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PREFACE

My main purpose in this book is to present a unified treatment
of that part of measure theory which in recent years has shown
itself to be most useful for its applications in modern analysis.
If I have accomplished my purpose, then the book should be
found usable both as a text for students and as a source of refer-
ence for the more advanced mathematician.

I have tried to keep to a minimum the amount of new and
unusual terminology and notation. In the few places where my
nomenclature differs from that in the existing literature of meas-
ure theory, I was motivated by an attempt to harmonize with
the usage of other parts of mathematics. There are, for instance,
sound algebraic reasons for using the terms “lattice’ and “ring”
for certain classes of sets—reasons which are more cogent than
the similarities that caused Hausdorff to use “ring” and “field.”

The only necessary prerequisite for an intelligent reading of
the first seven chapters of this book is what is known in the
United States as undergraduate algebra and analysis. For the
convenience of the reader, § 0 is devoted to a detailed listing of
exactly what knowledge is assumed in the various chapters. The
beginner should be warned that some of the words and symbols
in the latter part of § O are defined only later, in the first seven
chapters of the text, and that, accordingly, he should not be dis-
couraged if, on first reading of § 0, he finds that he does not have
the prerequisites for reading the prerequisites.

At the end of almost every section there is a set of exercises
which appear sometimes as questions but more usually as asser-
tions that the reader is invited to prove. These exercises should

be viewed as corollaries to and sidelights on the results more
v



vi PREFACE

formally expounded. They constitute an integral part of the
book; among them appear not only most of the examples and
counter examples necessary for understanding the theory, but
also definitions of new concepts and, occasionally, entire theories
that not long ago were still subjects of research.

It might appear inconsistent that, in the text, many elementary
notions are treated in great detail, while, in the exercises,some quite
refined and profound matters (topological spaces, transfinite num-
bers, Banach spaces, etc.) are assumed to be known. The mate-
rial is arranged, however, so that when a beginning student comes
to an exercise which uses terms not defined in this book he may
simply omit it without loss of continuity. The more advanced
reader, on the other hand, might be pleased at the interplay
between measure theory and other parts of mathematics which
it 1s the purpose of such exercises to exhibit.

The symbol | is used throughout the entire book in place of
such phrases as “Q.E.D.” or “This completes the proof of the
theorem” to signal the end of a proof.

At the end of the book there is a short list of references and a
bibliography. I make no claims of completeness for these lists.
Their purpose is sometimes to mention background reading,
rarely (in cases where the history of the subject is not too well
known) to give credit for original discoveries, and most often to
indicate directions for further study.

A symbol such as #.v, where « is an integer and v is an integer
or a letter of the alphabet, refers to the (unique) theorem, formula,
or exercise in section # which bears the label v.
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§0. PREREQUISITES

The only prerequisite for reading and understanding the first
seven chapters of this book is a knowledge of elementary algebra
and analysis. Specifically it is assumed that the reader is familiar
with the concepts and results listed in (1)-(7) below.

(1) Mathematical induction, commutativity and associativity
of algebraic operations, linear combinations, equivalence relations
and decompositions into equivalence classes.

(2) Countable sets; the union of countably many countable
sets is countable.

(3) Real numbers, elementary metric and topological properties
of the real line (e.g. the rational numbers are dense, every open
set is a countable union of disjoint open intervals), the Heine-
Borel theorem.

(4) The general concept of a function and, in particular, of a
sequence (i.e. a function whose domain of definition is the set of
positive integers); sums, products, constant multiples, and abso-
lute values of functions.

(5) Least upper and greatest lower bounds (called suprema and
infima) of sets of real numbers and real valued functions; limits,
superior limits, and inferior limits of sequences of real numbers
and real valued functions.

(6) The symbols 4+« and —, and the following algebraic rela-
tions among them and real numbers x:

(£®) + (£®) = x + (£») = (£®) + 5 = £;

o ifx >0,
x(£®) = (o)x = {0 ifx =0,
Fo ifx <O0;

(£0)(£®) = +,
(&) (Fe) = —eo;
x/(£®) = 0;
-0 < X < oo,
1



2 PREREQUISITES [Sec. 0)

The phrase extended real number refers to a real number or one
of the symbols o,
(7) If x and y are real numbers,

max {x,y} = 3+ y+|x—-y])

I

xUy
x Ny =min {xy} = 3@ +y —|x—y).

Similarly, if f and g are real valued functions, then f U g and
f 0 g are the functions defined by

(fU Q) =f(x) Uglx) and (f N g)(x) =f(x) N g(x),

respectively. The supremum and infimum of a sequence {x.}
of real numbers are denoted by

Ur-i#. and (Yra1 %n,

respectively. In this notation

lim supn xn = Vo=t Um=r %=
and
liminf, x, = Unai Nmen %m-

In Chapter VIII the concept of metric space is used, together
with such related concepts as completeness and separability for
metric spaces, and uniform continuity of functions on metric
spaces. In Chapter VIII use is made also of such slightly more
sophisticated concepts of real analysis as one-sided continuity.

In the last section of Chapter IX, Tychonoff’s theorem on the
compactness of product spaces is needed (for countably many
factors each of which is an interval).

In general, each chapter makes free use of all preceding chap-
ters; the only major exception to this is that Chapter IX is not
needed for the last three chapters.

In Chapters X, XI, and XII systematic use is made of many
of the concepts and results of point set topology and the elements
of topological group theory. We append below a list of all the
relevant definitions and theorems. The purpose of this list is not
to serve as a text on topology, but (a) to tell the expert exactly



[Sec. 0] PREREQUISITES 3

which forms of the relevant concepts and results we need, (b) to
tell the beginner with exactly which concepts and results he should
familiarize himself before studying the last three chapters, (c) to
put on record certain, not universally used, terminological con-
ventions, and (d) to serve as an easily available reference for
things which the reader may wish to recall.

Topological Spaces

A topological space is a set X and a class of subsets of X, called
the open sets of X, such that the class contains 0 and X and is
closed under the formation of finite intersections and arbitrary
(i.e. not necessarily finite or countable) unions. A subset E
of X is called a G; if there exists a sequence {U,} of open sets
such that E = (., U.. Theclass of all G;’s is closed under the
formation of finite unions and countable intersections. The topo-
logical space X is discrete if every subset of X is open, or, equiva-
lently, if every one-point subset of X is open. A set E is closed
if X — E is open. The class of closed sets contains 0 and X and
is closed under the formation of finite unions and arbitrary inter-
sections. The interior, E of a subset E of X is the greatest open
set contained in E; the closure, E, of E is the least closed set con-
taining E. Interiors are open sets and closures are closed sets;
if E is open, then E° = E, and, if E is closed, then E = E. The
closure of a set E is the set of all points x such that, for every open
set U containing x, E N U = 0. A set E is dense in X if £ = X.
A subset Y of a topological space becomes a topological space
(a subspace of X) in the relative topology if exactly those subsets
of Y are called open which may be obtained by lntersec‘tmg an
open subset of X with Y. A nelghborhood of a point ¥ in X
[or of a subset E of X] is an open set containing x [or an open set
containing E]. A base is a class B of open sets such that, for
every ¥ in X and every neighborhood U of x, there exists a set
B in B such that x e Bc U. The topology of the real line is
determined by the requirement that the class of all open intervals
be a base. A subbase is a class of sets, the class of all finite inter-
sections of which is a base. A space X is separable if it has a
countable base. A subspace of a separable space is separable.
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An open covering of a subset E of a topological space X is a
class K of open sets such that £ c |J K. If X is separable and
K is an open covering of a subset £ of X, then there exists a
countable subclass { K;, K;, - -} of K which is an open covering
of E. A set E in X is compact if, for every open covering K of E,
there exists a finite subclass { Ky, - -+, K.} of K which is an open
covering of E. A class K of sets has the finite intersection prop-
erty if every finite subclass of K has a non empty intersection.
A space X is compact if and only if every class of closed sets with
the finite intersection property has a non empty intersection. A
set E in a space X is o—compact if there exists a sequence {C.,}
of compact sets such that £ = |J;.; Ca. A space X is locally
compact if every point of X has a neighborhood whose closure is
compact. A subset E of a locally compact space is bounded if
there exists a compact set C such that £ c C. The class of all
bounded open sets in a locally compact space is a base. A closed
subset of a bounded set is compact. A subset E of a locally com-
pact space is o~bounded if there exists a sequence {C,} of compact
sets such that £ < ;-1 Ca. To any locally compact but not
compact topological space X there corresponds a compact space
X* containing X and exactly one additional point x*; X* is called
the one-point compactification of X by x*. The open sets of X*
are the open subsets of X and the complements (in X*) of the
closed compact subsets of X.

If {X:: iel} is a class of topological spaces, their Cartesian
product is the set X = X {X:: 7 e I} of all functions x defined
on I and such that, for each 7 in I, x(4) € X;. For a fixed 4, in
1, let F be an open subset of X, and, for i # iy, write E; = X;
the cM of open sets in X is determined by the requirement that
the class of all sets of the form X {E;: 7 e I} be a subbase. If
the function £; on X is defined by £;(x) = x(i), then £; is continu-
ous. The Cartesian product of any class of compact spaces is
compact.

A topological space is a Hausdorff space if every pair of distinct
points have disjoint neighborhoods. Two disjoint compact sets
in a Hausdorff space have disjoint neighborhoods. A compact
subset of a Hausdorff space is closed. If a locally compact space
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is a Hausdorff space or a separable space, then so is its one-point
compactification. A real valued continuous function on a compact
set is bounded.

For any topological space X we denote by § (or $(X)) the class
of all real valued continuous functions f such that 0 < f(x) < 1
for all ¥ in X. A Hausdorff space is completely regular if, for
every point y in X and every closed set F not containing y, there
is a function f in § such that f(y) = 0 and, for x in F, f(x) = 1.
A locally compact Hausdorff space is completely regular.

A metric space is a set X and a real valued function 4 (called
distance) on X X X, such thatd(x,y) = 0, d(x,y) = 0 if and only
if x = y,d(x,y) = d(y,x), and d(x,y) < d(x,2) + d(z,y). If E and
F are non empty subsets of a metric space X, the distance between
them is defined to be the number J(E,F) = inf {d(x,y): x ¢ E,
yeF}. If F = {xo} is a one-point set, we write d(E,x,) in place
of d(E,{x,}). A sphere (with center x, and radius 7o) is a subset
E of a metric space X such that, for some point ¥ and some posi-
tive number 7o, E = {x: d(x0,x) < ro}. The topology of a metric
space is determined by the requirement that the class of all
spheres be a base. A metric space is completely regular. A closed
set in a metric space is a G3. A metric space is separable if and only
if it contains a countable dense set. If E is a subset of a metric
space and f(x) = d(E,x), then f is a continuous function and
E = {x:f(x) = 0}. If Xis the real line, or the Cartesian product
of a finite number of real lines, then X is a locally compact separa-
ble Hausdorff space; it is even a metric space if for x = (xy, - - -, x,,)
and y = (31, --*, ¥n) the distance d(x,y) is defined to be
Cotr (v — y)H%. A closed interval in the real line is a, com-
pact set. T

A transformation T from a topological space X into a topological
space Y is continuous if the inverse image of every open set is
open, or, equivalently, if the inverse image of every closed set is
closed. The transformation T is open if the image of every open
set is open. If B is a subbase in Y, then a necessary and sufficient
condition that T be continuous is that T—!(B) be open for every
B in B. If a continuous transformation T maps X onto Y, and
if X is compact, then Y is compact. A homeomorphism is a one
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to one, continuous transformation of X onto Y whose inverse is
also continuous.

The sum of a uniformly convergent series of real valued, con-
tinuous functions is continuous. If f and g are real valued con-
tinuous functions, then f U g and f N g are continuous.

Topological Groups

A group is a non empty set X of elements for which an associa-
tive multiplication is defined so that, for any two elements 4 and
b of X, the equations ax = 4 and ya = 4 are solvable. 1n every
group X there is a unique identity element e, characterized by
the fact that ex = xe = x for every x in X. Each element x
of X has a unique inverse, x~', characterized by the fact that
xx' = x7'x = e. A non empty subset Y of X is a subgroup
if "'y ¢ Y whenever x and y are in Y. If E is any subset of a
group X, E7! is the set of all elements of the form x~!, where
x e E; if E and F are any two subsets of X, EF is the set of all
elements of the form xy, where x ¢ £ and y e F. A non empty
subset Y of X is a subgroup if and only if Y'Y c Y. Ifxe X,
it is customary to write x£ and Ex in place of {x}E and E{x}
respectively; the set xE [or Ex] is called a left translation [or right
translation] of £. If Y is a subgroup of X, the sets xY and Yx
are called (left and right) cosets of Y. A subgroup Y of X is
invariant if XY = Yx for every x in X. If the product of two
cosets Y, and Y, of an invariant subgroup Y is defined to be
Y,Y,, then, with respect to this notion of multiplication, the class
of all cosets is a group X, called the quotient group of X modulo
Y and denoted by X/Y. The identity element é of X is Y. If
Y is an invariant subgroup of X, and if for every x in X, w(x)
is the coset of Y which contains x, then the transformation =
is called the projection from X onto X. A homomorphism is a
transformation T from a group X into a group Y such that
T(xy) = T(x)T(y) for every two elements x and y of X. The
projection from a group X onto a quotient group X is a homo-
morphism.

A topological group is a group X which is a Hausdorff space
such that the transformation (from X X X onto X) which sends
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(x,y) into x™'y is continuous. A class N of open sets containing
e in a topological group is a base at ¢ if (a) for every x different
from e there exists a set U in N such that x ¢’ U, (b) for any two
sets Uand 7 in N thereexists aset #/ inNsuchthat # c U n 7,
(c) for any set U in N there exists a set » in N such that
V-1V c U, (d) for any set U in N and any element x in X, there
exists a set ¥ in N such that 7 < xUx™, and (e) for any set U
in N and any element x in U there exists a set » in N such that
Vx < U. The class of all neighborhoods of ¢ is a base at ¢; con-
versely if, in any group X, N is a class of sets satisfying the condi-
tions described above, and if the class of all translations of sets
of N is taken for a base, then, with respect to the topology so
defined, X becomes a topological group. A neighborhood # of ¢
is symmetric if 7 = V7'; the class of all symmetric neighbor-
hoods of ¢ is a base at e. If N is a base at ¢ and if F is any closed
set in X, then F = () {UF: U e N}.

The closure of a subgroup [or of an invariant subgroup] of a
topological group X is a subgroup [or an invariant subgroup] of
X. If Yis a closed invariant subgroup of X, and if a subset of
X = X/Y is called open if and only if its inverse image (under
the projection ) is open in X, then X is a topological group and
the transformation = from X onto X is open and continuous.

If C is a compact set and U is an open set in a topological group
X, and if C c U, then there exists a neighborhood # of ¢ such
that CV < U. If C and D are two disjoint compact sets, then
there exists a neighborhood U of ¢ such that UCU and UDU
are disjoint. If C and D are any two compact sets, then C!
and CD are also compact.

A subset E of a topological group X is bounded if, for every
neighborhood U of e, there exists a finite set {x, - -+, x,} (which,
in case E # 0, may be assumed to be a subset of E) such
that E < |Ji-; x:U; if X is locally compact, then this definition
of boundedness agrees with the one applicable in any locally com-
pact space (i.e. the one which requires that the closure of E be
compact). If a continuous, real valued function f on X is such
that the set N(f) = {x:f(x) = 0} is bounded, then f is uniformly
continuous in the sense that to every positive number e there
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corresponds a neighborhood U of e such that | f(x%) — f(x3) | < €
whenever x;x,7! ¢ U.

A topological group is locally bounded if there exists in it a
bounded neighborhood of e. To every locally bounded topo-
logical group X, there corresponds a locally compact topological
group X*, called the completion of X (uniquely determined to
within an isomorphism), such that X is a dense subgroup of X*.
Every closed subgroup and every quotient group of a locally
compact group is a locally compact group.




Chapter 1

SETS AND CLASSES

§ 1. SET INCLUSION

Throughout this book, whenever the word set is used, it will
be interpreted to mean a subset of a given set, which, unless it is
assigned a different symbol in a special context, will be denoted
by X. The elements of X will be called points; the set X will
be referred to as the space, or the whole or entire space, under
consideration. The purpose of this introductory chapter is to de-
fine the basic concepts of the theory of sets, and to state the
principal results which will be used constantly in what follows.

If x is a point of X and E is a subset of X, the notation

xekE

means that x belongs to E (i.e. that one of the points of E is x);
the negation of this assertion, i.e. the statement that x does not
belong to E, will be denoted by

x ¢ E.
Thus, for example, for every point x of X, we have
x e X,
and for no point x of X do we have
xe X.
If E and F are subsets of X, the notation

EcF or FDOE
9
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means that E is a subset of F, i.e. that every point of E belongs
to . In particular therefore

EcE

for every set E. Two sets E and F are called equal if and only
if they contain exactly the same points, or, equivalently, if and
only if

EcF and FcE

This seemingly innocuous definition has as a consequence the
important principle that the only way to prove that two sets are
equal is to show, in two steps, that every point of either set be-
longs also to the other.

It makes for tremendous simplification in language and nota-
tion to admit into the class of sets a set containing no points, which
we shall call the empty set and denote by 0. For every set E

we have
O0cCcEcJX;

for every point ¥ we have
x ¢ 0.

In addition to sets of points we shall have frequent occasion to
consider also sets of sets. If, for instance, X is the real line, then
an interval is a set, i.e. a subset of X, but the set of all intervals
is a set of sets. To help keep the notions clear, we shall always
use the word class for a set of sets. The same notations and
terminology will be used for classes as for sets. Thus, for instance,
if E is a set and E is a class of sets, then

E¢E

means that the set E belongs to (is a member of, is an element of)
the class E; if E and F are classes, then

EcF

means that every set of E belongs also to F, i.e. that E is a sub-
class of F.

On very rare occasions we shall also have to consider sets of
classes, for which we shall always use the word collection. If,
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for instance, X is the Euclidean plane and E, is the class of all
intervals on the horizontal line at distance y from the origin, then
each E, is a class and the set of all these classes is a collection.

(1) The relation C between sets is always reflexive and transitive; it is sym-
metric if and only if X is empty.

(2) Let X be the class of all subsets of X, including of course the empty set 0
and the whole space X; let x be a point of X, let E be a subset of X (i.e. a member
of X), and let E be a class of subsets of X (i.e. a subclass of X). If « and v vary
independently over the five symbols x, E, X, E, X then some of the fifty rela-
tions of the forms

uev or uCuv

are necessarily true, some are possibly true, some are necessarily false, and some
are meaningless. In particular # € v is meaningless unless the right term is a
subset of a space of which the left term is a point, and 4 C ¢ is meaningless
unless # and v are both subsets of the same space.

§2. UNIONS AND INTERSECTIONS

If E is any class of subsets of X, the set of all those points of
X which belong to at least one set of the class E is called the
union of the sets of E; it will be denoted by

UE or U{E:E<E}

The last written symbol is an application of an important and
frequently used principle of notation. If we are given any set of
objects denoted by the generic symbol x, and if, for each x, w(x)
is a proposition concerning x, then the symbol

{x: w(x)}
denotes the set of those points x for which the proposition (x)
is true. If {m.(x)} is a sequence of propositions concerning x,
the symbol
{x: m1(%), Tz(x)) e }

denotes the set of those points x for which m.(x) is true for every
n=1,2,---. If, more generally, to every element v of a certain
index set T' there corresponds a proposition m,(x) concerning x,
then we shall denote the set of all those points x for which the
proposition m,(x) is true for every v in T by

{x: my(x), veT}.
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Thus, for instance,

{x:xeE} = E
and

{E: EcE} = E.

For more illuminating examples we consider the sets
{r0<r=<1}
(= the closed unit interval),
{(or):2® + y* =1}
(= the circumference of the unit circle in the plane), and
{n?:in=1,2,---}

(= the set of those positive integers which are squares). In ac-
cordance with this notation, the upper and lower bounds (supre-
mum and infimum) of a set E of real numbers are denoted by

sup {x:x e E} and inf{x:x ¢ E}

respectively.

In general the brace {---} notation will be reserved for the
formation of sets. Thus, for instance, if ¥ and y are points, then
{x,y} denotes the set whose only elements are x and y. It is
important logically to distinguish between the point x and the
set {x} whcse only element is x, and similarly to distinguish
between the set E and the class {E} whose only element is E.
The empty set 0, for example, contains no points, but the class
{0} contains exactly one set, namely the empty set.

For the union of special classes of sets various special notations
are used. If, for instance,

E = {El) E2}
then
UE=U{E:i=1,2}
is denoted by
E1 U Ez;

if, more generally,
E= {Eb RS} En}
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is a finite class of sets, then

UE=U{E:i=1, -, n}
E1U M UE,. or U?—l E,‘.

If, similarly, {E,} is an infinite sequence of sets, then the union
of the terms of this sequence is denoted by

ELUE,U - --- or UL E

More generally, if to every element v of a certain index set T'
there corresponds a set E,, then the union of the class of sets

{E,: v eT}

User £y or Uy E,.
If the index set T' is empty, we shall make the convention that
U'v E,=0.

The relations of the empty set 0 and the whole space X to
the formation of unions are given by the identities

EUO=E and EUX=X.

is denoted by

is denoted by

More generally it is true that

EcF
if and only if
EUF=PF

If E is any class of subsets of X, the set of all those points of
X which belong to every set of the class E is called the intersection
of the sets of E; it will be denoted by

NE or N{E:E<E}.

Symbols similar to those used for unions are used, but with the
symbol U replaced by N, for the intersections of two sets, of a
finite or countably infinite sequence of sets, or of the terms of
any indexed class of sets. If the index set I' is empty, we shall
make the somewhat startling convention that

nveI‘E'l = X’
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There are several heuristic motivations for this convention. One
of them is that if Iy and T'; are two (non empty) index sets for
which T} © Ty, then clearly

nvcl‘l E'Y 2 nvcl‘zE?)

and that therefore to the smallest possible T, i.e. the empty one,
we should make correspond the largest possible intersection.
Another motivation is the identity

nvel‘xunE‘r = nvenEv n nyme

valid for all non empty index sets I'; and T';. If we insist that this
identity remain valid for arbitrary T, and T'z, then we are com-
mitted to believing that, for every T,

ﬂanv = nycruoEv = nany n nnoEv;

writing E, = X for every v in T, we conclude that

n*/eOE'y = X.

Union and intersection are sometimes called join and meet,
respectively. As a mnemonic device for distinguishing between
U and N (which, by the way, are usually read as cup and cap,
respectively), it may be remarked that the symbol U is similar
to the initial letter of the word ‘“‘union” and the symbol N is
similar to the initial letter of the word “meet.”

The relations of 0 and X to the formation of intersections are
given by the identities

EN0O=0 and EN X =E.

More generally it is true that

EcF

it and only if
ENF=E.

Two sets E and F are called disjoint if they have no points in
common, i.e. if

EnF=0.
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A disjoint class is a class E of sets such that every two distinct
sets of E are disjoint; in this case we shall refer to the union of the
sets of E as a disjoint union.

