⇒ |fn(z)− fm(z)| ≤ |fn(z)− fn(zQ)|
+ |fn(zQ)− fm(zQ)|
+ |fm(zQ)− fm(z)|

< 3ε.

Since the complex sequence {fn(z)} is Cauchy, it converges.

Third we prove that the pointwise limit function

g = lim
n
fn : Ω −→ C

is continuous. Let ε > 0 be given and let z ∈ Ω be given. The equicontinuity of F
supplies a corresponding δ = δz(ε,F) > 0. For any z̃ ∈ Ω such that |z̃− z| < δ and
for any n ∈ Z+,

|g(z̃)− g(z)| ≤ |g(z̃)− fn(z̃)|+ |fn(z̃)− fn(z)|+ |fn(z)− g(z)|.
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By equicontinuity, the middle term is less than ε for any n. By the pointwise
convergence of {fn} to g, for some starting index N = N(z, z̃) the first and last
terms are less than ε for all n > N . That is, for all z̃ ∈ Ω such that |z̃ − z| < δ,

|g(z̃)− g(z)| < 3ε for all n > N.

But g(z̃) − g(z) is independent of n, so the “for all n > N” in the display is
irrelevant, and g is continuous at z. The equicontinuity of F and the continuity
of g combine to show that also F ∪ {g} is equicontinuous.

Finally we prove that the convergence of {fn} to g is uniform on compact subsets
of Ω. Let K be such a compact set, and let ε > 0 be given. We need a starting
index N such that for all integers n,

n > N =⇒ |fn(z)− g(z)| < 3ε for all z ∈ K.
For each z ∈ K there exists some δz = δz(ε,F ∪ {g}) > 0 such that for all z̃ ∈ K,

|z̃ − z| < δz =⇒

{
|fn(z̃)− fn(z)| < ε for all n ∈ Z+

|g(z)− g(z̃)| < ε.

And because {fn(z)} converges to g(z), there exists some Nz ∈ Z+ such that for
all integers n,

n > Nz =⇒ |fn(z)− g(z)| < ε.

So, for all z̃ ∈ K and all integers n,{ |z̃ − z| < δz,

n > Nz

}
=⇒ |fn(z̃)− g(z̃)| ≤

 |fn(z̃)− fn(z)|
+|fn(z)− g(z)|
+|g(z)− g(z̃)|

 < 3ε.

This shows that the sequence {fn} converges uniformly on B(z, δz)∩K. So consider
an open cover of the compact set K,

K =
⋃

z∈K

B(z, δz) ∩K.

By compactness, there exists a finite subcover,

K =
k⋃

j=1

B(zj , δzj
) ∩K.

Define
N = max(Nz1 , . . . , Nzk

}.
Then for all integers n and m, the desired condition holds,

n > N =⇒ |fn(z)− g(z)| < 3ε for all z ∈ K.
This completes the proof. �


