THE ARZELA-ASCOLI THEOREM

Let Q be a region in C. Let {2g denote its subset of points with rational coordi-
nates,
Q={r+iyeQ:z,yecQ}
This subset is useful because it is small in the sense that is countable, but large in
the sense that it is dense in ).

Definition 0.1. A family F of complex-valued functions on Q) is pointwise bounded
if
for each z € Q, sup{|f(z)|} < 0.
feF

This does not imply that any f € F is bounded on 2, as demonstrated by the
family
F={fn:n€Z} where f,(z) = z/n for z € C.

Nor is it implied if every f € F is bounded on 2, as demonstrated by the family
F={fu:n€Z"} where f,(z) =n for z € C.

Definition 0.2. A family F of complez-valued functions on Q is equicontinous if
for every e > 0 and z € Q, there exists some & > 0 such that for all Z € ),

|Z2—z|<d = |f(2) = f(2)| <e forall f€F.

The idea here is that each f € F is pointwise continuous on €2, and at each point
z € Q, given € > 0, the same § > 0 works simultaneously for all f € F in the
definition of continuity at z.

Theorem 0.3 (Arzela—Ascoli). Let Q be a region in C, and let F be a pointwise
bounded, equicontinuous family of complex-valued functions on ). Then every se-
quence {fn} in F has a convergent subsequence, the convergence being uniform on
compact subsets.

Proof. Let {f,} be a sequence in F.

First we use the given pointwise boundedness to prove that {f,} has a subse-
quence that converges on {)g. The idea is a variant of Cantor’s diagonal argument.
Since ()g is countable, write

QQ = {Zl, 22523y }

The complex sequence

{fi(21), fa(21), f3(z1), .- }

is bounded, and so it contains a convergent subsequence. Relabel the convergent
subsequence as follows:

{f11(21), f1,2(21), f1,3(21), ... } converges.
Next, the complex sequence

{f1,1(22), f1,2(22), f1,3(22)a oo}
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is again bounded, so it too contains a convergent subsequence. Relabel it:

{fg,l(ZQ), fQ,Q(ZQ), f2,3(22), e } converges.
And the complex sequence
{f2,1(23); f2,2(23), f2,3(23), - }
is bounded, so it contains a convergent subsequence:

{f3,1(23), f3,.2(23), f3.3(23),... } converges.

Continuing this process gives rise to an array,

fir fiz2 fi3
f2,1 f2,2 f2,3

faa fs2 fas

The first row is a sequence of functions that converges at z;. The second row is a
subsequence of the first row, and it converges at z; and at zo. The third row is a
subsequence of the second row, and it converges at z;, at z9, and at z3. And so on.
Consider the sequence down the diagonal,

{fi1: fo2, f335- - ).

This is a subsequence of the original sequence { f,, }, and it converges at each z € Qg.
After relabeling, we may assume that the original sequence { f,,} converges on (g.

Next we use the given equicontinuity to prove that in fact {f,} converges on all
of Q. This is a typical three-epsilon argument. Given any z € ) and any ¢ > 0,
consider the § > 0 provided by equicontinuity. Since (g is dense in €2, there exists
a point zg € g such that

lzg — 2| < 4.
Since the complex sequence {f,(zg)} converges, it is Cauchy, meaning that there
exists a starting index N such that for all integers n and m,

n,m >N = |fu(20) — fm(20)| <e.
Consequently, the complex sequence {f,(z)} is Cauchy as well,
n,m >N = |fn(2) = fm(2)] < |fu(2) — fn(ZQ)|
+ | fn(20) = fm(20)]
+ [fm(20) = fm(2)]

< 3e.
Since the complex sequence {f,(z)} is Cauchy, it converges.
Third we prove that the pointwise limit function
g= lign fn:2—C
is continuous. Let € > 0 be given and let z € Q be given. The equicontinuity of F

supplies a corresponding § = 6, (e, F) > 0. For any Z € Q such that |Z — z| < § and
for any n € Z7,

9(2) = 9(2)| <19(2) = Fu(B)| + |fn(2) = fu(2)] + | fn(2) — g(2)].
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By equicontinuity, the middle term is less than ¢ for any n. By the pointwise
convergence of {f,} to g, for some starting index N = N(z, 2) the first and last
terms are less than ¢ for all n > N. That is, for all Z € Q such that |z — z| < 4,

lg(2) — g(2)| < 3¢ foralln > N.

But ¢g(2) — g(z) is independent of n, so the “for all n > N” in the display is
irrelevant, and ¢ is continuous at z. The equicontinuity of F and the continuity
of g combine to show that also F U {g} is equicontinuous.

Finally we prove that the convergence of { f,,} to g is uniform on compact subsets
of Q). Let K be such a compact set, and let € > 0 be given. We need a starting
index N such that for all integers n,

n>N = |fn(2) —g(2)] < 3eforall z € K.
For each z € K there exists some 0, = d,(¢, F U{g}) > 0 such that for all Z € K,
|fn(Z) — fu(2)| < eforallneZ*
l9(z) —g(3)] <e.

And because {f,(z)} converges to g(z), there exists some N, € Z" such that for
all integers n,

|Z -2l <0, = {

n>N, = |fu(z) —g(z)| <e.
So, for all Z € K and all integers n,
[fn(2) = fn(2)]
b — 1@ g < | +hE o) | <o
+lg(2) — 9(2)]

This shows that the sequence { f,,} converges uniformly on B(z,,)NK. So consider
an open cover of the compact set K,

K= ] B(z,6.)nK.
zeK

{|22<5Z7

n>N,

By compactness, there exists a finite subcover,
k
K =] B(2,8.,) N K.
j=1

Define

N =max(N,..., N, }.
Then for all integers n and m, the desired condition holds,

n>N = |fo(2) —g(2)] < 3eforall z € K.

This completes the proof. O