We conclude this section with the introduction of the useful
concept of characteristic function. If E is any subset of X, the
function xg, defined for all x in X by the relations

()_{l if xekE,
XEVW = o if x ¢ E,

is called the characteristic function of the set E. The correspond-
ence between sets and their characteristic functions is one to one,
and all properties of sets and set operations may be expressed
by means of characteristic functions. As one more relevant illus-
tration of the brace notation, we mention

E = {x: xs(x) = 1}.

(1) The formation of unions is commutative and associative, i.e.
EUF=FUE and EUEUG =(EU F) UG;

the same is true for the formation of intersections.
(2) Each of the two operations, the formation of unions and the formation
of intersections, is distributive with respect to the other, i.e.

ENEFUG=ENFAHUENG
EUFNG =EUFRNEUG).
More generally the following extended distributive laws are valid:
FNU{E:EcE} = J{EN F: EcE}

and

and

FUN{E:EeE} = N {E U F: EcE}.

(3) Does the class of all subsets of X form a group with respect to either of
the operations U and N?
(4) xo(x) =0, xx(x) = 1. The relation

xg(x) < xr(x)

is valid for all xin X ifandonly if ECF. fENF=Aand EU F =B,
then

xa =xexr =xe N xr and x8=x8+xr — x4 =xz U xr.

(5) Do the identities in (4), expressing x4 and xp in terms of xg and xr,
have generalizations to finite, countably infinite, and arbitrary unions and
intersections?
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§3. LIMITS, COMPLEMENTS, AND DIFFERENCES

If {E.} is a sequence of subsets of X, the set E* of all those
points of X which belong to E, for infinitely many values of »
is called the superior limit of the sequence and is denoted by

E* = lim sup, E,.

The set E4 of all those points of X which belong to E, for all but
a finite number of values of # is called the inferior limit of the
sequence and is denoted by

E, = liminf, E,.

If it so happens that
E* = E*,

we shall use the notation
lim, E,
for thig set. If the sequence is such that
E,.cE.,, for n=12,..-,
it is called increasing; if
E,.oE., for n=12, ...

it is called decreasing. Both increasing and decreasing sequences
will be referred to as monotone. It is easy to verify that if { E,}
is a monotone sequence, then lim, E, exists and is equal to

Un E, or nn E,

according as the sequence is increasing or decreasing.

The complement of a subset £ of X is the set of all those
points of X which do not belong to E; it will be denoted by E’.
The operation of forming complements satisfies the following
algebraic identities:

ENE =0, EUE =X,
0=X, (EY=E X' =0, and
if EcF, then E' DO F.
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The formation of complements also bears an interesting and very
important relation to unions and intersections, expressed by the
identities
(U{E:EcE}) = N {E:EcE},
(N{E:EcE}) = U {E:E cE}.

In words: the complement of the union of a class of sets is the
intersection of their complements, and the complement of their
intersection is the union of their complements. This fact, together
with the elementary formulas relating to complements, proves the
important principle of duality:

any valid identity among sets, obtained by forming unions,
intersections, and complements, remains valid if in it the

symbols
N,c, and 0

are interchanged with

U,> and X
respectively (and equality and complementation are left
unchanged).

If E and F are subsets of X, the difference between E and F,
in symbols
E - F,

is the set of all those points of E which do not belong to F. Since
X-F=F,
and, more generally,
E-F=ENF,
the difference E — F is frequently called the relative complement
of Fin E. The operation of forming differences, similarly to the

operation of forming complements, interchanges |J with [} and
c with D, so that, for instance,

E-FUG =(E-F)N(E-G).
The difference E — F is called proper if E O F.



18 SETS AND CLASSES [Skc. 3]

As the final and frequently very important operation on sets
we introduce the symmetric difference of two sets E and F,

denoted by
EAF,

and defined by
EAF=(E-F)UF-E =ENF)YUE NF).

The formation of limits, complements, and differences of sets
requires a bit of practice for ease in manipulation. The reader
is accordingly advised to carry through the proofs of the most
important properties of these processes, listed in the exercises
that follow.

(1) Another heuristic motivation of the convention
n'y 0By =X
is the desire to have the identity

n'v el E'r = (U'y el E’I,),)

which is valid for all non empty index sets I', remain valid for I' = 0.
(2) If E. = lim inf, En and E* = lim sup, E,, then

E,e = U:—l ﬂ;-uEm c n:-l U;-n m = E*,

(3) The superior limit, inferior limit, and limit (if it exists) of a sequence of
sets are unaltered if a finite number of the terms of the sequence are changed.
(4) If E, = A or B according as n is even or odd, then

liminf, En = A N B and limsup, E, =4 U B.
(5) If {E,} is a disjoint sequence, then
lim, E, = 0.
(6) If Ey = lim inf, En and E* = lim sup, Ea, then
(Ey) = lim sup, E,’ and (E*)’ = liminf, E,".
More generally,
F— E, =limsup, (F — E,) and F — E* = liminfy (F — E,).
NE-F=E—-(ENF)=EUF) -F,
ENF-G0)=ENFH—-(ENG, (EUF~-G=(E-G)U (F-0G)
®E-GNF-G =(ENF) -G,
(E-F)—G=E-(FUG, E-~(F-G) =(E-FUENG),
(E-FNG-H =ENG —(FUH).
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9) EAF=FAE EA(FAG)=(EAF)AG,
ENFAG =ENFHAENG),
EA0O=E, EAX=EF,
EAE=0, EAFE =X,
EAF=EUF ~-(ENPF).
(10) Does the class of all subsets of X form a group with respect to the opera-

tion A?
(11) If E, = lim inf, E, and E* = lim sup, E,, then

xe,(x) = lim inf, xg,(x) and xgs«(x) = lim sups xz,(*).

(The expressions on the right sides of these equations refer, of course, to the
usual numerical concepts of superior limit and inferior limit.)
(12) x& = 1 — x&, xe-r = x£(1 = xr),

Xear = | X — xr | = x& + xr (mod 2).
(13) If {E,} is a sequence of sets, write
Dy=FE, D:=D AEs, D;=D;AE;s
and, in general,
Dati = Dald Enyr for m=1,2, ---.
The limit of the sequence {D,} exists if and only if lim, E, = 0. If the opera-
tion A is thought of as addition (cf. (12)), then this result has the following

verbal phrasing: an infinite series of sets converges if and only if its terms ap-
proach zero.

§ 4. RINGS AND ALGEBRAS

A ring (or Boolean ring) of sets is a non empty class R of sets

such that if
EeR and FeR,

then
EUFeR and E — FeR.

In other words a ring is a non empty class of sets which is closed
under the formation of unions and differences.
The empty set belongs to every ring R, for if

EeR,

then
0=E— EeR.
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Since
E—-F=(EUF)-F,

it follows that a non empty class of sets closed under the formation
of unions and proper differences is a ring. Since

EAF=(E-F)U F—-E)
and

ENF=(EUF) —(EAF),

it follows that a ring is closed under the formation of symmetric
differences and intersections. An application of mathematical
induction and the associative laws for unions and intersections
shows that if R is a ring and

E;eR, i=1,--,n,
then

U-iE:eR and N E: eR

Two extreme but useful examples of rings are the class {0}
containing the empty set only, and the class of all subsets of X.
Another example, for an arbitrary set X, is the class of all finite
sets. A more illuminating example is the following. Let

X ={x: —0 < x < 4}

be the real line, and let R be the class of all finite unions of
bounded, left closed, and right open intervals, i.e. the class of
all sets of the form

Uikai{x: —o0 < a; S 5 < b < +}.

Union and intersection are treated unsymmetrically in the
definition of rings. While, for instance, it is true that a ring is
closed under the formation of intersections, it is not true that a
class of sets closed under the formation of intersections and dif-
ferences is necessarily closed also under the formation of unions.
If, however, a non empty class of sets is closed under the formation
of intersections, proper differences, and disjoint unions, then it
is a ring. (Proof:

EUF=[E-(ENFJUF-(ENFJUENF))
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It is easily possible to give a definition of rings which is more
nearly symmetric in its treatment of union and intersection: a
ring may be defined as a non empty class of sets closed under the
formation of intersections and symmetric differences. The proof
of this statement is in the identities:

EUF=(EAF)A(ENF), E~F=EA(ENF).

If in this form of the definition we replace intersection by union
we obtain a true statement: a non empty class of sets closed under
the formation of unions and symmetric differences is a ring.

An algebra (or Boolean algebra) of sets is a non empty class
R of sets such that

(a) f EeRand FeR,then EU FeR, and
(b) if EeR, then E' eR.

Since
E—-F=ENF = (& UF),

it follows that every algebra is a ring. The relation between the
general concept of ring and the more special concept of algebra is
simple: an algebra may be characterized as a ring containing X.

Since
E =X—-E,

it is clear that every such ring is an algebra; if, conversely, R

is an algebra and
EeR

(we recall that R is non empty), then
X=EUEeR.

(1) The following classes of sets are examples of rings and algebras.
(1a) X is n—dimensional Euclidean space; E is the class of all finite unions of
semiclosed “intervals” of the form

{(1, sy xm): —0 <@g Sx; <5<, §=1,---,n}.

(1b) X is an uncountable set; E is the class of all countable subsets of X.

(1c) X is an uncountable set; E is the class of all sets which either are count-
able or have countable complements.

(2) Which topological spaces have the property that the class E of open sets
is a ring?
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(3) The intersection of any collection of rings or algebras is again a ring or an
algebra, respectively.
(4) If R is a ring of sets and if we define, for E and F in R,

EOF=ENF and E® F=EAF,

then, with respect to the operations of “addition” (@) and “multiplication”
(®), the system R is a ring in the algebraic sense of the word. Algebraic rings,
such as this one, in which every element is idempotent (i.e. E® E = E for
every E in R) are also called Boolean rings. The existence of a very close rela-
tion between Boolean rings of sets and Boolean rings in general is the main
Justification of the ring terminology in the set theoretic case.

(5) If R is a ring of sets and if A is the class of all those sets E for which

either EeR orelse E'eR,
then A is an algebra.
(6) A semiring is a non empty class P of sets such that

(6a) if EecPand FeP, then E 1 FeP, and

(6b) if EePand FePand E C F, then there is a finite class {Cy, C, - - -, Cr}
of sets in P such that E=C, C C, C---CCph=F and D; = C; —
CiaePfori=1,--- n

The empty set belongs to every semiring. If X is any set, then the class P
consisting of the empty set and all one-point sets (i.e. sets of the form {x} with
x € X) is a semiring. If X is the real line, the class of all bounded, left closed, and
right open intervals is a semiring.

§5. GENERATED RINGS AND 0—RINGS

Theorem A. If E is any class of sets, then there exists a
unique ring Ry such that Ry D E and such that if R is any
other ring containing E then Ry C R.

The ring Ry, the smallest ring containing E, is called the ring
generated by E; it will be denoted by R(E).

Proof. Since the class of all subsets of X is a ring, it is clear
that at least one ring containing E always exists. Since more-
over (cf. 4.3) the intersection of any collection of rings is also a
ring, the intersection of all rings containing E is easily seen to be
the desired ring Ro. |}

Theorem B. If E is any class of sets, then every set in R(E)
may be covered by a finite union of sets in E.
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Proof. The class of all sets which may be covered by a finite

union of sets in E is a ring; since this ring contains E, it also con-
tains R(E). |

Theorem C. If Eis a countable class of sets, then R(E) is
countable.

Proof. For any class C of sets, we write C* for the class of all
finite unions of differences of sets of C. It is clear that if C is
countable, then so is C*, and if

0eC,
then
Cc C*x

To prove the theorem we assume, as we may without any loss
of generality, that
0cE,

and we write
Ec=E, E,=E,,, n=172,---.

It is clear that
E c UzoE. C R(E),

and that the class
U:—O En

is countable; we shall complete the proof by showing that | J ., E,
is a ring. Since

E=E,cE cE;c---,

it follows that if 4 and B are any two sets in {Jr.o E,, then there
exists a positive integer # such that both 4 and B belong to E,.
We have
A - B BE”+1,
and, since
0¢Ey CE,,
it follows also that

AUB=(4—-0)U (B —0)eEn.
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We have proved therefore that both 4/ — B and 4 U B belong
to Unmo En, i.e. that ;-0 E, is indeed closed under the forma-
tion of unions and differences. |}

A o-ring is a non empty class S of sets such that

(a) f EeSand FeS, then E — FeS, and
(b) ifE;eS,i=1,2,---,then Y-, E; eS.

Equivalently a o-ring is a ring closed under the formation of
countable unions. If S is a g-ring and if

E;eS, i=1,2,---, and E= L E;
then the identity

l—l i = E Ul-l (E - El)
n:’-l Ei SS)

shows that

i.e. that a ¢-ring is closed under the formation of countable inter-
sections. It follows also (cf. 3.2) that if S is a o-ring and

E;SS, i=1,2, Tty

then both lim inf; E; and lim sup; E; belong to S.

Since the truth and proof of Theorem A remain unaltered if
we replace “ring” by “o-ring” throughout, we may define the
o-ring S(E) generated by any class E of sets as the smallest
g-ring containing E.

Theorem D. IfEisany class of setsand E is any setin S =
S(E), then there exists a countable subclass D of E such that

E e S(D).

Proof. The union of all those o—subrings of S which are
generated by some countable subclass of E is a o—ring containing
E and contained in S; it is therefore identical with S. |

For every class E of subsets of X and every fixed subset A
of X, we shall denote by

ENA

the class of all sets of the form E N 4 with E in E.
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Theorem E. If E is any class of sets and if A is any subset
of X, then
SE) N 4 =SEN A).
Proof. Denote by C the class of all sets of the form B U
(C — A), where
BeSEN 4) and CeS(E);

it is easy to verify that C is a o-ring. If E ¢ E, then the relation

E=(ENAV(E- 4,
together with

ENA¢ENAcSEN A,
shows that E € C, and therefore that

E cC.
It follows that
SE)cC
and therefore that

SEyYndccCnAd.
Since, however, it is obvious that

CNA4d=SENnJ,
it follows that

SE)N A4 cSEN A).
The reverse inequality,
SE N A4) cSE) N 4,
follows from the facts that S(E) N A is a o-ring and
ENAcSE)NA |

(1) For each of the following examples, what is the ring generated by the
class E of sets there described?

(1a) For a fixed subset E of X, E = {E]} is the class containing E only.

(1b) For a fixed subset E of X, E is the class of all sets of which E is a subset,
ie.E = {F: EC F}.

(1c) E is the class of all sets which contain exactly two points.

(2) A lattice (of sets) is a class L such that 0 ¢ L and such that if E ¢ L and
FeL, then EU FeL and E FeL. Let P = P(L) be the class of all sets
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of the form F — E, where EeL, FeL, and E C F; then P is a semiring;
(cf. 4.6). (Hint:if
Di=F,—E, i=1,2

are representations of two sets of P as proper differences of sets of L, and if
Dy D D, then for
C=FNF) —(E N F),

or, alternatively, for

C=F —[E U (F N E),

we have F, — E;,C CC Fy — E;.) IsParing?

(3) Let P be a semiring and let R be the class of all sets of the form |J?- E;,
where {E1, - -+, E,} is an arbitrary finite, disjoint class of sets in P.

(3a) R is closed under the formation of finite intersections and disjoint
unions.

(3b) IfEeP, FeP,and EC F, then F — EcR.

@Bc) If EcP,FeR,and EC F, then F— EcR.

(3d) If EeR, FeR,and EC F, then F — EcR.

(3¢) R = R(P). It follows in particular that a semiring which is closed under
the formation of unions is a ring.

(4) The fact that the analog of Theorem A for algebras is true may be seen
either by replacing “ring” by “algebra” in its proof or by using 4.5.

(5) If P is a semiring and R = R(P), then S(R) = S(P).

(6) Is it true that if a non empty class of sets is closed under the formation of
symmetric differences and countable intersections, then it is a o-ring?

(7) IfE is a non empty class of sets, then every set in S(E) may be covered by
a countable union of sets in E; (cf. Theorem B).

(8) If E is an infinite class of sets, then E and R(E) have the same cardinal
number; (cf. Theorem C).

(9) The following procedure yields an analog of Theorem C for o-rings;
(cf. also (8)). If E is any class of sets containing 0, write Eq = E, and, for any
ordinal @ > 0, write, inductively,

E. = (U {Es: B < a})*,

where C* denotes the class of all countable unions of differences of sets of C.
(9a) If0 < a < B, then E C E, C Eg C S(E).
(9b) If Q@ is the first uncountable ordinal, then S(E) = |J{Ea: @ < Q}.
(9¢) If the cardinal number of E is not greater than that of the continuum,
then the same is true of the cardinal number of S(E).
(10) What are the analogs of Theorems D and E for rings instead of g-rings?

§ 6. MONOTONE CLASSES

It is impossible to give a constructive process for obtaining the
o-ring generated by a class of sets. By studying, however,
another type of class, less restricted than a ¢—ring, it is possible
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to obtain a technically very helpful theorem concerning the
structure of generated g-rings.

A non empty class M of sets is monotone if, for every monotone
sequence {E,} of sets in M, we have

lim, E, ¢ M.

Since it is true for monotone classes (just as for rings and
o-rings) that the class of all subsets of X is a monotone class,
and that the intersection of any collection of monotone classes
is a monotone class, we may define the monotone class M(E)
generated by any class E of sets as the smallest monotone class
containing E.

Theorem A. A o-ring is a monotone class; a monotone ring
is @ o-ring.
Proof. The first assertion is obvious. To prove the second
assertion we must show that a monotone ring is closed under
the formation of countable unions. If M is a monotone ring

and if
E;SM, i = 1,2, Tty

then, since M is a ring,
Uit EieM, n=1,2, ..

Since {{J?-: E:} is an increasing sequence of sets whose union is
U E,, the fact that M is a monotone class implies that

Ui E:eM. |

Theorem B. If R is a ring, then M(R) = S(R). Hence
if @ monotone class contains a ring R, then it contains S(R).

Proof. Since a o-ring is a monotone class and since S(R) D
R, it follows that
SR) oM = M(R).

The proof will be completed by showing that M is a o-ring; it
will then follow, since M(R) o R, that M(R) o S(R).

For any set F let K(F) be the class of all those sets E for which
E—F, F—E and EUF are all in M. We observe that,
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because of the symmetric roles of E and F in the definition of
K(F), the relations

EeK(F) and FeK(E)

are equivalent. If {E,} is a monotone sequence of sets in K(F),

then
lim, E, — F = lim, (E, — F) e M,

F —lim, E, = lim, (F — E,) e M,
FUlim, E, =lim,(FU E,) eM,

so that if K(F) is not empty, then it is a monotone class.

If E ¢R and F R, then, by the definition of a ring, E ¢ K(F).
Since this is true for every E in R, it follows that R ¢ K(F),
and therefore, since M is the smallest monotone class containing
R, that

M c K(F).

Hence if E e M and F ¢ R, then E ¢ K(F), and therefore F ¢ K(E).
Since this is true for every F in R, it follows as before that

M c K(E).

The validity of this relation for every E in M is equivalent to the
assertion that M is a ring; the desired conclusion follows from
Theorem A. |}

This theorem does not tell us, given a ring R, how to construct
the generated o-ring. It does tell us that, instead of studying
the o—ring generated by R, it is sufficient to study the monotone
class generated by R. In many applications that is quite easy
to do.

(1) Is Theorem B true for semirings instead of rings?

(2) A class N of sets is normal if it is closed under the formation of countable
decreasing intersections and countable disjoint unions. A ¢-ring is a normal
class; a normal ring is a o-ring.

(3) If the smallest normal class containing a class E is denoted by N(E),
then, for every semiring P, N(P) = S(P).

(4) If a o-algebra of sets is defined as a non empty class of sets closed under
the formation of complements and countable unions, then a g-algebra is a
o-ring containing X. If Ris an algebra, then M(R) coincides with the smallest
o-algebra containing R. Is this result true if R is a ring?
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(5) For each of the following examples what is the o-algebra, the g-ring,
xnd the monotone class generated by the dass E of sets there described?

(52) Let X be any set and let P be any permutation of the points of X i.e.
P is a one to one transformation of X onto itself. A subset E of X is invariant
under P if, whenever x ¢ E, then P(x) e E and P~1(x) e E. Let E be the class
of all invariant sets.

(5b) Let X and Y be any two sets and let T be any (not necessarily one to
one) transformation defined on X and taking X into Y. For every subset E
of Y denote by T-1(E) the set of all points x in X for which T(x) e E. Let E
be the class of all sets of the form T—!(E), where E varies over all subsets of Y.

(5¢) X is a topological space; E is the dass of all sets of the first category.

(5d) X is three dimensional Euclidean space. Let a subset E of X be called
a cylinder if whenever (x,y,2) € E, then (x,9,%) e E for every real number 2.
Let E be the class of all cylinders.

(5¢) X is the Euclidean plane; E is the class of all sets which may be covered
by countably many horizontal lines.



Chapter 11

MEASURES AND OUTER MEASURES

§ 7. MEASURE ON RINGS

A set function is a function whose domain of definition is a
class of sets. An extended real valued set function x defined on a
class E of sets is additive if, whenever

Ec¢E, FeE, EUF¢E, and ENF =0,
then
w(E U F) = u(E) + u(F).

An extended real valued set function x defined on a class E is
finitely additive if, for every finite, disjoint class {E;, - -, E,}
of sets in E whose union is also in E, we have

p(Uicr E) = 2iay w(E).

An extended real valued set function u defined on a class E is
countably additive if, for every disjoint sequence {E,.} of sets in
E whose union is also in E, we have

P’(U:-l En) = Z:-l #(En)'

A measure is an extended real valued, non negative, and countably
additive set function g, defined on a ring R, and such that x(0) = 0.
We observe that, in view of the identity,

UsiEs=E U---UE,U0UOQU---,

a measure is always finitely additive. A rather trivial example
of a measure may be obtained as follows. Let f be an extended
30
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real valued, non negative function of the points of a set X. Let
the ring R consist of all finite subsets of X; define u by

M({xl, ) x,.}) = Z?-lf(xi) and u(0) = 0.

Less trivial examples will be presented in the following sections.

If u is a measure on a ring R, a set E in R is said to have finite
measure if u(E) < «; the measure of E is o—finite if there exists
a sequence { E.} of sets in R such that

Ec U:-l E, and u(E,) <o, n=1,2,---.

If the measure of every set £ m R is finite [or o—finite], the measure
u is called finite [org—finite]on R. If X eR (i.e.if R is an algebra)
and u(X) is finite or o-finite, then u is called totally finite or
totally o~finite respectively. The measure u is called complete
if the conditions

EeR, FcE, and pu(E)=0
imply that F eR.

(1) If p is an extended real valued, non negative, and additive set function
defined on a ring R and such that u(E) < « for at lcast one £in R, then u(0) = 0.

(2) If E is a non empty class of sets and u is a measure on R(E) such that
H(E) < o whenever E ¢ E, then p is finite on R(E); cf. 5.B.

(3) If p is a measure on a o-ring, then the class of all sets of finite measure
is a ring and the class of all sets of g-finite measure is a g-ring. 1If, in addition,
p is o-finite, then a necessary and sufficient condition that the class of all sets
of finite measure be a o-ring is that u be finite. Is the latter statement true if
M is not o—finite?

(4) Suppose that u is a measure on a g-ring S and that E is a set in S of
o-finite measure. If D is a disjoint class of sets in S, then u(E N D) % 0 for
at most countably many sets D in D. (Hint: assume first that u(E) < w; for
each positive integer 7 consider the class

{D:Den, w(E N D) g.’l;})

(5) If u is an extended real valued, non negative, and additive set function
defined on a ring R and such that u(0) = 0, then u is finitely additive. The proof
of the same statement for a semiring P is not trivial; it may be achieved by the
following considerations. A finite, disjoint class {Ey, -+, En} of sets in P
whose union, E, is also in P is called a partition of £. The partition { E} is called
a P~partition if, for every F in P,

wENF) = 30 w(E; N F).
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If {E;} and {Fj} are partitions of E, then {E;} is called a subpartition of {F;}
if each set E; is contained in one of the sets Fj.

(5a) If {E:} and {F;} are partitions of E, then so is their product, consisting
of all sets of the form E; N F;.

(5b) If a subpartition of a partition {E;} is a u—partition, then {E;} is a
pu—partition.

(5¢) The product of two u—partitions is a u—partition.

(B fE=CCC C---CCp=F, where C;eP,i=0,1, ---, n, and if

D; = C; — Ci_leP, i=']’ ceeym,

then {E, Dy, ---, D,} is a p—partition of F.
(5¢) Every partition of a set E in P is a u—partition.

§ 8. MEASURE ON INTERVALS

In order to motivate and illustrate the elementary notions of
measure theory, we now propose to discuss an important and
classical special case. Throughout this section the underlying
space X is to be the real line. We shall denote by P the class of
all bounded, left closed, and right open intervals, i.e. the class of
all sets of the form

{#: —0 < a2 x<b <}

we shall denote by R the class of all finite, disjoint unions of sets
of P, i.e. the class of all sets of the form

ifxr—w <8 S x < b <o)l

(It is easy to verify that any union of this form may be written
as a disjoint union of the same form.)

For simplicity of language we shall always use the expression
“semiclosed interval” instead of “bounded, left closed, and right
open interval.” The consideration of semiclosed intervals, instead
of open intervals or closed intervals, is a technical device. 1If, for
instance, 4, 4, ¢, and d are real numbers, —0 <2 <b<c<d
< o, then the difference between the open intervals

{x:a<x<d} and {x:6<x <c}

is neither an open interval nor a finite union of open intervals,
and the same negative statement holds for the corresponding
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closed intervals. The fact that semiclosed intervals are better
behaved in this respect is what makes them desirable.
We shall, as usual, write [2,4] for a closed interval,

[4,6] = {x:a = x < b},
[4,6) for a semiclosed interval,
[4,8) = {x:a = x < 4},
and (a,$) for an open interval,
(a6) = {x:a < x < b}.
In writing any of these symbols it shall always be understood that

a s b
On the class P of semiclosed intervals we define a set function

u by
p(a,6)) = & — a.

We observe that when @ = 4, the interval reduces to the empty

set, so that
#(0) = 0.

We proceed to investigate the relation of the set function u to
some set theoretic notions in P.

Theorem A. If {E,, ---, E,} is a finite, disjoint class of
sets in P, each contained in a given set Eq in P, then

i w(E) S u(Eo).

Proof. We write E; = [a,,6:), 1 =0, 1, ---, n, and, without
any loss of generality, we assume that
4 5= an.
It follows from the assumed properties of {E;, -- -, E,} that
G0 S a Sh S5 s S b S b,

and therefore
2 m(E) =20 (b —a) S
SYili—a)+ X @i — b)) =
=bn— a1 S bo — a0 = p(Ey). 1
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Theorem B. If a closed interval Fo, Fo = [ag,bo), is con-

tained in the union of a finite number of bounded, open inter-
vals, Uy, «++, Uy, Ug = (@3,0:), 4 = 1, -+ -, n, then

bo — o < Dty (bi — ai).

Proof. Let k; be such that ao e U,,. If 4, < by, then let k2
be such that &, e U,,; if &, < by, then let k3 be such that 4, € U,

and so on by induction. The process stops with &, if &, > bq.
There is no loss of generality in assuming thatm = nand U, = U;
for i =1, «+-, n, because this state of affairs may be achieved
merely by omitting superfluous U,’s and changing the notation.
In other words we may (and do) assume that

a < ag < by, a, <by<bn,
and, in case 7 > 1,
iy <b;<biyy for i=1,---'n—-1;
it follows that
bo—ay <bp—ar =0 — @)+ Digisn—1 bipn — &) S
S 20 —a) |

Theorem C. If {E,, E,, Ez, ---} is a sequence of sets in
P, such that
Eoc U E,

w(Eo) = 251 w(Ey).

Proof. We write E; = [a,0), i =0, 1,2, ---. If ag = by,
the theorem is trivial; otherwise let ¢ be a positive number such
that € < by — ao. If we write, for any positive number 3,

6
Fo'—‘[ﬂo,bo"é} and U,-=(a.~—-§,b,-), i=1,2,"',

then

then

F,c U:-l U;

and therefore, by the Heine-Borel theorem, there is a positive
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integer n such that Fy ¢ Ji.; Ui. From Theorem B we obtain

]
w(Eo) — € = (bop — @g) — € < 2?—1(bi—' ae+§) s
S Y u(E) + 8.

Since € and & are arbitrary, the conclusion of the theorem fol-
lows. |

Theorem D. The set function p is countably additive on P.

Proof. If {E;} is a disjoint sequence of sets in P whose union,
E, is also in P, then from Theorem A we have

SrauE) S wE) for n=1,2, .

It follows that
D1 (E) £ w(E);

an application of Theorem C completes the proof. |

Theorem E. There exists a unique, finite measure ji on the
ring R such that, whenever E e P, i(E) = u(E).

Proof. We know that every set E in R may be represented as
a finite, disjoint union of sets in P. Suppose that

E=UrE and E= UM F;

are two such representations of the same set E. Then, for each
i=1, -, n,

E; = Ui-1(E: N Fy)

is a representation of the set E; in P as a finite, disjoint union of
sets in P, and therefore, since u is finitely additive,

E‘?—l H(Ei) = E?-l ?'-1 #(Ei n Fj)-
Similarly, of course, we have
Elm;l M(FJ') = 2;'"-1 i1 w(E; N FJ’)-

It follows that, for every E in R, the function j is unambiguously
defined by the equation

ﬁ(E) = B—l I‘(Ei ’
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where {E,, ---, E,} is a finite, disjoint class of sets in P whose
union is E.

It is clear from its definition that the function g thus defined
coincides with u on P and is finitely additive. Since any function
satisfying these conditions must in particular be finitely additive
when the terms of the union to be formed are in P, it is also clear
that i is unique. The only non trivial thing left to prove is that
@ is countably additive.

Let {E;} be a disjoint sequence of sets in R whose union, E,
is also in R; then each E; is a finite, disjoint union of sets in P,

E;=U;E; and @a(E) = 2, u(E:)-

If E ¢ P, then, since the class of all E;; is countable and disjoint,
it follows from the countable additivity of u that

WE) = w(E) = 22 235 m(Ey) = 2 i(E)).
In the general case E is a finite, disjoint union of sets in P,
E = Uk Fs
and, using the result just obtained, we have
A(E) = 2o i(Fe) = 2 2 i(E: 0 Fy) =
=2 2w i(E; N Fy) = 2 a(E). 1

In view of Theorem E we shall, as we may without any possi-
bility of confusion, write u(E) instead of i(E) even for sets E
which are in R but not in P.

(1) In the notation of the proof of Theorem D, let E,, be that term of the
sequence { E;} whose left end point is the left end point of E; let E,, be the term
whose left end point is the right end point of E,,;, and so on. It may be shown,
without using Theorems A, B, and C, that

U?—l E,.‘BP and I‘(U:’-l Eu.) = Z?—lﬂ(Eu.)-

(2) An alternative proof of Theorem D (which does not use Theorems A, B,
and C) proceeds by arranging the terms of the sequence {E;} in the order of
magnitude of their left end points and then applying transfinite induction;
cf. (1).

(3) Let g be a finite, increasing, and continuous function of a real variable,

and write
1e([a,0)) = g(6) — g(a).
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Theorems D and E remain true if p is replaced by p,.
(4) Theorems D and E may be generalized to n—dimensional Euclidean space
by considering “intervals” of the form

E={(x1,"',x'l):ai§-xi<bﬁ i=l)”"n}’
and defining i by
p(E) = IIf-1 (6 — a).

(5) If p is a countably additive and non negative set function on a semiring
P, such that u(0) = 0, then there is a unique measure Z on the ring R(P) such
that, whenever Ee P, g(E) = u(E). If u is [totally] finite or o-finite, then so
is fi; (cf. 5.3 and the proof of Theorem E).

§9. PROPERTIES OF MEASURES

An extended real valued set function u on a class E is monotone
if, whenever E ¢E, FeE, and E C F, then u(E) = u(F). An
extended real valued set function p on a class E is subtractive
if, whenever E ¢E, FeE, EC F, F — E¢E, and | p(E) | < o,

then
wF — E) = p(F) — p(E).

Theorem A. If p is a measure on a ring R, then u is mono-
tone and subtractive.

Proof. IfEeR,FeR,andE C F,thenF — E eRand u(F) =
w(E) + u(F — E). The fact that u is monotone follows now from
the fact that it is non negative; the fact that it is subtractive
follows from the fact that u(E), if it is finite, may be subtracted
from both sides of the last written equation. |

Theorem B. If u is a measure on a ring R, if E e R, and
if {E:} is a finite or infinite sequence of sets in R such that

Ec U,’ E,’, then
w(E) £ 30 w(E).

Proof. We make use of the elementary but important fact
that if {F;} is any sequence of sets in a ring R, then there exists
a disjoint sequence {G;} of sets in R such that

G.'CF,‘ and U,’G;= U;F’.

(Write G; = F; — U {F;: 1 <7 <i}.) Applying this result to
the sequence { £ N E;}, the desired result follows from the count-
able additivity and monotoneness of u. |}
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Theorem C. If pis a measure on a ring R, if E e R, and if
{E;} is a finite or infinite disjoint sequence of sets in R such
that \J: E; C E, then

2 n(E;) = u(E).

Proof. If the sequence {E,} is finite, then |J: E; e R, and it
follows that

2in(E) = u(U: E)) = u(E).

The validity of the inequality for an infinite sequence of sets is a
consequence of its validity for every finite subsequence. |

Theorem D. If u is a measure on a ring R and if {E,} is
an increasing sequence of sets tn R for which lim, E, e R, then
p(lim, E,) = lim, p(£,).

Proof. If we write E; = 0, then
plimg E,) = p(Uiz1 E)) = p(Ui=r (Ei — Eiy)) =
= > wE; — Eiy) = lim, 20 w(Es — Eiy) =
= lim, p(Ui=1 (B — Eiy)) = lim, p(E,). |

Theorem E. If i is @ measure on a ring R, and if {E,} is a
decreasing sequence of sets in R of which at least one has finite
measure and for which lim, E, eR, then u(lim, E,) =
lim, I‘(En)'

Proof. If w(E,) < =, then u(E,) < u(E,) < « for n 2 m,
and therefore u(lim, E,) < ». It follows from Theorems A
and D, and the fact that {E,, — E,} is an increasing sequence,
that

#(En) — pllim, E,) = p(En — lim, E,) =
= p(lim, (En — E,)) = lim, p(Em — E,n) =
= limy (4(En) — p(E,)) =
= u(En) — lim, p(E,).

Since u(En) < «, the proof of the theorem is complete. |
We shall say that an extended real valued set function u de-
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~fined on a class E is continuous from below at a set E (in E) if,
for every increasing sequence {E,} of sets in E for which
lim, E, = E, we have lim, p(E,) = u(E). Similarly u is con-
tinuous from above at E if, for every decreasing sequence {E,}
of sets in E for which | u(En) | < = for at least one value of m
and for which lim, E, = E, we have lim, u(E,) = u(E). Theo-
rems D and E assert that if u is a measure, then u is continuous
from above and from below (at every set in the ring of definition
of u); the following result goes in the converse direction.

Theorem F. Let u be a finite, non negative, and additive
set function on a ring R. If u is either continuous from below
at every E in R, or continuous from above at O, then u is a measure
on R.

Proof. We observe first that the additivity of u, together
with the fact that R is a ring, implies, by mathematical induction,
that u is finitely additive. Let {E,} be a disjoint sequence of
sets in R, whose union, E, is also in R and write

Fn = U?_] E.‘, Gn = E - F,..

If u is continuous from below, then, since {F.} is an increasing
sequence of sets in R with lim, F,, = E, we have

p(E) = lim, p(Fa) = lim, 2o0ay w(E) = 2imy n(Ed).

If 1 is continuous from above at 0, then, since {G,} is a decreas-
ing sequence of sets in R with lim, G, = 0, and since u is finite,
we have

w(E) = Qoia1 m(E)) + u(G,) =
= lim, 2 0o, w(E) + lim, u(G,) = 2 w(E). |

(1) Theorems A, B, C, D, and E are true for semirings in place of rings.
The proofs may be carried out directly or they may be reduced to the correspond-
ing results for rings by means of 8.5.

(2) If u is a measure on a ring R, and if E and F are any two sets in R, then

p(E) + p(F) = p(E U F) + pw(E N F).
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If E, F, and G are any three sets in R, then

RE) + u(F) +p@ +rENFNG) =
=pEUFUG +uENF +pF NG +uGN E).

These statements may be generalized to any finite union.

(3) If pis a measure on a ring R, and E and F are sets in R, we write E~ F
whenever u(E A F) = 0. The relation “~" is reflexive, symmetric, and transi-
tive; if E~ F, then u(E) = u(F) = u(E N F). Is the class of all those sets
E in R for which E ~ 0 a ring?

(4) Continuing in the notation of (3), we write p(E,F) = u(EAF). Then
P(E,F) .-Z. 0, P(E)F) = p(F)E)’ and p(E’F) § p(E)G) + P(G,F)- If El ~E2
and F; ~ Fq, then p(E1,F1) = p(Es,Fy).

(5) The following generalizations of Theorems D and E are valid. Ifuisa
measure on a ring R and if {E,} is a sequence of sets in R for which

Ne-nE:eR, n=1,2+-- and liminf, E, = Uga: Nien EieR,
then p(lim inf, E,) < lim inf, p(E,). If, similarly,
UnEieR, n=1,2,--- and limsup, En = (Ja=1 Uion EieR,

and if (U, E:) <  for at least one value of #, then u(lim sup, E,) =
lim sup, u(E,).

(6) Under the hypotheses of the second part of (5), if D w.1 u(E,) < o, then
u(lim sup, E,;) = 0.

(7) Let X be the set of all rational numbers x for which 0 < x £ 1, and let
P be the class of all “semiclosed intervals” of the form {x: xe X, 2 < x < 4},
where 0 < 4 < 4 < 1, and 4 and & are rational. Define u on P by

p({x:aSx<b))=8—a.

The set function u is finitely additive and continuous from above and below
but it is not countably additive, so that Theorem F is not true for semirings in
place of rings.

(8) Let X be the set of all positive integers and let R be the class of all finite
sets and their complements. For E in R write u(E) = 0 or u(E) = « according
as E is finite or infinite. The set function u is continuous from above at 0 but
it is not countably additive, so that the second half of Theorem F is not true
if infinite values are admitted.

(9) Is Theorem E true without the finiteness condition described in its
statement?

(10) If u is a measure on the Borel sets of a separable, complete, metric space
X such that p(X) = 1, then there exists a subset E of X such that E is a count-
able union of compact sets and such thatu(E) = 1. (Hint:let {x.} be a sequence
of points dense in X and write U,* for the closed sphere of radius —}e with center
atxn,. If0 < e <1and F,* = Ur., Ud*, let my be defined inductively as the
smallest positive integer for which

(N1 Frh) > 1 —e
If C = -1 Fn;', then C is compact and u(C) = 1 — €.
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§ 10. OUTER MEASURES

A non empty class E of sets is hereditary if, whenever E ¢ E
and F c E, then F e E.

A typical example of a hereditary class is the class of all sub-
sets of some subset E of X. The part of the algebraic theory of
hereditary classes that we shall need is very easy and it is similar
in every detail to the theories of rings, o-rings, and other classes
of sets we have considered. It is, in particular, true that the
intersection of every collection of hereditary classes is again a
hereditary class, and that, therefore, corresponding to any class
of sets, there is a smallest hereditary class containing it. We
shall be especially interested in hereditary classes which are
o-rings; it is easy to see that a hereditary class is a o-ring if and
only if it is closed under the formation of countable unions. If
E is any class of sets, we shall denote the hereditary o-ring
generated by E, i.e. the smallest hereditary ¢-ring containing E,
by H(E). The hereditary o-ring generated by E is, in fact, the
class of all sets which can be covered by countably many sets in
E;if E is a non empty class closed under the formation of countable
unions (for instance if E is a ¢-ring), then H(E) is the class of all
sets which are subsets of some set in E.

An extended real valued set function u* defined on a class E
of sets is subadditive if, whenever E ¢ E, F ¢ E, and E U F ¢E,
then

w*(E U F) = u*(E) + p*(F).

An extended real valued set function u* on E is finitely subadditive
if, for every finite class {E;, - - -, E,} of sets in E whose union is
also in E, we have

p*(Ui-1 E) = 201 u*(E).

An extended real valued set function u* on E is countably syb-
additive if, for every sequence {E;} of sets in E whose union is
also in E, we have

p*(Uis1 Ei) £ 2201 w*(E).
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An outer measure is an extended real valued, non negative, mono-
tone, and countably subadditive set function p*  defined on a
hereditary o-ring H, and such that p*(0) = 0. We observe that
an outer measure is necessarily finitely subadditive. The same
terminology concerning [total] finiteness and o-finiteness is used
for outer measures as for measures.

Outer measures arise naturally in the attempt to extend meas-
ures from rings to larger classes of sets. The first precise formula-
tion of some of the details is contained in the following statement.

Theorem A. If nis a measure on a ring R and if, for every
E in H(R),

[L*(E) = il‘lf{z:-l #(En): En CR) n = l) 2) Tty
E c U:-l Eu},

then u* is an extension of u to an outer measure on H(R); if
u 15 [totally] o—finite, then so is u*.

Verbally u*(E) may be described as the lower bound of sums
of the type X ne1 u(E.), where {E,} is a sequence of sets in R
whose union contains E. The outer measure u* is called the outer
measure induced by the measure u.

Proof. If EeR, then EC EUOQOUOU--- and therefore
p*(E) S w(E) + u(0) + u(0) +---= p(E). On the other hand
ifEeR,E,eR,n=1,2 ---,and E c .., E., then, by 9.B,
w(E) £ Y orvain(E,), so that u(E) < p*(E). This proves that
p* is indeed an extension of u, i.e. that if E ¢ R, then u*(E) =
u(E); it follows in particular that p*(0) = 0.

If EcH(R), FeHR), E C F, and {E,} is a sequence of sets
in R which covers F, then {E,} also covers E, and therefore
p*(E) = p*(F).

To prove that u* is countably subadditive, suppose that E and
E; are sets in H(R) such that E < ., E;; let € be an arbitrary
positive number, and choose, for each i = 1, 2, ---, a sequence
{E;;} of sets in R such that

Eic U E; and X5 w(E5) < w*(E) + 5
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(The possibility of such a choice follows from the definition of
u*(E;).) Then, since the sets E;; form a countable class of sets
in R which covers E,

w*E) S 2im E;—l F(Eij) S 2imin*E) + e
The arbitrariness of e implies that
p*(E) = 2ic1 p¥(E).

Suppose, finally, that u is o-finite and let E be any set in H(R).
Then, by the definition of H(R), there exists a sequence {E;}
of sets in R such that E ¢ |Ji.1 E;. Since p is o-finite, there
exists, for each i = 1,2, - - -, a sequence {£;;} of sets in R such

that
E;c U/ E;; and w(Ey) < .

Consequently
Ec Ui U1 E; and p*(E;) = w(Ey) < . |

(1) Is it necessarily true, under the hypotheses of Theorem A, that if u is
finite, then so is u*?

(2) For any class E of sets we denote by J(E) the smallest hereditary ring
containing E. If u is a real valued, finite, non negative, and finitely additive
set function defined on a ring R, and if, for every E in JR),

u*(E) = inf {u(F): EC FeR},

then u* is a real valued, finite, non negative, and finitely subadditive set func-
tion on J(R). Isit true that, for E in R, u*(E) = p(E)?

(3) A necessary and sufficient condition that a class H of subsets of a set X
be an ideal in the Boolean ring of all subsets of X is that H be a hereditary ring;
cf. 4.4.

(4) The following are some examples of set functions defined on hereditary
o-rings; some of them are outer measures, while others violate exactly one of the
defining conditions of outer measures.

(4a) X is arbitrary, H is the class of all subsets of X. For any fixed point
xo in X, write u*(E) = xg(xo).

(4b) X and H are as in (4a); u*(E) = 1 for every E in H.

(4c) X = {x,y} is a set consisting of exactly two distinct points ¥ and y,
H is the class of all subsets of X, and u* is defined by the relations

8*0) =0, w*({x}) =p*({y}) =10, p*X) =1

(4d) X is a set of 100 points arranged in a square array of 10 columns each
with 10 points; H is the class of all subsets of X; u*(E) is the number of columns
which contain at least one point of E.
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(4e) X is the set of all positive integers, H is the class of all subsets of X.
For every finite subset E of X, »(E) is the number of points in E;

u*(E) = lim sup,.%v(E n{1, ---, z#}).

(4f) X is arbitrary, H is the class of all countable subsets of X, u*(E) is the
number of points in E, (= o if E is infinite).

(5) If u* is an outer measure on a hereditary o-ring H and E, is any set in
H, then the set function uo*, defined by po*(E) = u*(E N Ep), is an outer meas-
ure on H.

(6) If \* and p* are outer measures on a hereditary o-ring H, then the set
function »*, defined by »*(E) = A*(E) U u*(E), is an outer measure on H.

(7) If {ua*} is a sequence of outer measures on a hereditary o-ring H and
{a.} is a sequence of positive numbers, then the set function u* defined by
R*(E) = X ome1anin*(E), is an outer measure on H.

§11. MEASURABLE SETS

Let p* be an outer measure on a hereditary o-ring H. A set E
in H is p*~measurable if, for every set 4 in H,

p¥(d) = u*(4 0 E) + u*(4 0 E).

The concept of u*-measurability is the most important one
in the theory of outer measures. It is rather difficult to get an
intuitive understanding of the meaning of u*-measurability ex-
cept through familiarity with its implications, which we propose
to develop below. The following comment may, however, be
helpful. An outer measure is not necessarily a countably, nor
even finitely, additive set function (cf. 10.4d). In an attempt to
satisfy the reasonable requirement of additivity, we single out
those sets which split every other set additively—the definition
of uy*-measurability is the precise formulation of this rather loose
description. The greatest justification of this apparently compli-
cated concept is, however, its possibly surprising but absolutely
complete success as a tool in proving the important and useful
extension theorem of § 13.

Theorem A. If p* is an outer measure on a hereditary
o-ring H and if S is the class of all u*~measurable sets, then
8 is a ring.
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Proof. If E and F are in S and 4 ¢ H, then
(2) p*(d) = p*(4 N E) + p*(4 N E),
b) uw*ANE)y=p*AdNENF)+pu*(4dNENF),
) wW*ANE)=p*ANENF)+u*(4dNE NF).
Substituting (b) and (c) into (a) we obtain
d ) =p*dNENF)+p*d4dNENF)
+u*ANENF)+4+u*4N0E NF).

If in equation (d) we replace 4 by 4 N (E U F), the first three
terms of the right hand side remain unaltered and the last term
drops out; we get

€ r*ANEUFR)=pw*ANENF)+u*dNENF)
+ u*(4 N E' N F).

Since E' N F' = (E U F)’, substituting (e) into (d) yields

) p*d) = p*(A4 N (EUF) +u*4 N (EUF)),

which proves that E U F e S.

If, similarly, we replace 4 in equation (d) by 4 N (E — F)’ =

AN (E'UF), weget

@ wANE=-F)=pdNENF)+p*(4N0E NF)
+ u*4 N E N F).

Since E N F’' = E — F, substituting (g) into (d) yields

Q) p* L) =p*d N (E-F)+p*4 N0 (E~-F)),

which proves that E — FeS8. Since it is clear that E =0
satisfies (a), it follows that S is a ring. |

Before proceeding with the study of the deeper properties of
u*-measurability, we remark on the following elementary but
frequently useful fact.

If u* is an outer measure on a hereditary ¢-ring H and if
a set E in H is such that, for every 4 in H,

p*(d) 2 p*(4 N E) + p*(4 N EY,

then E is u*-measurable.
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The proof of this remark is achieved simply by recalling that the
reverse inequality, u*(4) £ u*(4 N E) 4+ p*(4 N E’),is an auto-
matic consequence of the subadditivity of u*.

Theorem B. If u* is an outer measure on a hereditary
o—ring H and if S is the class of all u*~measurable sets, then S
is ao-ring. If A eH and if {E,} is a disjoint sequence of sets
inS with Ura1 E. = E, then

p*( A NE)y =) . u¥(4 N E,).

Proof. Replacing E and F in (e) by E, and E; respectively,
we see that

p*(A N (EL U Ey)) = M4 N Ey) + u*(4 N Ey).
It follows by mathematical induction that
p* A N Uici E) = Ziaiw*(4 N E)
for every positive integer #n. If we write
Fo=UE; n=12, -,
then it follows from Theorem A that
p*A) =p* 4 NF) +u*(dNF))2
2 214 N E) + u*(4 N E).
Since this is true for every », we obtain
) p¥A) 2 i A NE)+ur(ANE)2
2 p*A4 NE)+u*4NE.

{t follows that E €S (so that, by the way, S is closed under the
formation of disjoint countable unions), and therefore that

G) Zmr* 4N E)+p¥4NE)=

= u*(A4 N E) + u*(4 N E).
Replacing 4 by 4 N E in (j), we obtain the second assertion of
the theorem. (Since p*(4 N E’) may be infinite, it is not permis-
sible simply to subtract it from both sides of (j).) Since every

countable union of sets in a ring may be written as a disjoint
countable union of sets in the ring, we see also that S is a o-ring. |}
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Theorem C. If p* is an outer measure on a hereditary
o—ring H and of S is the class of all p*-measurable sets, then
every set of outer measure zero belongs to S and the set function
i, defined for E in S by ag(E) = p*(E), is a complete measure
on S.

The measure j is called the measure induced by the outer

measure u*.
Proof. If E ¢ H and u*(E) = 0, then, for every 4 in H, we

have
u*(A4) = p*(E) + p*(4) 2 p*(4 N E) + p*4 N E),

so that indeed E € S. The fact that j is countably additive on 8
follows from (j) upon replacing 4 by E. If

EeS, FCE, and a(E) = u*(E) =0,
then p*(F) = 0, so that F ¢ §, which proves that i is complete. |

(1) For the example 10.4d, a set E is u*measurable if and only if with every
point x in E the entire column which includes x is contained in E. Which sets
are p*-measurable in 10.4f?

(2) If pu* is an outer measure on a hereditary g-ring H, under what addi-
tional conditions is the class of p*~measurable sets an algebra?

(3) In the notation of Theorem A, replacing A in equation (d) by 4 N
(E’ U F’) may be used to give a direct proof of the fact that S is closed under the
formation of intersections. What would the same technique prove if 4 were
replaced by A N (F — EY = 4 N (E U F')?

(4) Let u* be a finite, non negative, monotone, and finitely subadditive set
function with pu* (0) = 0 on a hereditary ring J; cf. 10.2. The class of all u*-
measurable sets is a ring, and the set function p* is additive on this ring.

(5) Suppose that u* is an outer measure on a hereditary o—ring H and that
8 is the class of all u*-measurable sets. If #eH and {E,} is an increasing
sequence of sets in S, then u*(lim, (4 N E,)) = lim, u*(4 N E,). Similarly,
if {Ea} is a decreasing sequence of sets in S, and if a set 4 in H is such that
u*(4 N E,) < o for at least one value of m, then u*(lim, (4 N E,)) =
lim, p*(4 N E,).

(6) If u*is an outer measure on a hereditary o-ring H and if E and F are two
sets in H of which at least one is u*~measurable, then (cf. 9.2)

B*E) +p*(F) = p*E U F) + p*E N F).

(7) The results of this section could also have been obtained by means of
partitions (cf. 7.5). A partition is a finite or infinite disjoint sequence {E.} of
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sets such that J; E; = X. If u* is an outer measure on 2 hereditary o-ring
H, the partition {£;} is called a p*~partition if
pHd) = Xiu*4 N Ey)

for every 4 in H; a set E is a p*-set if the partition { E,E’'} is a u*-partition.
If {E;} and {F;} are partitions, then {E,} is called a subpartition of {F;} if
each E; is contained in one of the sets F;. The product of two partitions, {E;}
and {F;}, is the partition consisting of all sets of the form E; (1 F;. We note
that a set in H is a u*-set if and only if it is u*~measurable in the sense of this
section.

(7a) The product of two u*~partitions is a p*-partition.

(7b) If a subpartition of a partition {E;} is a p*-partition, then {£;} is a
u¥-partition.

(7c) A partition {E;} is a p*~partition if and only if each E; is a p*-set.

(7d) The class of all p*-sets is a g-ring. (Hint: the class of all u*-sets is a
ring closed under the formation of countable disjoint unions.)

(8a) An outer measure u* on the class H of all subsets of a metric space X
is a metric outer measure if

B*(E U F) = u*(E) + pu*(F)
whenever p(E,F) > 0, where p is the metric on X. If u* is a metric outer meas-
ure, if E is a subset of an open set U in X, and if E, = E N {x: px,U") 2 %} ,

n=12 -.-, then lim, p*(E;) = p*(E). (Hint: observe that {E,} is an in-
creasing sequence of sets whose union is E. If Eg = 0, D, = Enyy — Ej,, and
if neither Dpyy nor E, is empty, then p(Dni1,E.) > 0, and it follows that

u*(Eons1) = 201 p*(D2) and  p*(Ezn) 2 D fei p*(Dai-y).
The desired conclusion is trivial if either of the two series,
Yo p*(Dy) and Yoy w*(Daisa),

diverges; if they both converge, then it follows from the relation
B*(E) S p*(Ean) + 2Ziunu*(D2) + 20w nt1 4% (D2izy).)

(8b) If u* is a metric outer measure, then every open set (and therefore
every Borel set) is u*~measurable. (Hint: if U is an open set and A is an arbi-
trary subset of X, apply (8a) to E=A4 N U. Since p(En, 4 N U’) >0, it
follows that

¥ A) Z p*Ea U (4 N U) = p*(En) +u*(4 N 1UY))

(8¢c) If u* is an outer measure on the class of all subsets of a metric space X
such that every open set is u*-measurable, then u* is a metric outer measure.
(Hint: if p(E,F) > 0, let U be an open set such that EC Uand F1 U =0,
and test the u*-measurability of U with 4 = E U F.)



Chapter 111

EXTENSION OF MEASURES

§ 12. PROPERTIES OF INDUCED MEASURES

We have seen that a measure induces an outer measure and
that an outer measure induces a measure, both in a certain natural
way. If we start with a measure p, form the induced outer meas
ure p*, and then form the measure i induced by u*, what is the
relation between u and i? The main purpose of the present sec-
tion is to answer this question. Throughout this section we shall
assume that

p is a measure on a ring R, u* is the induced outer measure
on H(R), and i is the measure induced by u* on the o-ring
S of all p*-measurable sets.

Theorem A. Every set in S(R) is p*-measurable.

Proof. If EeR, 4 e H(R), and ¢ > 0, then, by the definition
of u* there exists a sequence {E,} of sets in R such that
A4 c Up-1 Es and

p*(A) + e Z 2iai w(En) = 2oey (W(Ea N E) + w(Ea N EY) 2
zZu*d N E)+u*4 N E).

Since this is true for every e, it follows that E is u*~measurable.
In other words, we have proved that R c §; it follows from the
fact that S is a o-ring that SR) = S. |

49
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Theorem B. If E ¢ HR), then
p*(E) = inf {i(F): EC FeS} =
inf {3(F): E c F e SR)}.

Equivalent to the statement of Theorem B is the assertion
that the outer measure induced by & on S(R) and the outer meas-
ure induced by i on S both coincide with u*.

Proof. Since, for F in R, u(F) = a(F) (by the definition of
i and 10.A), it follows that

p*(E) = inf {32 noiw(En): Ec Un-1 En, E.eR,
n=12---}2
2 inf {Y> w1 @(E): Ec U1 Eay E. e SR),
n=12 ---}.

Since every sequence { E.} of sets in S(R) for which
EcUrmE,=F

may be replaced by a disjoint sequence with the same property,
without increasing the sum of the measures of the terms of the
sequence, and since, by the definition of g, a(F) = p*(F) for F
in S, it follows that

p*(E) Z inf{a(F): EC FeSR)} 2
Zinf {ag(F): Ec FeS} = u*(E). 1

If E e HR) and F £ S(R), we shall say that F is a measurable
cover of E if E c F and if, for every set G in S(R) for which
G c F — E, we have i(G) = 0. Loosely speaking, a measurable
cover of a set E in H(R) is a minimal set in S(R) which covers E.

Theorem C. If a set E in H(R) is of o—finite outer measure,
then there exists a set F in SR) such that u*(E) = a(F) and
such that F is a measurable cover of E.

Proof. If u*(E) = «, and E c F ¢ S(R), then clearly a(F) =
o, so that it is sufficient to prove the assertion p*(E) = a(F)
only in the case in which u*(E) < ». Since a set of s—finite
outer measure is a countable disjoint union of sets of finite outer



{Sec. 12 EXTENSION OF MEASURES 51

measure, it is sufficient to prove the entire theorem under the
added assumption that p*(E) < .

It follows from Theorem B that, for every n = 1, 2, - .-, there
exists a set F, in S(R) such that

EcF, and a(F,) = p*(E) + %
If we write F = (1 Fn, then
EcC FeSR) and p*(E) £ a(F) £ i(F,) S u*(E) + %

Since # is arbitrary, it follows that u*(E) = a(F). If GeS(R)
and G c F — E, then E c F — G and therefore

B(F) = p*(E) = a(F - G) = a(F) — &(G) = a(F);
the fact that F is a measurable cover of E follows from the finite-
ness of g(F). |
Theorem D. If E e H(R) and F is a measurable cover of
E, then u*(E) = i(F); if both F\ and F, are measurable covers
of E, then f(Fy A F,) = 0.
Proof. Since the relation E c F, N F; ¢ F; implies that

F, - (Fi N F,) c F, — E, it follows from the fact that F; is a
measurable cover of E that

iF - (F N Fy)) = 0.

Since, similarly,

BF, — (Fy N F)) =0,

we have, indeed, a(F; A Fy) = 0.

If u*(E) = «, then the relation u*(E) = i(F) is trivial; if
p*(E) < «, then it follows from Theorem C that there exists a
measurable cover F; of E with

A(Fo) = w*(E).

Since the result of the preceding paragraph implies that every
two measurable covers have the same measure, the proof of the
theorem 1s complete. |

Theorem E. If u on R is o—finite, then so are the measures
B on S(R) and i on S.
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Proof. According to 10.A, if u is o-finite, then so is u*. Hence
for every E in S there exists a sequence {E;} of sets in H(R)
such that

Ec U:—l Ei, F'*(Ei) < oo, i= 1) 2) :

An application of Theorem C to each set E; concludes the proof
of the theorem. |}

The main question at the beginning of this section could have
been asked in the other direction. Suppose that we start with
an outer measure u*, form the induced measure g, and then form
the outer measure a* induced by @z. What is the relation between
u* and a*? In general these two set functions are not the same;
if, however, the induced outer measure a* does coincide with the
original outer measure u*, then u* i1s called regular. The asser-
tion of Theorem B is exactly that the outer measure induced by a
measure on a ring is always regular. The converse of this last
statement is also true: if u* is regular, then u* = i* is induced by
a measure on a ring, namely by & on the class of u*-measurable
sets. Thus the notions of induced outer measure and regular outer
measure are coextensive.

(1) Theorem D asserts that a measurable cover is uniquely determined to
within a set of measure zero, if it exists at all; Theorem C asserts that for sets
of o-finite outer measure a measurable cover does exist. The following con-
siderations show that the hypothesis of o—finiteness cannot be omitted from
Theorem C.

If L is a line in the Euclidean plane X, and E is any subset of X, we shall
say that Eis full on L if L — E is countable. Let Ry be the class of all those sets
E which may be covered by countably many horizontal lines on each of which
E is either full or countable; let R be the algebra generated by Ry; (cf. 4.5).
If, for every E in R, u(E) = 0 or = according as E is countable or not, then u
is a measure on R; it is easy to verify that in this case R = S(R) and S = H(R)
is the class of all subsets of X. If E is the y -axis and E C Fe S(R), then there
always exists a set G in S(R) such that G C F — E and u(G) # 0.

(2) A subset E of the real line is said to have an infinite condensation point
if there are uncountably many points of E outside every fimte interval. Let
X be the real line and define a set function u* on every subset E of X as follows:
if E is finite or countably infinite, then u*(E) = 0; if E is uncountable but does
not have an infinite condensation point, then u*(E) = 1; if E has an infinite
condensation point, then p*(E) = «. Then u* is a totally o—finite outer meas-
ure, but, since the only u*-measurable sets are the countable sets and their
complements, the induced measure fi is not o—finite. Is u* regular? What can
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be said if, instead, u*(E) is defined to be 17 whenever E has an infinite con-
densation point?

(3) Let 7 be a fixed positive integer, and let 8o, 8y, - - -, N, be the first # 4 1
infinite cardinal numbers in the well ordering of the cardinals according to
magnitude. If X is a set of cardinal number X,, and E is a finite subset of X|
write u*(E) = 0; if the cardinal number of a subset E of X is the infinite cardinal
N¥:, 0 S k S n, write u*(E) = k. The set function u* is an outer measure; is it
regular?

(4) If u*is a regular outer measure on a hereditary o-ring H, and if { E,} is an
increasing sequence of sets in H with lim, E, = E, then p*(E) = lim, u*(E,).
(Hint: if lim, u*(E,) = oo, the result is clear. If not, then let F, be a u*-meas-
urable cover of E,, n =1, 2, -- -, so that the sequence {F,} is increasing, and
write F = lim, F,. Since u*(F,) = u*(En) S u*(E), we have lim, u*(F,) =
u*(F) S u*(E); since E C F, p*(E) S u*(F). Hence F is a measurable cover
of E.) This result is not true for non regular outer measures; a counter example
may be constructed on the basis of (2) above.

(5) For every subset E of an arbitrary set X write u*(E) = 0 or 1 according
as E is empty or not; the set function u* is a regular outer measure on the class
of all subsets of X. If { E,} is a decreasing sequence of non empty sets with an
empty intersection (such a sequence exists whenever X is infinite), then

limy u*(Es) =1 and up*(lim, E,) = 0;

in other words the analog of (4) for decreasing sequences is false even for totally
finite, regular outer measures.

(6) Let u;* and uo* be two finite outer measures on the class of all subsets
of aset X, and let §;, i = 1, 2, be the class of u;*-measurable sets. If, for all

subsets E of X,
B*(E) = m*(E) + ue*(E),

then the class § of all u*-measurable sets is the intersection of S; and S,. (Hint:
if u*(4 N E) + u*(4 N E') = p*(A), then both the inequalities, u;*(4 N E)
+ p*(A4 O E) = u*(A4), i = 1, 2, must become equalities.) What can be said
if u1* and ug* are not necessarily finite?

(7) Let py* be any finite, regular outer measure on the class of all subsets of a
set X, and write uo*(E) = 0 or 1 according as E is empty or not. Then ug*
is also a finite, regular outer measure, but, if u;* assumes more than two values,
then u1* + p2* is not regular.

(8) If X is a metric space, p is a positive real number, and E is a subset of X,
then the p—dimensional Hausdorff (cuter) measure of E is defined to be the
number

Bp*(E) = sup.soinf {301 GENPE = U1 Ei;, 8(E) <€ i=1,2,+--},

where 8(E) denotes the diameter of E.

(8a) The set function up* is a metric outer measure; cf. 11.8a.

(8b) The outer measure uy* is regular; in fact, for every subset E of X,
there exists a decreasing sequence {U,} of open sets containing E such that

sp*(E) = py*(N5-1 Ua
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§ 13. EXTENSION, COMPLETION, AND APPROXIMATION

Can we always extend a measure on a ring to the generated
o—ring? The answer to this question is essentially contained in
the results of the preceding sections; it is formally summarized
in the following theorem.

Theorem A. If u is a o—finite measure on a ring R, then
there is a unique measure i on the o—ring S(R) such that, for E
in R, G(E) = u(E); the measure i is o—finite.

The measure g is called the extension of u; except when it is
likely to lead to confusion, we shall write u(E) instead of i(E)
even for sets E in S(R).

Proof. The existence of & (even without the restriction of
o—finiteness) is proved by 11.C and 12.A. To prove uniqueness,
suppose that u; and u, are two measures on S(R) such that
u1(E) = ug(E) whenever E e R, and let M be the class of all sets
E in S(R) for which p;(E) = ux(E). If one of the two measures
is finite, and if {E,} is a monotone sequence of sets in M, then,
since

pilim, E;) = lim, ui(Er), i=1,2,

we have lim, E, e M. (The full justification of this step in the
reasoning makes use of the fact that one of the two numbers
w(E,) and pe(E,), and therefore also the other one, is finite for
every n = 1,2, ---; cf. 9.D and 9.E.) Since this means that M
is a monotone class, and since M contains R, it follows from
6.B that M contains S(R).

In the general, not necessarily finite, case we proceed as follows.
Let A be any fixed set in R, of finite measure with respect to one
of the two measures u; and pp. SinceR N Aisaringand S(R) N A4
is the o-ring it generates (cf. 5.E), it follows that the reasoning
of the preceding paragraph applies to R N 4 and S(R) N 4,
and proves that if EeS(R) N 4, then u,(E) = po(E). Since
every E in S(R) may be covered by a countable, disjoint union
of sets of finite measure in R (with respect to either of the meas-
ures u; and y,), the proof of the theorem is complete. |

The extension procedure employed in the proofs of § 12 yields
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slightly more than Theorem A states; the given measure u can
actually be extended to a class (the class of all u*-measurable
sets) which is in general larger than the generated o-ring. The
following theorems show that it is not necessary to make use of
the theory of outer measures in order to obtain this slight enlarge-
ment of the domain of u.

Theorem B. If u is a measure on a o—ring S, then the class
S of all sets of the form E A N, where E €S and N is a subset
of a set of measure zero in S, is a o-ring, and the set function ji
defined by G(E A N) = u(E) is a complete measure on S.

The measure £ is called the completion of u.
Proof. If EeS, Nc 4 ¢S, and u(A4) = 0, then the relations

EUN=(E-4A[40 (EUN)
and

EAN=(E—-A) U[4Nn (EAN)]

show that the class 8 may also be described as the class of all
sets of the form E U N, where E ¢S and N is a subset of a set
of measure zero in S. Since this implies that the class S, which
is obviously closed under the formation of symmetric differences,
is closed also under the formation of countable unions, it follows
that S is a o-ring. If

EIANI = EzANz,

where E; €S and N; is a subset of a set of measure zero in S,
i=1,2, then
El AEz = NlANz,

and therefore u(E,; A E;) = 0. It follows that u(E,) = u(E,),
and hence that j is indeed unambiguously defined by the relations

AEAN) = i(E U N) = u(E).

Using the union (instead of the symmetric difference) representa-
tion of sets in S, it is easy to verify that i is a measure; the
completeness of ji is an immediate consequence of the fact that
8 contains all subsets of sets of measure zero in S. ||
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The following theorem establishes the connection between the
general concept of completion and the particular complete exten-
sion obtained by using outer measures.

Theorem C. If u is a o—finite measure on a ring R, and if
u* is the outer measure induced by u, then the completion of the
extension of p to S(R) is identical with p* on the class of all
w*—measurable sets.

Proof. Let us denote the class of all p*~measurable sets by
S* and the domain of the completion & of u by 8. Since u* on
S* is a complete measure, it follows that § is contained in S*
and that i and p* coincide on 8. All that we have left to prove
is that 8* is contained in §; in view of the o—finiteness of p* on
S* (cf. 12.E) it is sufficient to prove that if E ¢ 8* and p*(E) < «,
then E ¢8S.

By 12.C, E has a measurable cover F. Since u*(F) = u(F) =
p*(E), it follows from the finiteness of u*(E), and the fact that
u* is a measure on S*, that u*(F — E) = 0. Since F — E also
has a measurable cover G, and since

u(G) = w*(F — E) =0,
the relation
E=F-G)U((ENG

exhibits E as a union of a set in S(R) and a set which is a subset
of a set of measure zero in S(R). This shows that E €8, and thus
completes the proof of Theorem C. |

Loosely speaking, Theorem C says that in the s—finite case the
o-ring of all p*-measurable sets and the generated o-ring S(R)
are not very different; every u*-measurable set suitably modified
by a set of measure zero belongs to S(R).

We conclude this section with a very useful result concerning
the relation between a measure on a ring and its extension to the
generated o-ring.

Theorem D. If u is a o—finite measure on a ring R, then,
Sor every set E of finite measure in S(R) and for every positive
number e, there exists a set Eg in R such that W(E A Ey) S e



(Skc. 13) EXTENSION OF MEASURES 57

Proof. The results of §§ 10, 11, and 12, together with Theorem
A, imply that

pE) = inf {3 wE): Ec Ui E;, E;eR, i=1,2,..-}.

Consequently there exists a sequence {E;} of sets in R such that

Ec UL E: and (Ui E) £ w(E) + 5

Since

limg p(Uia1 E) = n(Ui-1 Ey),

there exists a positive integer # such that if

EO = U:’.‘-l Ei)
then

(UL E) S w(E) + ;

Clearly E, e R; since
wE — E)) £ w(Usa1 Ei — Ep) = w(Uis1 E) — wl(Fo) =

and

w(Eo — E) = p(Uir Ei — E) = p(UiL  E) — w(E) =

the proof of the theorem is complete. ||

[LSRI)

Nlm

(1) Let u be a finite, non negative, and finitely additive set function defined
on a ring R. The function u* defined by the procedure of § 10 is still an outer
measure, and, therefore, the & of 11.C may still be formed, but it is no longer
necessarily true that f is an extension of u; (cf. 10.2, 10.4e, and 11.4).

(2) If i is the extension of the measure p on the ring R described in § 8,
then, for any countable set E, E ¢ S(R) and A(E) = 0.

(3) The uniqueness assertion of Theorem A is not true if the class R is not a
ring. (Hint: let X = {4,5,c,d} be a space of four points and define the measures
#1 and g3 on the class of all subsets of X by

m({a}) = m({d}) = m({8}) = ma({c}) = 1,
m({2}) = m{e}) = pa(fa}) = ma({d}) = 2.)

(4) Is Theorem A true for semirings instead of rings?

(5) Let R be a ring of subsets of a countable set X, with the property that
every non empty set in R is infinite and such that S(R) is the class of all subsets
of X; (cf. 9.7). If, for every subset E of X, u;(E) is the number of points in E
and pe(E) = 2uy(E), then pg and u; agree on R but not on S(R). In other words,
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the uniqueness assertion of Theorem A is not true without the restriction of
o-finiteness on R, even for measures which are totally o—finite on S(R).

(6) Suppose thatu is a measure on a g—ring S and that i on S is its completion.
If Afand BareinSand if 4 C EC B, and u(B — A) = 0, then E¢S.

(7) Let X be an uncountable sct, let S be the class of all countable sets and
their complements, and, for every E in S, let u(E) be the number of points in
E. Then u is a complete measure on S, but every subset of X is u*~measurable;
in other words, Theorem C is false without the assumption of g-finiteness.

(8) If u and v are g—finite measures on a ring R, then, for every E in S(R)
for which both u(E) and »(E) are finite and for every positive number ¢, there
exists a set Eg in R such that

MEAE) <e¢ and v(EAE) =e

§ 14, INNER MEASURES

We return now to the general study of measures, outer measures,
and the relations among them, in order to describe an interesting
and historically important part of the theory.

We have seen that if u is a measure on a o-ring S, then the set
function u* (defined for every E in the hereditary o-ring H(S) by

w*(E) = inf {u(F): Ec FeS})

is an outer measure; in the o-finite case the induced measure i
on the o-ring S of all u*-measurable sets is the completion of u.
Analogously we now define the inner measure us induced by u;
for every E in H(S) we write

px(E) = sup {u(F): E D F ¢ S}.

In this section we shall study ps and its relation to u*; we shall
show that the properties of us are in a very legitimate sense the
duals of those of u*. It is very easy to see that the set function
ps 1s non negative, monotone, and such that usx(0) = 0; in what
follows we shall make use of these elementary facts without any
reference. Throughout this section we shall assume that

 is a o—finite measure on a o-ring S, u* and ps are the outer
measure and the inner measure induced by p, respectively,
and i on S is the completion of u;

we recall that 7 on S coincides with u* on the class of all p*-meas-
urable sets (cf. 13.C).
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Theorem A. If E ¢ H(S), then
ux(E) = sup {a(F): E o F ¢8}.

Proof. Since S ¢ §, it is clear from the definition of us that
px(E) < sup {a(F): E D Feg}.

On the other hand 13.B implies that, for every F in S, there is a
G in S with G c F and i(F) = u(G). Since this means that every
value of i on subsets of E in S is also attained by u on subsets of
E in S, the proof is complete. |

If EeH(S) and F ¢S, we shall say that F is a measurable
kernel of E if Fc E and if, for every set G in S for which
G c E — F, we have u(G) = 0. Loosely speaking a measurable
kernel of a set E in H(S) is a maximal set in S which is contained
in E,

Theorem B. Every set E in H(S) has a measurable kernel.

Proof. Let £ be a measurable cover of E, let N be a measurable
cover of £ — E, and write F = £ — N. We have

F=FE-NckE-(£-E)=E,
and, if G ¢ E — F, then
GcE-(LE-N)=ENNcN- (£ -E).

It follows (since N is a measurable cover of £ — E), that Fis a
measurable kernel of E. |

Theorem C. If E e H(S) and F is a measurable kernel of
E, then w(F) = ux(E); if both F, and Fy are measurable
kernels of E, then u(Fy A Fy) = 0.

Proof. Since F C E, it is clear that u(F) £ us(E). If u(F) <
ux(E), then u(F) is finite and, by the definition of u«(E), there
exists a set Fy in S such that Fy, € E and u(Fp) > u(F). Since

Fo—FcE-F and uFo—F) 2 ulFo) — u(F) >0,

this is a contradiction, and therefore indeed u(F) = u«(E).
Since the relation F; ¢ F; U F, c E implies that (F; U F;) —
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F, c E — F,, it follows from the fact that F, is a measurable
kernel of E that

w((FLUF,) — F)=0.
Since, similarly,

w(FL U Fy) — Fy) =0,
we have u(F1 A F;) = 0. |

Theorem D. If {E.} is a disjoint sequence of sets in H(S),
then

we(Ure1 En) 2 Xias (B

Proof. If F, is a measurable kernel of E,, n =1, 2, -..
then the countable additivity of u implies that

Domertin(Er) = 2 w(F) = p(Ur=1 Fo) £ m(Ui=1 En). 1

Theorem E. If A ¢ H(S) and if { E.} is a disjoint sequence
of sets in S with \Jjai En = E, then

(4 N E) = Z:-lu*(/f N E,).
Proof. If F is a measurable kernel of 4 N E, then
(A N E) =pF) =3 gFNE) S Xilim(4NE);

the desired result follows from Theorem D. |
Theorem F. If E €S, then

w*(E) = px(E) = a(E),
and, conversely, if E ¢ H(S) and

p*(E) = ux(E) < oo,
then E €8.

Proof. If E ¢S, then both the supremum in Theorem A and
the infimum in 12.B are attained by 4(E). To prove the converse,
let 4 and B be a measurable kernel and a measurable cover of £,
respectively. Since u(A4) = ux(E) < o, we have

(B — d) = u(B) — p(4) = u*(E) — ue(E) = 0.
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and the desired conclusion follows from the completeness of i

on S; (cf. 11.C and 13.6). |
Theorem G. If E and F are disjoint sets in H(S), then

ps(E U F) £ px(E) + p*(F) S w*(E U F).

Proof. Let 4 be a measurable cover of F and let B be a meas-
urable kernel of E U F. Since B — 4 c E, it follows that

px(E U F) = u(B) £ (B — A) + u(A) S ps(E) + p*(F).

Dually, let 4 be a measurable kernel of E and let B be a meas-
urable cover of E U F. Since B — 4 D F, it follows that

p*(E U F) = u(B) = u(4) + (B — 4) Z ps(E) + p*(F). |
Theorem H. If E €8S, then, for every subset 4 of X,
(4 N E) + p*(4' N E) = g(E).
Proof. Applying Theorem G to Z N E and A’ N E, we obtain
wx(E) S px(4 N E) + p*(4' N E) £ p*(E).

Since E €8, we have, by Theorem F, us(E) = u*(E) = a(E). 1

The results of this section enable us to sketch the steps of an
alternative approach to the extension theorem, an approach that
is frequently employed. If u is a o—finite measure on a ring R,
and if p* is the induced outer measure on H(R), then, for every
set E in R with p(E) < « and for every 4 in H(R), we have

px(A4 N E) = u(E) — p*(4' N E).

If we prove now that whenever E and F are two sets of finite
measure in R for which 4 N E = 4 N F, then it follows that
wE) — u*(4' N E) = u(F) — u*(4' N F), then we may use the
equation for ux(A4 N E) as a definition of inner measure, and we
may define a set E in H(R) of finite outer measure to be y*~meas-
urable if and only if ux(E) = u*(E). The details of this procedure
may be easily carried out by the interested reader, using the
techniques we have introduced in our development of the exten-
sion theory.
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(1) Do the results of 12.4 remain true if u* is replaced by us?

(2) With suitable finiteness restrictions the dual of 12.4 is true for inner
measures, but the unaltered result of 12.4 is not; (cf. 12.5).

(3) If E is a set of finite measure in S, if F C E, and if @(E) = u*(F) +
p*(E — F), then Fe8. In other words the p*-measurability of F may be
tested by employing a fixed set £ (containing F) in S instead of an arbitrary A4
in H(S). (Hint: use Theorem H.)

(4) Is an analog of 11.6 true for inner measures?

(5) If Ee H(S) and F is a measurable cover of E, then, for every u*-measur-
ableset M, g(F N M) = u*(E N M). (Hint: apply TheoremHtwoE=F N M
and 4 = E’.) Conversely, any set F with this property andsuch that EC Fe S
is a measurable cover of E. Similarly, F is a measurable kernel of E if and only
IfED FeSand g(F N M) = uy(E N M) for every M in S.

§ 15. LEBESGUE MEASURE

The purpose of this section is to apply the general extension
theory to the special measure discussed in § 8, and to introduce
some of the classical results and terminology pertinent to this
special case. Throughout this section we shall assume that

X is the real line, P is the class of all bounded, semiclosed
intervals of the form [4,4), S is the o-ring generated by P,
and u is the set function on P defined by u([4,6)) = 6 — a.

The sets of the g-ring S are called the Borel sets of the line;
according to the extension theorems 8.E and 13.A, we may assume
that u is defined for all Borel sets. If i on 8 is the completion
of uon S, the sets of S are the Lebesgue measurable sets of the
line; the measure i is Lebesgue measure. (The incomplete
measure u on the class S of all Borel sets is usually called Lebesgue
measure also.)

Since the entire line X is the union of countably many sets in
P, we see that X &8, so that the o-rings S and S are even
o—algebras. Since clearly u(X) = «, u is not finite on S, but,
since u is finite on P, both u on S and i on § are totally o—finite.
Some of the other interesting properties of u and i are contained
in the following theorems.

Theorem A. Every countable set is a Borel set of measure
2ero.
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Proof. For any 2, — < 2 < o, we have

{a} = {x:x =ﬂ} = n:-l {x:a§x<a+%}’
and therefore

pr({a}) = lim, u([a,a + %)) = lim,,% =0,

so that every one-point set is a Borel set of measure zero. Since
the Borel sets form a o-ring and since p is countably additive,

the theorem follows. |

Theorem B. The class S of all Borel sets coincides with
the o—ring generated by the class U of all open sets.

Proof. Since, for every real number 4, the set {4} is a Borel
set, it follows from the relation (a,6) = [4,6) — {4}, that every
bounded open interval is a Borel set. Since every open set on
the line is a countable union of bounded open intervals, it follows
that S DU and consequently that S > S(U). To prove the
reverse inequality, we observe that, for every real number 4,

= D=,

so that {4} eS(U). It follows from the relation [4,6) = (4,6) U
{a} that P < S(U) and consequently that

S =8F) cS®. 1

Theorem C. If U is the class of all open sets, then, for
every E in X,

p*(E) = inf{p(U):E C UGU}.

Proof. Since p*(E) = inf {u(F): E c F ¢S}, it follows from
the fact that U S that

p*(E) S inf {s(U): E c U e U}.

If, on the other hand, € is any positive number, then it follows
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from the definition of u* that there exists a sequence {[n,6)}
of sets in P such that

Ec Ur-i[ambs) and Xooi (ba — an) < u*(E) + 5

Consequently
€

ECU:.ﬂ(ﬂ"-ﬁ,bn): UCU,

and

p(U) £ et (b — a,) + % S uwME) + e

The desired result follows from the arbitrariness of e. |

Theorem D. Let T be the one to one transformation of the
entire real line onto itself, defined by T(x) = ax + B, where
o and B are real numbers and a #~ 0. If, for every subset E
of X, T(E) denotes the set of all points of the form T(x) with
xin E, i.e. T(E) = {ax + B: x ¢ E}, then

p*(T(E)) = | a|u*(E) and px(T(E)) = | o |us(E).

The set T(E) is a Borel set or a Lebesgue measurable set if and
only if E is a Borel set or a Lebesgue measurable set, respectively.

Proof. It is sufficient to prove the theorem for « > 0. For,
if @ < 0, then the transformation T is the result of the iteration
of two transformations Ty and T,, T(x) = T)(T:(x)), where
Ti(x) = | a|x + P and To(x) = —x. We leave to the reader the
verification of the fact that the transformation T, sends Borel
sets and Lebesgue measurable sets into Borel sets and Lebesgue
measurable sets, respectively, and that it preserves the inner and
outer measures of every set.

Suppose then that & > 0, and let T(S) be the class of all sets
of the form T(E) with E in S. It is clear that T(S) is a o-ring;
we are to prove that T(S) = S. If E = [4,4) e P, then E = T(F),

where
F = [f_j’b_ﬁ\)ep,

so that E & T(S) and therefore S ¢ T(S). By the same reasoning
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. . X -
applied to the transformation 77, T7(x) = _a_B , We may con-

clude that S ¢ T7!(S), and, applying the transformation T to
both sides of the last written relation, we obtain, T(S) — S and
therefore T(S) = S.

If, for every Borel set E, we write

m(E) = W(T(E)) and ps(E) = op(E),

then both p; and u, are measures on S. If E = [4,4) ¢ P, then
T(E) = [ea + B, ab + B), and

wm(E) = u(T(E)) = (ab+ B) — (@a + B) = a(b — a) =
= au(E) = py(E),

so that, by 8.E and 13.A, u(T(E)) = au(E) for every E in S.
Applying the results of the preceding two paragraphs to the
transformation T, we obtain the relations

p*(T(E)) = inf {u(F): T(E) c FeS} =

inf {au(TY(F): Ec TY(F) S} =
ainf {u(G): Ec GeS} =

= au*(E),

and, replacing inf by sup, u* by ps, and < by O throughout,
px(T(E)) = ops(E),

for every set E.
If E is a Lebesgue measurable set and A is any set, then

w*(4 0 T(E)) + u*(4 N (T(E))) =
= u¥(T(TY(4) N E)) + p¥(T(T"(4) N E)) =
= ou*(T7'(4) N E) + p¥(T"X(4) N E')] =
= a*(T7(A)) =
= p*(4),

so that T(E) is Lebesgue measurable. This result applied to T
proves its own converse and completes the proof of the theorem. |}
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(1) The class of all Borel sets is the o-ring generated by the class C of all
closed sets, and, for every set E,

ux(E) = sup {u(C): ED CeC}.

(2) To every Lebesgue measurable set E there correspond two Borel sets
A and B such that

ACECB, uB—A4) =0,

and such that A4 is an F, and B is a G;.

(3) A bounded set has finite outer measure. Is the converse of this statement
true?

(4) Let {x1, x2, ---} be an enumeration of the set M of rational numbers in
the closed unit interval X. For every e >0andi = 1,2, ---, let F;(e) be the

open interval of length -25‘ whose center is at x;, and write
1
F(é) = Uf-l Fi(é), F = n:_;F(;)'

The following statements are true.

(4a) There exists an € > 0 and a point x in X such that x &’ F(e).

(4b) The set F(e) is open and u(F(€)) < e.

(4c) The set X — F(€) is nowhere dense.

(4d) The set X — F is of the first category and therefore, since X is a com-
plete metric space, F is uncountable. (Hence, in particular, F £ M.)

(4e) The measure of F is zero.

Since F D M, the statement (4e) yields a new proof of the fact that the set
M of rational numbers (as every countable set) has measure zero. More inter-
esting than this, however, is the implied existence of an uncountable set of
measure zero; cf. (5).

(5) Expand every number x in the closed unit interval X in the ternary system,
i.e. write

x=2:—l‘;_:, an=0,1,2, ﬂ=1,2’---’

and let C be the set of all those numbers x in whose expansion the digit 1 is not
needed. (Observe that if, motivated by the customary decimal notation, we
write .oqtp- + - for Y yeq 0tn/3% then for instance ¥ = .1000--- = .0222---, and
therefore } € C, but since 3 = .111- - and since this is the only ternary expan-
sion of 1, therefore 3 &’ C.) Let X, be the open middle third of X, X, = (%, 2);
let X, and X3 be the open middle thirds of the two closed intervals which make
up X — X, ie. Xop = (%, %) and X; = (%, %), let X4, X, Xs, and X7 be the
the open middle thirds of the four closed intervals which make up

X~ (X1 U X; U Xy),

and so on ad infinitum. The following statements are true.
(5a) C =X — Upj=1 Xn. (Hint: for every x in X write x = .13 -,
an=0,1,2,n=1,2 --- insuchaway thatifxe C, thena, = 0or2,n = 1.2,
Then the expansion of » is unique and (i) x ¢ Xj if and only if oy = 2,
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(i) ifas # 1, then x e X, U X3 if and only if g = 1; (iii) if oy 5% 1 and ag # 1,
thenxe X, U X; U Xg U X;ifand only if ag = 15 ---.)

(5b) u(C) = 0.

(5¢) Cis nowhere dense. (Hint: assume that X contains an open subinterval
whose intersection with {Jp-; X is empty.)

(5d) Cis perfect. (Hint: no two of the intervals X3, X5, - - have a common
point.)

(5e) C has the cardinal number of the continuum. (Hint: consider the corre-
spondence which associates with every x in C, x = .oz -+, an =0 or 2,
n=1,2, «--, the number y whose binary expansionis y = .8182- -, 8n = an/2,
n=1,2, ---, or, equivalently, y = > mw.;a.,/2"*L This correspondence is
not one to one between C and X, but it is one to one between the irrational
numbers in C and the irrational numbers in X. Alternative hint: use (5d).)

The set C is called the Cantor set.

(6) Since the cardinal number of the class of all Borel sets is that of the
continuum (cf. 5.9c), and since every subset of the Cantor set is Lebesgue
measurable (cf. (5b)), there exists a Lebesgue measurable set which is not a
Borel set.

(7) The set of those points in the closed unit interval in whose binary expan-
sion all the digits in the even places are 0 is a Lebesgue measurable set of measure
zero.

(8) Let X be the perimeter of a circle in the Euclidean plane. There exists a
unique measure u defined on the Borel sets of X such that u(X) = 1 and such
that u is invariant under all rotations of X. (A subset of a circle is a Borel set
if it belongs to the o—ring generated by the class of all open arcs.)

(9) If g is a finite, increasing, and continuous function of a real variable,
then there exists a unique complete measure ji, defined on a o-ring S, containing
all Borel sets, such that #,([4,6)) = g(¢) — g(a) and such that for every E in
§, there is a Borel set F with I(E A F) = 0; (cf. 8.3). The measure [, is called
the Lebesgue~Stieltjes measure induced by g.

§ 16. NON MEASURABLE SETS

The discussion in the preceding section is not delicate enough
to reveal the complete structure of Lebesgue measurable sets on
the real line. It is, for instance, a non trivial task to decide
whether or not any non measurable sets exist. It is the purpose
of this section to answer this question, as well as some related
ones. Some of the techniques used in obtaining the answer are
very different from any we have hitherto employed. Since, how-
ever, most of them have repeated applications in measure theory,
usually in the construction of illuminating examples, we shall
present them in considerable detail. Throughout this section we
shall employ the same notation as in § 15.
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If E is any subset of the real line and & is any real number,
then E + a denotes the set of all numbers of the form x + 4,
with x in E; more generally if E and F are both subsets of the real
line, then E 4+ F denotes the set of all numbers of the form x + y
with x in E and y in F. The symbol D(E) will be used to denote
the difference set of E, i.e. the set of all numbers of the form
x — y with x in E and y in E.

Theorem A. If E is a Lebesgue measurable set of positive,
finite measure, and if 0 £ a < 1, then there exists an open inter-
val U such that i(E N U) 2 au(U).

Proof. Let U be the class of all open sets. Since, by 15.C,
g(E) = inf {u(U): E c U £ U}, we can find an open set U, such
that E ¢ Uy and au(Uy) < a(E). 1f {U,} is the disjoint sequence
of open intervals whose union is Uy, then it follows that

adma p(Us) £ 20 B(E N U,).

Consequently we must have au(U,) £ a(E N U,) for at least
one value of #; the interval U, may be chosen for U. |

Theorem B. If E is a Lebesgue measurable set of positive
measure, then there exists an open interval containing the
origin and entirely contained in the difference set D(E).

Proof. If E is, or at least contains, an open interval, the result
is trivial. In the general case we make use of Theorem A, which
asserts essentially that a suitable subset of E is arbitrarily close
to an interval, to find a bounded open interval U such that

A(E N U) z ().
If —1u(U) < x < 3u(U), then the set
(END)UCEND) +x)

is contained in an interval (namely U U (U + x)) whose length
is less than 3u(U). If E N U and (E N U) + x were disjoint,
then, since they have the same measure, we should have

EEND)UKEND) + &) =2aE N V) 2z §x0).
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Hence at least one point of E N U belongs also to (E N U) + «,
which proves that x e D(E). In other words the interval (— 3u(U),
14(U)) satisfies the conditions stated in the theorem. ||

Theorem C. If £ is an irrational number, then the set A
of all numbers of the form n + mé&, where n and m are arbitrary
integers, is everywhere dense on the line; the same is true of the
subset B of all numbers of the form n + mt with n even, and the
subset C of numbers of the form n + mt with n odd.

Proof. For every positive integer ¢ there exists a unique
integer n; (which may be positive, negative, or zero) such that
0 < n; + it < 1; we write x; = n; + i£. If U is any open inter-

. e . 1
val, then there is a positive integer k such that u(U) > 7 Among

the £ + 1 numbers, x1, - - -, X541, in the unit interval, there must

1
+be at least two, say x; and xj, such that | x; — x;| < 7 It

follows that some integral multiple of »; — x;, i.e. some element
of A, belongs to the interval U, and this concludes the proof of
the assertion concerning 4. The proof for B is similar; we have
merely to replace the unit interval by the interval [0,2). The
proof for C follows from the fact that C = B + 1. |

Theorem D. There exists at least one set Eq which is not
Lebesgue measurable.

Proof. For any two real numbers x and y we write (for the
purposes of this proof only) x ~y if x —y e A, (where 4 is
the set described in Theorem C). It is easy to verify that the
relation “~” is reflexive, symmetric, and transitive, and that,
accordingly, the set of all real numbers is the union of a disjoint
class of sets, each set consisting of all those numbers which are
in the relation “~” with a given number. By the axiom of choice
we may find a set E, containing exactly one point from each such
set; we shall prove that E, is not measurable.

Suppose that F is a Borel set such that F c E, Since the
difference set D(F) cannot contain any non zero elements of the
dense set 4, it follows from Theorem B that F must have meas-
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ure zero, so that pusx(Ep) = 0. In other words, if Ey is Lebesgue
measurable, then its measure must be zero.

Observe next that if 4, and a4, are two different elements of
A, then the sets Ey + 4; and Ey + a4 are disjoint. (If x; + 4, =
%3 + ag, with x; in Eg and %2 in Ey, then x; — %2 = a; — a4, £ 4.)
Since moreover the countable class of sets of the form E; + a,
where a € 4, covers the entire real line, i.e. E; + 4 = X, and
since the Lebesgue measurability of E, would imply that each
Ey + a is Lebesgue measurable and of the same measure as Ey,
we see that the Lebesgue measurability of E, would imply the
nonsensical result u(X) = 0. |}

The construction in the proof of Theorem D is well known, but
it is not strong enough to yield certain counter examples needed
for later purposes. The following theorem is an improvement.

Theorem E. There exists a subset M of the real line such
that, for every Lebesgue measurable set E,

pe(M N E) =0 and p*M N E) = a(E).

Proof. Write 4 = B U C, as in Theorem C, and, if E; 1s
the set constructed in the proof of Theorem D, write

M=E0+B.

If F is a Borel set such that F ¢ M, then the difference set D(F)
cannot contain any elements of the dense set C, and it follows
from Theorem B that ux(M) = 0. The relations

M=E+C=E+B+1)=M+1

imply that ps(M’) = 0; (cf. 15.D). If E is any Lebesgue meas-
urable set, then the monotone character of us implies that
ux(M N E) = pe(M’ N E) = 0, and therefore (14.H) p*(M N E)
= a(E). 1§

The proofs of this section imply among other things that it is
impossible to extend Lebesgue measure to the class of all subsets
of the real line so that the extended set function is still a measure
and is invariant under translations.
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(1) If E is a Lebesgue measurable set such that, for every number ¥ in an
everywhere dense set,
MEA(E+«x) =0,

then either I(E) = O or else Z(E’) = 0.

(2) Let u be a o—finite measure on a o-ring S of subsets of a set X, and let
u* and pe be the outer measure and the inner measure, respectively, induced
by u on H(S). Let M be any set in H(S), and let § be the o-ring generated
by the class of all sets in S together with M. The chain of assertions below is
designed to lead up to a proof of the assertion that u may be extended to a
measure  on S.

(2a) The o-ring § is the class of all sets of the form (£ N M) A (F N M),
where E and F arein S. (Hint: it is sufficient to prove that the class of all sets
of the indicated form is a g-ring. Observe that

ENMAFENM)=(ENMUFN M)

(2b) If u*(M) < w0, if G and H are a measurable kernel and a measurable
cover of M respectively, and if D = H — G, then the intersection of any set in
S with D’ belongs to S.

(2c) There exist twosets Gand HinS such that G C M C H and pe (M — G)
= ps(H — M) = 0, and such that if D = H — G, then the intersection of any
set in S with D’ belongs to S. (Hint: there exists a disjoint sequence {Xn}
of sets in S with u(X,) < @wand M = Uy, (M N X,).)

(2d) In the notation of (2c), ux(M N D) = pe(M’ N D) = 0, and therefore
u*(M N D) = p*(M’ N D) = (D).

(2¢) In the notation of (2¢), if

(ENMAFENMIND=[ENMAFNM)ND,
where Ey, Fy, Es, and F; are in S, then
u(Ey N D) = u(E2 N D) and wu(F1 N D) = u(F: N D).
(Hint: use the fact that the condition
(BLAE)NMAODAFARNM ND =0
implies that
ENDAENDCcM ND and (RND)AF ND CMND)

(2f) Let a and B8 be non negative real numbers witha + 8 = 1. In the nota-
tion of (2c) the set function & on 8, defined by

BENMAFN M) =
=p((EN M)A F N M) N D)+ apE N D)+ BuF N D),

is a measure on 8 which is an extension of u on S.

(3) If u is a o—finite measure on a g-ring S and if {M,, -+, M,} is a finite
class of sets in the hereditary g-ring H(S), then {Mj, - - -, M,} may be adjoined
to S and a measure I may be defined on the generated o-ring S so that it is an
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extension of pon S.  The analogous statement, for an infinite sequence {Ma}
of sets in H(S), is not known

(4) The following example is useful for developing intuition about non
measurable sets; virtually all general properties of non measurable sets may be
illustrated by it. Let X = {(x,9): 0 S x < 1,0 < y < 1} be the unit square.
For every subset E of the interval [0,1], write

E={(xy:xeE, 0sysl1}CX

Let S be the class of all sets of the form £, for Lebesgue measurable sets E;
define u(£) as the Lebesgue measure of E. A set M such as M = {(x,9):
0 < x =<1,y = %} is non measurable; u, (M) = 0 and u*(M) = 1.

(5) Let u* be a regular outer measure on the class of all subsets of a set X
such that p*(X) = 1, and let M be a subset of X such that u,(M) = 0 and
p*(M) = 1; (cf. Theorem E and (4)). If v*(E) = p*(E) 4 p*(E NN M), then
v* is an outer measure; (cf. 10.5 and 10.7).

(5a) A set E is v*~measurable if and only if it is y*-measurable; (cf. 12.6).

(5b) The infimum of the values of »*(E) over all ¥*~measurable sets E con-
taining a given set 4 is 2u*(A4). (Hint: if £ is yv*~measurable, then u*(E N M)
= p*(E).)

(5¢) The outer measure »* is not regular. (Hint: test regularity with M’.)



Chapter 1V

MEASURABLE FUNCTIONS

§17. MEASURE SPACES

A measurable space is a set X and a o—ring S of subsets of X
with the property that {J S = X. Ordinarily it causes no con-
fusion to denote a measurable space by the same symbol as the
underlying set X; on the occasions when it is desirable to call
attention to the particular o—ring under consideration, we shall
write (X,S) for X. It is customary to call a subset E of X meas-
urable if and only if it belongs to the g-ring S. This terminology
is not meant to indicate that S is the o—ring of all y*-measurable
sets with respect to some outer measure u*, nor even that a non
trivial measure is or may be defined on S.

In the language of measurable sets, the condition in the defini-
tion of measurable spaces may be expressed by saying that the
union of all measurable sets is the entire space, or, equivalently,
that every point is contained in some measurable set. The purpose
of this restriction is to eliminate certain obvious and not at all
useful pathological considerations, by excluding from the space
points (and sets of points) of no measure theoretic relevance.

A measure space is a measurable space (X,S) and a measure
p on S; just as for measurable spaces we shall ordinarily allow
ourselves to confuse a measure space whose underlying set is X
with the set X. On the occasions when it is desirable to call atten-
tion to the particular o-ring and measure under consideration, we
shall write (X,S,u) for X. The measure space X is called [totally]

finite, o—finite, or complete, according as the measure p is [totally]
73
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finite, o—finite, or complete. For measure spaces we may and shall
make use, without any further explanation, of the outer measure
p* and (in the o-finite case) the inner measure us induced by u
on the hereditary o—ring H(S).

Most of the considerations of the preceding chapter show by
deductions and examples how certain measurable spaces may be
made into measure spaces. In this section we shall make a few
general remarks on measurable spaces and measure spaces and
then, in the remainder of this chapter and in the following chap-
ters, turn to the discussion of functions on measure spaces, useful
ways of making new measure spaces out of old ones, and the
theory of some particularly important special cases.

We observe first that a measurable subset X, of a measure
space (X,S,u) may itself be considered as a measure space
(Xo,So0,m0), where Sy is the class of all measurable subsets of X,
and, for E in Sy, uo(E) = u(E). Conversely, if a subset X of a
set X is a measure space (X(,So,u0), then X may be made into a
measure space (X,S,u), where S is the class of all those subsets
of X whose intersection with X is in Sy, and, for E in S, p(E) =
po(E N Xo). (Entirely similar remarks are valid, of course, for
measurable spaces.) A modification of this last construction is
frequently useful even if X is already a measure space. If X;isa
measurable subset of X, a new measure yy may be defined on the
class of all measurable subsets E of X by the equation p(E) =
p(E N Xy); it is easy to verify that (X,S,u) is indeed a measure
space.

What happens to the considerations of the preceding paragraph
if the subset X, is not measurable? In order to give the most
useful answer to this question, we introduce a new concept. A
subset X, of a measure space (X,S,u) is thick if ps (£ — X;) = 0
for every measurable set E. If X itself is measurable, then X,
is thick if and only if us(X — Xo) = 0; if u is totally finite, then
Xo is thick if and only if u*(X,) = u(X). (For examples of thick
sets cf. 16.E and 16.4.) Slightly deeper than any of the comments
in the preceding paragraph is the following result, which asserts
essentially that a thick subset of a measure space may itself be
regarded as a measure space.
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Theorem A. If X, is a thick subset of a measure space
(X,S,u), if So = S N Xy, and if, for E in S, pu(E NN X,) =
u(E), then (Xo,So,u0) 15 @ measure space.

Proof. If two sets, E; and E,, in S are such that E, N X, =
E; N Xy, then (E, AE;) N Xy =0, so that u(E; AE,) =0 and
therefore u(E;) = u(E;). In other words pg is indeed unam-
biguously defined on S,.

Suppose next that {F,} is a disjoint sequence of sets in Sy,
and let E, be a set in S such that

F.=E.NXy n=12,---.
IfE, =E, - U{E:1g2i<n},n=1,2,- -, then
(E.AEYNXy= (Fo—U{F:lSi<anl)AF, =
=F,AF, =0,
so that u(£, A E,) = 0, and therefore
2omet bo(Fr) = 2nar w(En) = Ziar w(En) = p(Unur En) =
= p(Ur=1 En) = po(Un-1 F).

In other words g is indeed a measure, and the proof of the theorem
is complete. |}

(1) The following converse of Theorem A is true. If (X,S,u) is a measure
space and if X is a subset of X such that, for every two measurable sets E;
and Ea, the condition E; N Xy = E; N X, implies that u(E;) = u(E,), then
Xy is thick. (Hint: if F C E — X, then

(E-—F)NX,=EN X)

(2) The extension theorem 16.2 may be used to give an alternative proof
of Theorem A in the o—finite case.

(3) The following proposition shows that the concept of a finite measure space
is not very different from the apparently much more special concept of a totally
finite measure space. If (X,S,u) is a finite measure space, then there exists a
thick measurable set X,. (Hint: write ¢ = sup {u(E): E€S}. Let {E.} bea
sequence of measurable sets such that lim, u(E,) = ¢ and write Xo = Jn=1 En.
Observe that u(Xs) = ¢.) This result enables us, in most applications, to assume
that a finite measure space is totally finite, since we may replace X by X, with-
out significant loss of generality. For an example of a finite measure space
which is not totally finite, let X be the real line, let S be the class of all sets of
the form E U C, where E is a Lebesgue measurable subset of [0,1] and C iy
countable, and let u on S be Lebesgue measure. The methad suggested above



76 MEASURABLE FUNCTIONS [Sec. 18)

to show the existence of Xy has frequent application in measure theory; it is
called the method of exhaustion.

(4) If (X,S,u) is a complete, o-finite measure space, then every u*-measurable
set is measurable. Hence for complete, o—finite measure spaces the two con-
cepts of measurability collapse into one.

§ 18. MEASURABLE FUNCTIONS

Suppose that f is a real valued function on a set X and let M
be any subset of the real line. We shall write

S M) = {x:f(x) e M},

i.e. f71(M) is the set of all those points of X which are mapped
into M by f. The set f~!(M) is called the inverse image (under
f, or with respect to f) of the set M. If, for instance, f is the
characteristic function of a set E in X, then f~'({1}) = E and
f~1({0}) = E’; more generally

S7(M) =0, E, E, or X,

according as M contains neither O nor 1, 1 but not 0, 0 but not 1,
or both 0 and 1.
It is easy to verify that, for every f,
S Ui M) = Ui/ M),
S7HM — N) = f7{(M) — 7 ()5

in other words the mapping /!, from subsets of the line to subsets
of X, preserves all set operations. It follows in particular that if
E is a class of subsets of the line (such as a ring or a o-ring) with
certain algebraic properties, then f~'(E) (= the class of all those
subsets of X which have the form f~!(M) for some M in E) is a
class with the same algebraic properties. Of particular interest
for later applications is the case in which E is the class of all
Borel sets on the line.

Suppose now that in addition to the set X we are given also a
o-ring S of subsets of X so that (X,S) is a measurable space.
For every real valued (and also for every extended real valued)
function f on X, we shall write

N(f) = {x:f(x) = O};
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if a real valued function f is such that, for every Borel subset M
of the real line the set N(f) N f~'(M) is measurable, then f is
called a measurable function.

Several comments are called for in connection with this defini-
tion of measurability. First of all, the special role played by the
value O should be emphasized. The reason for singling out 0
lies in the fact that it is the identity element of the additive group
of real numbers. In the next chapter we shall introduce the con-
cept of integral, defined for certain measurable functions; the
fact that integration (which is without doubt the most important
concept in measure theory) may be viewed as generalized addition
necessitates treating O differently from other real numbers.

If f is a measurable function on X and if we take for M the
entire real line, then it follows that N(f) is a measurable set.
Hence if E is a measurable subset of X and if M is a Borel subset
of the real line, then it follows from the identity

En{f(} =
=[E N N(f) nfHM)UKE - N nfHM),

that £ N f~1(M) is measurable. (Observe that the second term
in the last written union is either empty or else equal to
E — N(f).) If, in other words, we say that a real valued func-
tion f defined on a measurable set E is to be called measurable on
E whenever E N f~'(M) is measurable for every Borel set M,
then we have proved that a measurable function is measurable
on every measurable set. If, in particular, the entire space X
happens to be measurable, then the requirement of measurability
on f is simply that f~!(M) be measurable for every Borel subset
M of the real line. In other words, in case X is measurable, a
measurable function is one whose inverse maps the sets of one
prescribed o-ring (namely the Borel sets on the line) into the sets
of another prescribed o—ring (namely S).

It is clear that the concept of measurability for a function
depends on the o-ring S and therefore, on the rare occasions when
we shall have more than one s-ring under consideration at the
same time, we shall say that a function is measurable with rcspect
to S, or, more concisely, that it is measurable (S). If in particular
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X is the real line, and S and S are the class of Borel sets and the
class of Lebesgue measurable sets respectively, then we shall call
a function measurable with respect to S a Borel measurable
function, and a function measurable with respect to S a Lebesgue
measurable function.

It is important to emphasize also that the concept of measur-
ability for functions, just as the concept of measurability for sets,
as used in §17, does 7ot depend on the numerical values of a
prescribed measure u, but merely on the prescribed o-ring S.
A set or a function is, from this point of view, declared measurable
by fiat; the concept is purely set theoretical and is quite inde-
pendent of measure theory.

The situation is analogous to that in the modern theory of
topological spaces, where certain sets are declared open and cer-
tain functions continuous, without reference to a numerical
distance. The existence or non existence of a metric, in terms of
which openness and continuity can be defined, is an interesting
but usually quite irrelevant question. The analogy is deeper
than it seems: the reader familiar with the theory of continuous
functions on topological spaces will recall that a function f is
continuous if and only if, for every open set M in the range
(in our case the real line), the set /(M) belongs to the prescribed
family of sets which are called open in the domain.

We shall need the concept of measurability for extended real
functions also. We define this concept simply by making the
convention that the one-point sets {®} and { —»} of the extended
real line are to be regarded as Borel sets, and then repeating
verbatim the definition for real valued functions. Accordingly
a possibly infinite valued function f is measurable, if, for every
Borel set M of real numbers, each of the three sets

S ({o}), T ({=o}), and N(f) Nf7'(M)

is measurable. We observe that for the extended concept of
Borel set it is no longer true that the class of Borel sets is the -ring
generated by semiclosed intervals.

We shall study and attempt to make clear the structure of
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measurable functions in great detail below. The following is a
preliminary result of considerable use.

Theorem A. A real function f on a measurable space (X,S)

is measurable if and only if, for every real number c, the set
N(f) N {x:f(x) < c} is measurable.

Proof. If M is the open ray extending from ¢ to —c on the
real line, i.e. M = {£:¢ < ¢}, then M is a Borel set and f(M) =
{x: f(x) < c}. Itis clear therefore that the stated condition is
indeed necessary for the measurability of f.

Suppose next that the condition is satisfied. If ¢; and ¢; are
real numbers, ¢; < ¢;, then

{x: f(x) <o} — {x:f(x) < an} = {x: 01 S f%) < 3.

In other words if M is any semiclosed interval, then N(f) N
S (M) is the difference of two measurable sets and is therefore
measurable. Let E be the class of all those subsets M of the
extended real line for which N(f) N f~*(M) is measurable. Since
E is a o-ring, and since a o-ring containing all semiclosed intervals
contains also all Borel sets, the proof of the theorem is complete. |

(1) Theorem A remains true if < is replaced by < or > or 2. (Hint: if
—w < ¢ < o, then

{x:/) S ¢} = Nigs {x:f(x) <e¢ +%} )

(2) Theorem A remains true if ¢ is restricted to belong to an everywhere
dense set of real numbers.

(3) If fis a measurable function and ¢ is a real number, then ¢f is measurable.

(4) If a set E is a measurable set, then its characteristic function is a measur-
able function. Is the converse of this statement true?

(5) A non zero constant function is measurable if and only if X is measurable.

(6) If X is the real line and f is an increasing function, then f is Borel measur-
able. Is every continuous function Borel measurable?

(7) Let X be the real line and let E be a set which is not Lebesgue measurable;
write f(x) = x or —x according as x € E or x &’ E. Is f Lebesgue measurable?

(8) If f is measurable, then, for every real number ¢, the set N(f) N
{x: f(x) = ¢} is measurable. Is the converse of this statement true?

(9) A complex valued function is called measurable if both its real and
imaginary parts are measurable. A complex valued function f is measurable
if and only if, for every open set M in the complex plane, the set N(f) N f~1(M)
is measurable.
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(10) Suppose that f is a real valued function on a measurable space (X,S),
and, for every real number ¢, write B(t) = {x: f(x) < #}. Then

(10a) s <t implies B(s) C B(#),
(10b) . U:B() =X and N:B() =0,
(10c) Na<: B@t) = B(s).

Conversely, if { B(¢)} is a class of sets with the properties (10a), (10b), and (10c),
then there exists a unique, finite, real valued function f such that {x: f(x) < ¢}
= B(#). (Hint: write f(x) = inf {#: x e B()}.)

(11) If f is a measurable function on a totally finite measure space (X,S,u)
and if, for every Borel set M on the extended real line, we write (M) =
u(f ~Y(M)), then v is 2 measure on the class of all Borel sets. Iffis finite valued,
then the function g of a real variable, defined by g(t) = u({x: f(x) <1¢}), is
monotone increasing, continuous on the left, and such that g(—) = 0 and
g(o) = u(X); g is called the distribution function of f. If g is continuous, then
the Lebesgue-Stieltjes measure u,, induced by g according to the procedure of
15.9, is the completion of v. If fis the characteristic function of a measurable

set E, then »(M) = xu(1)u(E) + xuO)u(E").

§ 19. COMBINATIONS OF MEASURABLE FUNCTIONS

Theorem A. If f and g are extended real valued measurable
functions on a measurable space (X,S), and if ¢ is any real
number, then each of the three sets

A = {x:f(x) < gx) + ¢},
B = {x:f(x) < g(x) + ¢},
C = {x:f(x) = g(x) + ¢},
has a measurable intersection with every measurable set.

Proof. Let M be the set of rational numbers on the line.
Since

A= Urenl{x:fx) <r} N {x:ir —c < gx)}],

it follows that A4 has the desired property. The conclusions for
B and C are consequences of the relations

B=X-{x:gx) < f(x) —¢} and C=B—4

respectively. |
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Theorem B. If ¢ is an extended real valued Borel measur-
able function on the extended real line such that ¢(0) = 0,
and if f is an extended real valued measurable function on a
measurable space X, then the function f, defined by f(x) =
o (f(x)), is @ measurable function on X.

Proof. It is convenient to use here the definition of measur-
ability (instead of the necessary and sufficient condition of § 18).
If M is any Borel set on the extended real line, then

NG M) = {x: ¢(f(x)) e M — {0}} =

= {x: /) e 67 (M — {O]).
Since ¢(0) = 0, we have

¢~ (M — {0}) = o71(M — {0}) — {O}.

Since ¢ is Borel measurable, ¢ (M — {0}) is a Borel set and the
measurability of the set

N(7) N7 M) = N() 0 f ™M — {0}))

follows from the measurability of f. |

Since it is easy to verify that, for any positive real number o,
the function ¢, defined for every real number ¢ by ¢(#) = | ¢|*,
is Borel measurable, it follows that the measurability of a func-
tion f implies the measurability of | f|*. Similarly any positive
integral power of a measurable function is again a measurable
function, and it follows similarly, by an even simpler argument,
that a constant (real) multiple of a measurable function is also
measurable. By considering Borel measurable functions ¢ of
two or more real variables a similar argument may be used to
prove such statements as that the sum and product of two measur-
able functions are measurable. Since, however, we have not yet
defined and proved any properties of Borel measurability for
functions of several variables, we postpone these considerations
and turn now to a direct proof of the measurability of sums and
products.

Theorem C. If f and g are extended real valued measurable
Sfunctions on a measurable space X, then so also are f+ g

and fg.
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Proof. Since the behavior of f + g and fg at those points x
at which at least one of the two numbers, f(x) and g(x), is infinite
is easily understood, after the examination of a small number of
cases, we restrict our attention to finite valued functions. (We
recall incidentally that if f(x) = o and g(x) = Fe, then
f(x) + g(x) is not defined.)

Since if f and g are finite and if ¢ is a real number, then
{x:f(x) + glx) < ¢} = {x:f(x) <c —gx)},

the measurability of f + g follows from Theorem A (with —g
in place of g). The measurability of fg is a consequence of the

identity
fe=3dU+*-(-2% 1

Since if f and g are finite we have
fUg=3(f+g+|f-2gl
fNg=3f+g—1f—2gD

Theorems B and C show that the measurability of f and g implies
that of f U g and f N g. If for every extended real valued func-
tion f we write

ff=fU0 and f~= —-(fNO),
f=ft=f" and |f|=f"+S"

(The functions f* and f~ are called the positive part and the
negative part of f, respectively.) The comment at the beginning
of this paragraph implies that the positive and negative parts of
a measurable function are both measurable; conversely, a func-
tion with measurable positive and negative parts is itself measur-
able.

and

then

(1) Iff is such that | f| is measurable, does f have to be measurable?

(2) If X is measurable, then Theorem B is true even without the assumption
that ¢(0) = 0; in other words, in this case a Borel measurable function of a
measurable function is a measurable funetion.
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(3) It is not true, even if X is measurable, that a Lebesgue measurable func-
tion of a measurable function is a measurable function. The purpose of the
sequence of statements below is to indicate the proof of this negative statement
by the construction of a suitable example. The construction will yield a Lebesgue
measurable function ¢ of a real variable y, and a continuous and strictly increas-
ing function f of a real variable x, 0 £ x < 1, such that if f(x) = ¢(f(x)), then
J is not Lebesgue measurable.

For every x in X (where X = [0,1] is the closed unit interval), write

X = Z?—lai/f}i = .1003° * *,

wherea; = 0,1,0r2,¢i = 1,2, ---,sothatifx e C, thena; = 0or2,i = 1,2, -+,
(The set C is the Cantor set, defined in 15.5.) Let n = n(x) be the first index
for which a, = 1. (If there is no such #, i.e. if x £ C, write #(x) = 0.) Define
the function ¢ by the equation

; 1
V() = Zisicn@i/2 + Th

(The function ¥ is sometimes called the Cantor function.)
(3a) If0 S x Sy £ 1, then

0=y(0) S ¢ =¥ sS¥(1) =1

(Hint: if x = .ajo0a3- -+ Sy = B1BBs- -, and if a; = P; for 1 < § < j, then
a; S B;.)

’ (3b)1 The function y is continuous. (Hint: if ¥ = .aqqagas- -+, y = L1BPs- - -,
and a; = B; for 1 S i <j, then

196 —¥() | S 55

(3c) For every x in X there is one and only one number y, 0 < y < 1, such
that x = 3(y + ¥(»)), and therefore the equation y = f(x) defines a strictly in-
creasing, continuous function fon X. (Hint: 3(» + ¢¥()) is strictly increasing
and continuous.)

(3d) The set f ~}(C) is Lebesgue measurable and has positive measure. (Hint:

the set
VX —C) = {Y(»:ye X — C}

is countable and therefore has measure zero; consequently

pfTHX - 0) = 1)

(3e) There exists a Lebesgue measurable set M, M C {y:0 < y < 1}, such
that f~1(M) is not Lebesgue measurable. (Hint: by 16.E, f~}(C) contains a
non measurable set. Recall that every subset of a set of Lebesgue measure zero
is Lebesgue measurable.)

(3f) If ¢ is the characteristic function of the set M mentioned in (3¢) and if
Jf(x) = ¢(f(x)), then ¢ is Lebesgue measurable but 7 is not.

(4) The set M in (3¢) is an example of a Lebesgue measurable set which is
not a Borel set; (cf. 15.6).
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§ 20. SEQUENCES OF MEASURABLE FUNCTIONS

Theorem A. If {f.} is a sequence of extended real valued,
measurable functions on a measurable space X, then each of the
Sour functions h, g, f*, and fy, defined by

hx) = sup {fulx):n = 1,2, -1,
gx) = inf {fu(x):n = 1,2, -},
f*) = lim sup, fa(x),
felx) = lim inf, fa(x),

is measurable.

Proof. It is easy to reduce the general case to the case of
finite valued functions. The equation

{x:18(x) < ¢} = Urar {51 /a(®) < ¢}

implies the measurability of g. The result for 4 follows from the

relation
h(x) = —inf {—=fo(x):n =1,2, ---}.

The measurability of /* and f« is a consequence of the relations

f*(x) = infnél Supménfm(x)’ f*(x) = SUPnxi infm_?.nfm(x)’

respectively. |
It follows from Theorem A that the set of points of convergence
of a sequence {f,} of measurable functions, i.e. the set

{x: lim sup, fa(¥) = liminf, f,(x)},

has a measurable intersection with every measurable set, and,
consequently, that the function f, defined by f(x) = lim, fa(x)
at every x for which the limit exists, is a measurable function.

A very useful concept in the theory of measurable functions is
that of a simple function. A function f, defined on a measurable
space X, is called simple if there is a finite, disjoint class { £y, - - -,
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E.} of measurable sets and a finite set {ay, - -, a,} of real num-
bers such that

s = |

o if xeky i=1,---,n,

0 if xe’E;U---UE,.

(We emphasize the fact that the values of a simple function are
to be finite real numbers: this will be essential in the sequel.)
In other words a simple function takes on only a finite number
of values different from zero, each on a measurable set.

The simplest example of a simple function is the characteristic
function xg of a measurable set E. It is easy to verify that a
simple function is always measurable; in fact we have, for the
simple function f described above,

f(x) = Z?—l OliXE.-(x)-

The product of two simple functions, and any finite linear com-
bination of simple functions, are again simple functions.

Theorem B. Every extended real valued measurable function
f is the limit of a sequence { fu} of simple functions; if f is non
negative, then each f, may be taken non negative and the sequence
{fa} may be assumed increasing.

Proof. Suppose first that f = 0. For every n =1, 2, ---,
and for every x in X, we write

i—1 i —1 7
'f < < — | = ee. 28
fy = {2 F T S < g il

n if f(x) = n.

Clearly f» is a non negative simple function, and the sequence
{fn} is increasing. If f(x) < =, then, for some n,

1

0 = flx) — falx) = o)

if f(x) = oo, then f,(x) = n for every #n. This proves the second
half of the theorem; the first half follows (recalling that the
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difference of two simple functions is a simple function) by apply-
ing the result just proved separately to f* and f~. |

(1) All the concepts and results of this section and the preceding one (except,
of course, the ones depending on such order properties of the real numbers as
positiveness) can be extended to complex valued functions.

(2) If the function f in Theorem B is bounded, then the sequence {f,} may
be made to converge to f uniformly.

(3) An elementary function is defined in the same way as a simple function,
the only change being that the number of sets E;, and therefore the number of
corresponding values a;, is allowed to be countably infinite. Every real valued
measurable function f is the limit of a uniformly convergent sequence of ele-
mentary functions.

§ 21. POINTWISE CONVERGENCE

In the preceding three sections we have developed the theory
of measurable functions about as far as it is convenient to do so
without mentioning measure. From now on we shall suppose
that the underlying space X is a measure space (X,S,u).

If a certain proposition concerning the points of a measure
space is true for every point, with the exception at most of a
set of points which form a measurable set of measure zero, it is
customary to say that the proposition is true for almost every
point, or that it is true almost everywhere. The phrase “almost
everywhere” is used so frequently that it is convenient to intro-
duce the abbreviation a.e. Thus, for instance, we might say that
a function is a constant a.e.—meaning that there exists a real
number ¢ such that {x: f(x) = ¢} is a set of measure zero. A
function f is called essentially bounded if it is bounded a.e., i.e.
if there exists a positive, finite constant ¢ such that {x:| f(x) | > ¢}
is a set of measure zero. The infimum of the values of ¢ for which
this statement is true is called the essential supremum of | f|,
abbreviated to

ess. sup. | f1.

Let { f.} be a sequence of extended real valued functions which
converges a.e. on the measure space X to a limit function f.
This means, of course, that there exists a set E, of measure zero
(which may be empty) such that, if x ¢’ E; and € > 0, then an
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integer ng = my(x,€) can be found with the property that
L <=2, f) = =,
[fa@) =) | < & if —o0 < flx) < oo
£ > 2, i () = o,

whenever # = n,. We shall say that a sequence {f.} of real
valued functions is fundamental a.e. if there exists a set E, of
measure zero such that, if x ¢€’Ey, and ¢ > 0, then an integer
ny = ny(x,e) can be found with the property that

| fa(x) — fm(¥)| < ¢ whenever n = n, and m 2 n,

Similarly in the theory of real sequences one distinguishes between
a sequence {a,} of extended real numbers which converges to an
extended real number @, and a sequence {,} of finite real numbers
which is a fundamental sequence, i.e. which satisfies Cauchy’s
necessary and sufficient condition for convergence to a finite
limit.

It is clear that if a sequence converges to a finite valued limit
function a.e., then it is fundamental a.e., and, conversely, that
corresponding to a sequence which is fundamental a.e. there
always exists a finite valued limit function to which it converges
a.e. If moreover the sequence converges a.e. to f and also con-
verges a.e. to g, then f(x) = g(x) a.e., i.e. the limit function is
uniquely determined to within a set of measure zero.

We shall have occasion in the sequel to refer to several differ-
ent kinds of convergence, and we shall consistently employ
terminology similar to that of the preceding paragraphs. Thus,
if we define a new kind of convergence of a sequence {f,} to a
limit £, by specifying the sense in which f,, is to be near to f for
large n, then we shall use without any further explanation the
notion of a sequence which is fundamental in this new sense—
meaning that, for large » and m, the differences f, — fn are to
be near to 0 in the specified sense of nearness.

Axn example of another kind of convergence for sequences of
real valued functions is uniform convergence a.e. The sequence
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{fa} converges to f uniformly a.e. if there exists a set £, of meas-
ure zero such that, for every ¢ > 0, an integer 1y = #y(e) can be
found with the property that

[ falx) —f(x) | < ¢ if n=m and x¢ E,

in other words if the sequence of functions converges uniformly
to f (in the ordinary sense of that phrase) on the set X — E,.
Once more it is true, and easily verified, that a sequence con-
verges uniformly a.e. to some limit function if and only if it is
uniformly fundamental a.e.

The following result (known as Egoroff’s theorem) establishes
an interesting and useful connection between convergence a.e.
and uniform convergence.

Theorem A. Ij E is a measurable set of finite measure,
and if { fu} is a sequence of a.e. finite valued measurable func-
tions which converges a.e. on E to a finite valued measurable
Junction f, then, for every € > O, there exists a measurable
subset F of E such that p(F) < € and such that the sequence
{ fa} converges to f uniformly on E — F.

Proof. By omitting, if necessary, a set of measure zero from
E, we may assume that the sequence {f,} converges to f every-
where on E. If

E = (i fe: 1) = s | < -,

then
E]m CEsz"',

and, since the sequence {f,} converges to f on E,
lim, E.,» D E

for every m =1, 2, ---. Hence lim, u(E — E,™) = 0, so that
there exists a positive integer 7y = n9(m) such that

I‘(E - Eno(m)m) < 2'%
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(To be sure 7y depends also on ¢, but e remains fixed throughout
the entire proof.) If

F= U;-l (E = Epom™)
then F' is a measurable set, ¥ c E, and

p(F) = p(Une1 (E = Enym™) £ Yoot (E — Epoy™) < e

Since E— F = E N (-1 E..oy™, and since, therefore, for n =
no(m) and for x in E — F, we have x ¢ E,™, it follows that

1 .

| fa(x) —f(x)| < —, which proves uniform convergence on
m

E-F |

Motivated by Egoroff’s theorem we introduce the concept of
almost uniform convergence. A sequence {f.} of a.e. finite
valued measurable functions will be said to converge to the meas-
urable function f almost uniformly if, for every e > 0, there
exists a measurable set F such that u(F) < e and such that the
sequence {f.} converges to f uniformly on . In this language
Egoroff’s theorem asserts that on a set of finite measure con-
vergence a.e. implies almost uniform convergence. The following
result goes in the converse direction.

Theorem B. If {f.} is a sequence of measurable functions
which converges to f almost uniformly, then { f,} converges to f
a.e.

Proof. Let F, be a measurable set such that u(F,) <'71;

and such that the sequence {f.} converges to f uniformly on
F)on=12 ---. If F={)ye1Fy, then

1
I‘(F) = P'(Fn) < ;)

so that u(F) = 0, and it is clear that, for x in F’, {f.(x)} con-
verges to f(x). |

We remark that the phrase “almost uniform convergence”
is a somewhat confusing (but unfortunately standard) misnomer,
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which conflicts with the “almost everywhere” terminology. Some
such phrase as “nearly uniform convergence” might come closer
to suggesting the true state of affairs; as it stands, some care
has to be exercised to distinguish between almost uniform con-
vergence and almost everywhere uniform convergence.

(1) If f is any real valued, Lebesgue measurable function on the real line,
then there exists a Borel measurable function g such that f(x) = g(x) a.e.
(Hint: write E, = {x: f(x) < r} for every rational number 7, and use 13.B to
express E, in the form F; A N,, where F; is a Borel set and N, has measure zero.
Let N be a Borel set of measure zero containing {J, Ny and define g by

) = {0 if xeN,
E9 = 1) if xe'N.
Cf. 18.2)

(2) If E is a measurable set of positive finite measure, and if { f,} is a sequence
of a.e. finite valued measurable functions which is fundamental a.e., then there
exists a positive finite constant ¢ and a measurable subset F of E of positive
measure such that, for every n = 1,2, --. and for every x in F, | fu(x) | S «

(3) If E is a measurable set of g-finite measure, and if {f.} is a sequence of
a.e. finite valued measurable functions which converges a.e. on E to a finite
valued measurable function £, then there exists a sequence {E:} of measurable
sets such that u(E — |Ji-1 E:;) = 0 and such that the sequence {f.} converges
uniformly on each E;, i = 1,2, ---. (Hint: it is sufficient to prove the result
if u(E) < . In this case apply Egoroff’s theorem to find E; so that

1
WE - Ul B) <

and so that { .} converges uniformly on E;.)

(4) Let X be the set of positive integers, let S be the class of all subsets of
X, and, for E in S, let u(E) be the number of points in E. If x, is the character-
istic function of the set {1, ---, n}, then the sequence {xa} converges to 1
everywhere but it is not almost uniformly fundamental. In other words,
Egoroff's theorem is not true if £ is not of finite measure.

(5) For every essentially bounded function f, write || f]| = ess. sup. [f]-
If {fa} is a sequence of essentially bounded measurable functions, then the
sequence | fa} converges to f uniformly a.e. if and only if lim, || f» —f]| = 0.

(6) Is the set 9 of all essentially bounded measurable functions a Banach
space with respect to the norm described in (5)?

§22. CONVERGENCE IN MEASURE

In this section, as in the preceding one, we shall work through-
out with a fixed measure space (X,S,u).
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Theorem A. Suppose that f and fo,n = 1,2, - -+, are real
valued measurable functions on a set E of finite measure, and
write, for every ¢ > 0,

E(e) = {x:|fa®) —f@) | 2 ¢, n=1,2,--.
The sequence { fn} converges to f a.e. on E if and only if
lim, w(E N Unan En(e)) =0
Sfor every € > 0.

Proof. It follows from the definition of convergence that the
sequence {fa.(x)} of real numbers fails to converge to the real
number f(x) if and only if there is a positive number e such that
x belongs to E.(¢) for an infinite number of values of n. In
other words, if D is the set of those points x at which { f.(x)} does
not converge to f(x), then

1
D = .o lim sup, E,(¢) = Ui-1lim sup, E, (Z)

Consequently a necessary and sufficient condition that u(E N D)
= 0 (i.e. that the sequence {f.} converge to f a.e. on E) is that
w(E N lim sup, E,(¢)) = O for every ¢ > 0. The desired conclu-
sion follows from the relations

w(E 0 lim sup, En(€)) = p(E N Nt Upan En(e)) =
= lim, w(E N Unan En(e). 1

The desire to investigate the result of an obvious weakening
of the condition of Theorem A motivates the definition of still
another method of convergence which has frequent application.
A sequence {f.} of a.e. finite valued, measurable functions con-
verges in measure to the measurable function f if, for every
e > 0, lim, p({x: | fa(x) —f(x) | = ¢}) = 0. In accordance with
our general comment on different kinds of convergence in the
preceding section, we shall say that a sequence {f.} of a.e.
finite valued measurable functions is fundamental in measure
if, for every e > 0,

({x: | fol) = fu(®) | Z ¢)) 20 as nandm — .
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It follows trivially from Theorem A that if a sequence of
finite valued measurable functions converges a.e. to a finite
limit [or is fundamental a.e.] on a set E of finite measure, then it
converges in measure [or is fundamental in measure] on E. The
following theorem is a slight strengthening of this assertion in
that it makes no assumptions of finiteness.

Theorem B. Almost uniform convergence implies conver-
gence in measure.

Proof. If {f.] converges to f almost uniformly, then, for
any two positive numbers e and 5, there exists a measurable set
F such that u(F) < 8 and such that | f,(¥) — f(x) | < ¢, whenever
x belongs to F' and # is sufficiently large. |

Theorem C. If {f.} converges in measure to f, then {f.}
is fundamental in measure. If also { f,} converges in measure
to g, thenf = g a.e.

Proof. The first assertion of the theorem follows from the
relation

{x:]| falx) — fux) | 2 ¢ <
e (w119 91 2 5 U foe 0 = 1 2 5]

To prove the second assertion, we observe that, similarly,

{x:]f(x) —glx) | Z ¢}
clxs 1t =91 2 3 U foe 110 - g9 2 -

Since, by proper choice of #, the measure of both sets on the
right can be made arbitrarily small, we have

u({x: | f) —g(¥) | 2 ) =0

for every e > 0; this implies, as asserted, that f = ga.e. |

In addition to these comparatively elementary remarks, we
shall present two slightly deeper properties of convergence in
measure.
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Theorem D. If { f,} is a sequence of measurable functions
which is fundamental in measure, then some subsequence { fn,}
is almost uniformly fundamental.

Proof. For any positive integer k¥ we may find an integer 7(k)
such that if » 2 7(k) and m = 7(k), then

w(fr: 1m0 = a1 2 3)) <
We write

n = ﬁ(l), ng = (nl + 1) u -7'2'(2), ng = (n2 + 1) U ﬁ(:;)) Tt

then n; < n, < m3 <- -+, so that the sequence {f,,} is indeed an
infinite subsequence of {fa}. If

E, = {x= |fl) = frua) | 2 Eli}

and k £ i < j, then, for every x which does not belong to E; U
Eiy1 U Egy2 U-- - we have

) = 1olo) | S i o) =) | < 55

so that, in other words, the sequence {f,} is uniformly funda-
mental on X — (E; U Ek+l U---). Since

pEe U By U--2) S Znce iEm) < 5

the proof of Theorem D is complete. 1

1

21: -1

Theorem E. If { f.} is a sequence of measurable functions
which is fundamental in measure, then there exists a measurable
Sunction f such that { f,} converges in measure to f.

Proof. By Theorem D we can find a subsequence {f,,} which
is almost uniformly fundamental and therefore fundamental a.e.;
we write f(x) = lim, f,,(x) for every x for which the limit exists.
We observe that, for every ¢ > 0,

{51 1fal) = /) | 2 ¢}
1) = S | 2 5] U e 1) =16 | 2 5]
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The measure of the first term on the right is by hypothesis arbi-
trarily small if #» and n, are sufficiently large, and the measure of
the second term also approaches 0 (as & — ), since almost
uniform convergence implies convergence in measure. |

(1) Suppose that the measure space (X,S,u) is totally finite, and let {fa}
and {ga} be sequences of finite valued measurable functions converging in meas-
ure to f and g respectively.

(1a) If @ and B are real constants, then {af. + Bga} converges in measure to
af + Bg; {| f |} converges in measure to | f|.

(1b) If f = 0 a.e., then {/f?} converges in measure to f2

(1c) The sequence {fag} converges in measure to fg. (Hint: given a positive
number 8, find a constant ¢ such that if E = {x: | g(x) | £ ¢}, then u(X — E)
< 8, and consndcr the situation separately on Eand X — E.)

( (ld) The sequence {fa?} converges in measure to f2, (Hmt apply (1b) to
f n

(le) The sequence { fnga} converges in measure to fg. (Hint: apply the
identity which expresses a product in terms of sums and squares.)

(1f) Are the statements (la)-(le) valid for measure spaces which are not
totally finite?

(2) Every subsequence of a sequence which is fundamental in measure is
fundamental in measure.

(3) If {fa} is a sequence of measurable functions which is fundamental in
measure, and if {f.} and {fs;} are subsequences which converge a.e. to the
limit functionsj and g respectively, then f = g a.e.

(4) If X is the set of positive integers, S is the class of all subsets of X, and,
for every E in S, u(E) is the number of points in E, then, for the measure space
(X,S,u), convergence in measure is equivalent to umform convergence every-
where.

(5) Is it necessarily true on a set of infinite measure that convergence a.e.
implies convergence in measure? (Cf. 21.4 and (4).)

(6) Let the measure space X be the closed unit interval with Lebesgue meas-
ure. If,forn =12 ---,

i—1

Eni=[ 7 );]) i=1,-,n

and if x.' is the characteristic function of E,% then the sequence {xi!, x2!, x2%,
X3!, xa%, xa%, -+ -} converges in measure to 0, but fails to converge at any point
of X.

(7) Let {E.} be a sequence of measurable sets and let x» be the character-
istic function of E,,n = 1,2, - -. The sequence {xx} is fundamental in measure
if and only if p(En,En) — O asnand m — . (For the definition of p see 9.4.)
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Chapter V

INTEGRATION

§23. INTEGRABLE SIMPLE FUNCTIONS

A simple function f = Y ?.; aixg, on a measure space (X,S,u)
is integrable if u(E;) < « for every index ¢ for which «; # 0.
The integral of £, in symbols

[rdute) o [ran
is defined by f fdu = S0, au(ED). Tt follows easily from the ad-

ditivity of u that if f is also equal to 3 v, Bjxr, then f Jfdp =

> 7y B;u(Fy), i.e. that the value of the integral is independent
of the representation of f and is therefore unambiguously defined.
We observe that the absolute value of an integrable simple func-
tion, a finite, constant multiple of an integrable simple function,
and the sum of two integrable simple functions are integrable
simple functions.

If E is a measurable set and f is an integrable simple function,
then it is easy to see that the function xgf is an integrable simple
function also; we define the integral of f over E by

fE fau = [xsfin.

The simplest example of an integrable simple function is the
characteristic function of a measurable set E of finite measure;

we have | xzdu =Ldy = u(E).
95
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In the sequel we shall define the notions of integrability and
integral on a wider domain than the class of integrable simple
functions. Some useful definitions and the statements of several
important results (but very few proofs) depend only on such
elementary properties of integration as we have already explicitly
mentioned. In order to avoid unnecessary duplication, we shall
therefore proceed as follows. Throughout this section we shall
use the word “function” as an abbreviation for ‘“‘simple function.”
As a consequence of this policy all our definitions and theorems
will make sense not only for simple functions but also for the
wider class we shall subsequently consider. The proofs in this
section will, however, apply to simple functions only; we shall
complete the proofs, so that they will apply to the more general
case also, a little later.

The proofs of Theorem A and B below are omitted; these
results are immediate consequences of the definitions and, in the
case of Theorem A, an obvious and simple computation.

Theorem A. If f and g are integrable functions and a and
B are real numbers, then

[(of + Bedu = o[ + 8 [ g
Theorem B. If an integrable function f is non negative

a.e., t/zenffdu = 0.

Theorem C. If f and g are integrable functions such that

f Z ga.e., then
[fan = [edu

Proof. Apply Theorem B to f — g in place of /. |
Theorem D. If f and g are integrable functions, then

17+ gldu s [171au + [ 2l

Proof. Apply Theorem C to |f| + | g| and | f + g| in place
of f and g, respectively. |
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Theorem E. If f is an integrable function, then

| Jrdu < 17 b

Proof. Apply Theorem C first to | f| and f and then to | f]|
and —f. |

Theorem F. Iff is an integrable funrtion, a and B are real
numbers, and E is a measurable set such that, for x in E,
a = f(x) £ B, then

wmgbwgmm

Proof. Since the principal assumption is equivalent to the
relation axe < xef < Bxe, the desired result follows from
Theorem C if p(E) < =; the case in which u(E) = « is easily
treated by direct application of the definition of integrability. ||

The indefinite integral of an integrable function f is the set

function v, defined for every measurable set £ by »(E) = f fdp.
£

Theorem G. If an integrable function f is non negative a.e.,
then its indefinite integral is monotone.

Proof. If E and F are measurable sets such that E c F,
then xgf £ xrf a.e., and the desired result follows from Theorem
C. 1

A finite valued set function v defined on the class of all measur-
able sets of a measure space (X,S,u) is absolutely continuous if
for every positive number € there exists a positive number & such
that | »(E) | < e for every measurable set E for which u(E) < 8.

Theorem H. The indefinite integral of an integrable function
is absolutely continuous.

Proof. If ¢ is any positive number greater than all the values
of | f|, then, for every measurable set E, we have

lb%%m@-l
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Theorem 1. The indefinite integral of an integrable func-
tion is countably additive.

Proof. If f is the characteristic function of a measurable set
E of finite measure, then the assertion of countable additivity for
the indefinite integral of f is just a restatement of the countable
additivity of u on measurable subsets of E. The assertion of the
theorem for arbitrary integrable simple functions is a consequence
of the fact that every such function is a finite linear combination
of characteristic functions. |

If f and g are integrable functions, we define the distance,
p(f,g), between them by the equation

p(0) = [1f = gldu

The function p deserves the name ““distance” in every respect but
one. Itis true and trivial that

P(f)f) = 0) P(f)g) = P(g,f)) and PU)g) P(g)h) + P(h)f)

It is not true, however, that if p(f,g) = O, then f = g. The dis-
tance between two integrable functions can, for instance, vanish
if they are equal almost everywhere (but not necessarily every-
where). In a subsequent section we shall study this phenomenon
in some detail.

(1) If one of two simple functions is integrable, then so is their product.

(2) If E and F are measurable sets of finite measure, then p(xg,xr) =
u(EAF). Cf.9.4 and 22.7.

(3) Let (X,S,n) be the closed unit interval with Lebesgue measure, and, for
some fixed point x in X, write ¥(E) = xg(xo). Is the set function » absolutely

continuous?

(4) If v is an absolutely continuous set function on the class of all measurable
sets of a measure space (X,S,u), then ¥(E) = O for every measurable set E for
which u(E) = 0.

(5) If a totally finite measure space X consists of a finite number of points,
then every real valued measurable function on X is an integrable simple func-
tion, and the theory of integration specializes to the theory of finite sums.

§24. SEQUENCES OF INTEGRABLE SIMPLE FUNCTIONS

We shall continue in this section to work with a fixed measure
space (X,S,u), and to use the device of abbreviating ‘“‘simple
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function” to “function.” Since all the methods of this section
(with only one minor exception, occurring at the end of the proof
of Theorem D) are based on the general results of the preceding
section, it will turn out that not only the statements but even the
proofs of the following theorems will remain unaltered when we

turn to the general case.
A sequence { f,} of integrable functions is fundamental in the

mean, or mean fundamental, if
o(fasfm) 2 0 as n and m — o,

Theorem A. A mean fundamental sequence { f.} of integra-
ble functions is fundamental in measure.

Proof. If, for any fixed positive number e,

Eum = {x: | fa(x) = fu(x) | Z ¢},

then

o nsfo) = [[1o = S lds 2 [[ 10 = S ldt 2 eb(Eum),

so that u(E,,) — Oasnandm — «. |

Theorem B. If {f.} is a mean fundamental sequence of
integrable functions, and if the indefinite integral of fn is va,
n=172 -, then

v(E) = lim, va(E)
exists for every measurable set E, and the set function v is finite
valued and countably additive.

Proof. Since | va(E) — vm(E) | < f | fo = fn|du — Oaszand

m — oo, the existence, finiteness, and uniformity of the limit are
clear, and it follows from the finite additivity of limits that » is
finitely additive. If {E,} is a disjoint sequence of measurable sets
whose union is E, then we have, for every pair of positive integers
n and k
| w(E) — 2hav(E) | =

S| v(E) — va(E) | + | va(E) — iarva(ES) |

+ | va(Ub=1 E) — »(Ut-1 ED |
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The first and third terms of the right side of this inequality may
be made arbitrarily small by choosing » sufficiently large, and,
for fixed #, the middle term may be made arbitrarily small by
choosing & sufficiently large. This proves that

v(E) = limg Z?-l v(E) = i v(E). |

If {v.} is a sequence of finite valued set functions defined for
all measurable sets, we say that the terms of the sequence are
uniformly absolutely continuous whenever for every positive num-
ber e there exists a positive number § such that | »,(E) | < € for
every measurable set E for which u(E) < 8, and for every positive
integer 7.

Theorem C. If {f.} is a mean fundamental sequence of
integrable functions, and if the indefinite integral of f, is vn,
n=1,2, -, then the set functions v, are uniformly absolutely
continuous.

Proof. If ¢ > 0, let ny be a positive integer such that, for
n = ngand m = ny,

€
Jltn = talu <,
and let & be a positive number such that
flfﬂld“ <£) n = 1) *tty Mo
E 2

for every measurable set E for which u(E) < 8; (cf. 23.H). If
E is a measurable set for which u(E) < 8§ and if n < n,, then

| va(E) | .s.fEIf,. ldu < &

if, on the other hand, n > n,, then

|90 B) | 5 [1fo = Sl [ | fuldn < e 0

Since the following theorem is of no particular importance in
the general case, we shall restrict its statement and proof to the
case of simple functions only.
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Theorem D. If {f.} and {g.} are mean fundamental
sequences of integrable simple functions which converge in meas-
ure to the same measurable function f, if the indefinite integrals
of fn and gn are vy and N, respectively, and if, for every measur-
able set E,

v(E) = lim, v, (E) and N\E) = lim, \.(E),
then the set functions v and \ are identical.

Proof. Since, for every ¢ > 0,
Eo= {x:|ful¥) —ga(x) | Z ¢} €

c el —s@ 12 2} U [w 150 - a0 1 23],

it follows that lim, u(E,) = 0. Hence, if E is a measurable set
of finite measure, then in the relation

[1fe—galtus [ Vfomgnldut [ |faldu+[ [gnla
E E—Ea En Ep EnE,

the first term on the right is dominated by eu(E), and the last
two terms can be made arbitrarily small by choosing # sufficiently
large, because of the uniform absolute continuity proved in
Theorem C. It follows that

lim, | va(E) — Ma(E) | = 0,

and hence that »(E) = NE). Since » and \ are both countably
additive, it follows that »(E) = N(E) for every measurable set
E of o-finite measure.

Since the f, and g, are simple functions, each of them is defined
in terms of a finite class of measurable sets of finite measure.
If E, is the union of all sets in all these finite classes, then K, is
a measurable set of o—finite measure, and we have, for every
measurable set E,

va(E — Eo) = M(E — Eo) =0

and therefore v(E — E;) = N(E — E;) = 0. Since this implies
that »(E) = »(E N E;) and M(E) = ME N E,), the proof of
Theorem D is complete. |
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(1) Is the set of all integrable simple functions a complete metric space with
respect to the distance p?

(2) In the notation of Theorem B, if { E,} is a disjoint sequence of measurable
sets, then the series Y 5.1 ?(Es) converges absolutely. (Hint: the series con-
verges unconditionally.)

§ 25. INTEGRABLE FUNCTIONS

An ae. finite valued, measurable function f on a measure
space (X,S,u) is integrable if there exists a mean fundamental
sequence {f.} of integrable simple functions which converges in
measure to f. The integral of /, in symbols

[ or [ fau

is defined by f fdu = lim., f fudu. It follows from 24.D (with E

= U.N(f.)) that the value of the integral of f is uniquely de-
termined by any particular such sequence. We emphasize the
fact that the value of the integral is always finite. We observe
that it follows from the known and obvious properties of mean
convergence and convergence in measure that the absolute value
of an integrable function, a finite constant multiple of an in-
tegrable function, and the sum of two integrable functions are
integrable functions. The relations

=501+ and fm=3(fl -1

show also that if f is integrable, then f* and f~ are integrable.

If E is a measurable set and if {f,} is a mean fundamental
sequence of integrable simple functions converging in measure
to the integrable function f, then it is easy to see that the sequence
{xefs} is mean fundamental and converges in measure to xgf.
We define the integral of f over E by

Lfd# = | xefdp.

We recall that the theorems of §§ 23 and 24 were stated for
general integrable functions but were proved for integrable simple
functions only. We are now in a position to complete their
proofs.
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The results 23.A and 23.B follow immediately from elementary
properties of limits; 23.C-23.G follow from 23.B verbatim as
before.

To prove the absolute continuity of an indefinite integral,
23.H, let {f,} be a mean fundamental sequence of integrable
simple functions which converges in measure to the integrable
function f. We have

ILfa’MI_S_ ILf,.du|+|Lfndu —Lfdﬂl,

for every measurable set E. Since the f, are simple functions,
the theorem 24.C on uniform absolute continuity may be applied
to prove that the first term on the right becomes arbitrarily
small if the measure of E is taken sufficiently small. The second
term on the right approaches 0 as # — , by the definition of

f fdu; this completes the proof of 23.H.
E

The proof of the countable additivity of an indefinite integral
is even simpler. Indeed, using the notation of the preceding
paragraph, the fact that the f, are simple functions justifies the
application of 24.B, which then yields exactly the assertion of
23.1.

The proofs of 24.A-24.C were based on the statements, and
not on the proofs, of the results of § 23, and are therefore valid in
the general case. This remark completes the proofs of all the
theorems of the preceding two sections.

We shall say that a sequence {f.} of integrable functions
converges in the mean, or mean converges, to an integrable
function f if

p(fuf) = [lfo=fldu =0 as n - .

Our first result concerning this concept is extremely similar, in
statement and in proof, to 24.A.

Theorem A. If {f.} is a sequence of integrable functions
which converges in the mean to f, then {fa} converges to f in
measure.
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Proof. If, for any fixed positive number e,

E. = {x:|falx) = f(x) | = ¢},

then

fifn=slawz [ 12— ldu 2 i,

so that p(E,) — Oasn — «. |
Theorem B. If f is an a.e. non negative integrable function,
then a necessary and sufficient condition that f Sfdu = 0 is that
f=0a..

Proof. If f = 0 a.e., then the sequence each of whose terms
is identically zero is a mean fundamental sequence of integrable
simple functions which converges in measure to f, and it follows

that f fdu = 0. To prove the converse, we observe that if {/.}

is a mean fundamental sequence of integrable simple functions
which converges in measure to f, then we may assume that
f» Z 0, since we may replace each f, by its absolute value. The

assumption f fdp =0 implies that lim, f fadu = 0, ie. that

{fa} mean converges to 0. It follows from Theorem A that
{fa} converges to 0 in measure and hence the desired result is
implied by 22.C. |

Theorem C. If f is an integrable function and E is a set of

measure zero, then
f fdu = 0.
E

Proof. Since f fdu = f xefdu, and since the characteristic
E

function of a set of measure zero vanishes a.e., the desired result
follows from Theorem B. |

Theorem D. If f is an integrable function which is positive
a.c. on a measurable set E, and if f Jdu = 0, then u(E) = 0.
E
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Proof. We write Fy = {x:f(x) > 0} and F,, = {x:f(x) = }z} ,

n=1,2, ---; since the assumption of positiveness implies that
E — F, is a set of measure zero, we have merely to prove that
E N F, is one also. Since

1
0= fdug—p(EnFn)gos
En Py n

L

and since Fy = U, =1 Frn, the desired result follows from the

relation w(E N Fy) £ Y maiw(E N F,). 1
Theorem E. If f is an integrable function such that
f Jdu = 0 for every measurable set F, then f = 0 a.e.
P

Proof. If E = {x: f(x) > 0}, then, by hypothesis,ffdp =0,
E

and therefore, by Theorem D, E is a set of measure zero. Applying
the same reasoning to —f shows that {x: f(x) < 0} is a set of
measure zero. |

Theorem F. If f is an integrable function, then the set
N(f) = {x:f(x) = O} has o—finite measure.

Proof. Let {f.} be a mean fundamental sequence of integrable
simple functions which converges in measure to f. For every
n=1,2, ---; N(fs) is a measurable set of finite measure. If
E = N(f) — Ur.1 N(fa), and if F is any measurable subset of
E, then it follows from the relation

j; fdu = lim, j; fodu =0

and Theorem E that f = 0 a.e. on E. In view of the definition
of N(f) this implies that u(E) = 0; we have

N(f) c Uit N(fu) UVE. ]
It is frequently useful to define the symbol f Jfdp for certain

non integrable functions f. If| for instance, f is an extended real
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valued, measurable function such that f = 0 a.e. and if f is nor
integrable, then we write
[ffau = .

The most general class of functions f for which it is convenient
to define f Jdu is the class of all those extended real valued measur-

able functions f for which at least one of the two functions f*
and f~ is integrable; in that case we write

f fdu = f Frdy — f F=du,

Since at most one of the two numbers, f Sftdu and f fdp, 1s

infinite, the value of f Jfdu 1s always 4o, —oo, or a finite real

number—it is never the indeterminate form o — . We shall
make free use of this extended notion of integration, but we shall
continue to apply the adjective “integrable” to such functions
only as are integrable in the sense of our former definitions.

(1) If X is the space of positive integers (described, for instance, in 22.4),
then a function f is integrable if and only if the series D a1 | f(n) | is convergent,

and, if this condition is satisfied, thenffdp = Y2 1 f(n).

(2) If f is a non negative integrable function, then its indefinite integral is a
finite measure on the class of all measurable sets.
(3) If fis integrable, then, for every positive number ¢,

p(fx: [f() | Z ¢}) < .

(4) If g is a finite, increasing, and continuous function of a real variable, and
[ig is the Lebesgue-Stieltjes measure induced by g (cf. 15.9), and if f is a function

which is integrable with respect to this measure, then the intcgralff(x)dﬁx(x)

is called the Lebesgue-Stieltjes integral of f with respect to g and is denoted by
4o

f . S(x)dg(x). If, in particular, g(x) = x, then we obtain the Lebesgue integral,

denoted byf_:wf(x)dx. If f is a continuous function such that N(f) is a bounded
set, then f is Lebesgue integrable.
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§ 26. SEQUENCES OF INTEGRABLE FUNCTIONS

Theorem A. If {f.} is a mean fundamental sequence of
integrable simple functions which converges in measure to the
integrable function f, then

p(fofn) =flf—f» |dp = 0 as n — oo

hence, to every integrable function f and to every positive num-
ber e, there corresponds an integrable simple function g such
that p(f,2) < e.

Proof. For any fixed positive integer m, {| fa — fm |} is a mean
fundamental sequence of integrable simple functions which con-
verges in measure to | f — fn |, and, therefore,

J17 =t = timo 110 = fold
The fact that the sequence { f,} is mean fundamental implies the
desired result. |

Theorem B. If {f.} is a mean fundamental sequence of
integrable functions, then there exists an integrable function f

such that p(fn,f) — O (and consequently f Sndu — f fdu) as

n — o,

Proof. By Theorem A, for each positive integer # there is an
. . 1
integrable simple function g, such that p(f,,g.) < ot It follows

that {g.} is a mean fundamental sequence of integrable simple
functions; let f be a measurable (and therefore integrable) func-
tion such that {g,} converges in measure to f. Since

05 | [fudu ~ [1dul 5 [1 2 = Flas = 0Uf) 5

= P(fmgn) + P(gmf))
the desired result follows from Theorem A. |
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In order to phrase our next result in a concise and intuitive
fashion, we recall first the definition of a certain kind of con-
tinuity for set functions. A finite valued set function » on a class
E of sets i1s continuous from above at 0 (cf. § 9) if, for every de-
creasing sequence {E,} of sets in E for which lim, E, = 0, we
have lim, »(E,) = 0. If {»,} is a sequence of such finite valued
set functions on E, we shall say that the terms of the sequence
are equicontinuous from above at 0 if, for every decreasing se-
quence {E,} of sets in E for which lim, E, = 0, and for every
positive number e, there exists a positive integer mg such that if
m Z mp, then | v,(E,) | < e m=1,2, ---.

Theorem C. A sequence {f.} of integrable functions con-
verges in the mean to the integrable function f if and only if
{ fa} converges in measure to f and the indefinite integrals of
| faly m =1, 2, -, are uniformly absolutely continuous and
equicontinuous from above at 0.

Proof. We prove first the necessity of the conditions. Since
convergence in measure and uniform absolute continuity follow
from 25.A and 24.C respectively, we have only to prove the as-
serted equicontinuity.

The mean convergence of { f,} tofimplies that to every positive
number e there corresponds a positive integer 7, such that if

n = ngy, then f | fa —fldu < :,:- Since the indefinite integral of

a non negative integrable function is a finite measure (23.1), it
follows from 9.E that such an indefinite integral is continuous
from above at 0. Consequently, if { E,.} is a decreasing sequence
of measurable sets with an empty intersection, then there exists
a positive integer m, such that, for m = m,,

€
P

fﬁnlfla'ﬂ < % and fgmlf" = ldu < 5

n = 1’ * vy Ao
Hence, if m = my, then we have

[ isldss [ 1fn =l [ 1f1dn < e
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for every positive integer #, and this is exactly the desired equi-
continuity result.

We turn to the proof of sufficiency. Since a countable union of
measurable sets of o—finite measure is a measurable set of s—finite
measure, it follows from 25.F that

Ey = Un-1 {x:fn(x) 5= 0}

is such a set. If {E,} is an increasing sequence of measurable
sets of finite measure such that lim, E, = Ey, and if F, =
Ey—E, n=1,2, .. then {F,} is a decreasing sequence and
lim, F, = 0. The assumed equicontinuity implies that, for
every positive number §, there exists a positive integer k such that

)
f | fa ldu < =, and consequently
F 2

fnlfm — faldu §L|f,,. |du +L|f.. |du < a.

If for any fixed ¢ > 0 we write
Gmn = {x: lfm(x) _fﬂ(x) I = e}’

then it follows that

INALE [ M paldn [ = faldu s

< ew(E) + fE o = Sl

By convergence in measure and uniform absolute continuity, the
second term on the dominant side of this chain of inequalities
may be made arbitrarily small by choosing m and # sufficiently
large, so that

lim supn [ | f = foldu S eu().

Since e is arbitrary, it follows that

limm,n j;klfm "fn |d}t = 0'



110 INTEGRATION [Skc. 26)

Since

f‘fm — fnldu =Lu|fm — foldu =

[ 1= a4 [ S = Sl

we have

lim supma [|n = folds < 3,
and therefore, since § is arbitrary,

mmﬂﬁ—ﬂw=a

We have proved, in other words, that the sequence { f,} is funda-
mental in the mean; it follows from Theorem B that there exists
an integrable function g such that {f.} mean converges to g.
Since mean convergence implies convergence in measure, we must
have f = gae. |

The following result is known as Lebesgue’s bounded con-
vergence theorem.

Theorem D. If {f.} is a sequence of integrable functions
which converges in measure to f [or else converges to f a.e.], and
if g is an integrable function such that | fu(x) | < | g(x) | a.e.,
n=1,2, -, then f is integrable and the sequence { f,} con-
verges to f in the mean.

Proof. In the case of convergence in measure, the theorem is
an immediate corollary of Theorem C—the uniformities required
in that theorem are all consequences of the inequality

J17- 1w éngldu.

The case of convergence a.e. may be reduced to that of conver-
gence in measure (even though the integrals are not necessarily
over a set of finite measure, cf. 22.4 and 22.5) by making use of
the existence of g. If we assume, as we may without any loss
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of generality, that |fu(x)| < |g)| and |f(x)| < |gx)| for
every x in X, then we have, for every fixed positive number e,

En= Usma [0 1) /0| 2 4 < [ 59 | 2 5],

and therefore u(E,) < o, 7 = 1,2, ---. Since the assumption of
convergence a.e. implies that u([\r-; E,) = 0, it follows from
9.E that

lim sup, p({x: | fa(x) = f*) | Z ¢}) < lim, w(E,) =
= u(lim, E,) = 0.

In other words, convergence a.e., together with being bounded
by an integrable function, implies convergence in measure, and
the proof of the theorem is complete. |

(1) Is the set of all integrable functions a Banach space with respect to the
norm defined by || £ || =f|f|du?

(2) If {fa} is a uniformly fundamental sequence of functions, integrable over
a measurable set E of finite measure, then the function f, defined by f(x) =
lim, fa(x), is integrable over E andf |fo—=fldu = 0asn — =,
E

(3) If the measure space (X,S,u) is finite, then Theorem C remains true even
if the equicontinuity condition is omitted.
(4) Let (X,S,u) be the space of positive integers (cf. 22.4).

(4a) Write
b = % if 1S ksn,
0 if k> n

The sequence { fa} may be used to show that the equicontinuity condition may
not, in general, be omitted from Theorem C.

(4b) The sequence described in (4a) may be used to show also that if {f,}
is a uniformly convergent sequence of integrable functions whose limit function

fis also integrable, then we do not necessarily have lim, ff,,du =ffdn; (cf. ()
above).
(4c) Write

1 .
f’.(k)= ‘k' lf l§k§n,
0 if k>n

The sequence { f,} may be used to show that the limit of a uniformly convergent
sequence of integrable functions need not be integrable.
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(5) Let X be the closed unit interval with Lebesgue measure and let {E,)

be a decreasing sequence of open intervals such that u(E,) = = 1,2, ---.

The sequence {#xz,} may be used to show that the boundedness condition cannot
be omitted from Theorem D.

(6) If {fa} is a sequence of integrable functions which converges in the mean
to the integrable function f, and if g is an essentially bounded measurable func-
tion, then { f.g} mean converges to fg.

(7) If { fx} is a sequence of non negative integrable functions which converges

a.e. to an integrable function f, and ifff,.dp =ffdu, n=1,2, ---, then {fa}

converges to f in the mean. (Hint: write gn = fn — f and observe that the
trivial inequality | fn — f| S fa +f implies that 0 S g,~ < f. The bounded
convergence theorem may therefore be applied to the sequence {g.~}; the de-

sired result follows from the fact thatfg,.*dy —fg,.‘du =0,n=12 ---)

§27. PROPERTIES OF INTEGRALS

Theorem A. If f is measurable, g is integrable, and | f| <
| g| a.e., then f is integrable.

Proof. Consideration of the positive and negative parts of f
shows that it is sufficient to prove the theorem for non negative
functions f. If f is a simple function, the result is clear. In the
general case there is an increasing sequence {f.} of non negative
simple functions such that lim, f.(x) = f(x) for all x in X. Since
0 < f. < | g, each £, is integrable and the desired result follows
from the bounded convergence theorem. |

Theorem B. If {f.} is an increasing sequence of extended
real valued non negative measurable functions and if lim, f,(x)

= f(x) a.e., then lim, ff,,d,; =ffd,‘_

Proof. If f is integrable, then the result follows from the
bounded convergence theorem and Theorem A. The only novel
feature of the present theorem is its application to the not neces-

sarily integrable case; we have to prove that if f fdu = =, then

lim, ff,.dp. = o, or, in other words, that if lim, ff,.du < o, then
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f is integrable. From the finiteness of the limit we may conclude
that

i | [fodis = [fodu | = 0.

Since fn — fa is of constant sign for each fixed m and », we have

| [ = [fud| = [1 1 = s

so that the sequence {f.} is mean convergent and therefore
(26.B) mean converges to an integrable function g. Since mean
convergence implies convergence in measure, and therefore a.e.
convergence for some subsequence, we have f = ga.e. |

Theorem C. A measurable function is integrable if and only
if its absolute value is integrable.

Proof. The new part of this theorem is the assertion that the
integrability of | f | implies that of £, and this follows from Theorem
A with | f| in place of g. |}

Theorem D. Iff is integrable and g is an essentially bounded
measurable function, then fg is integrable.

Proof. If |g| < ¢ a.e., then |fg| < | f| a.e. and therefore
the result follows from Theorem C. |

Theorem E. Iff is an essentially bounded measurable func-
tion and E is a measurable set of finite measure, then f is
integrable over E.

Proof. Since the characteristic function of a measurable set
of finite measure is an integrable function, the result follows
from Theorem D with xg and f in place of f and g. |}

Our next and final result is known as Fatou’s lemma.

Theorem F. If { f,} is a sequence of non negative integrable
Junctions for which

lim inf, f fadu < o,
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then the function f, defined by
f(x) = lim inf, fa(x),

is integrable and
f fdu < liminf, f fodu.

Proof. If ga(x) = inf{fi(x): n £ i < 0}, then g, < f, and
the sequence {g,} is increasing. Since f gndu S f fndu, it follows
that

lim, fg,.dp = lim inf, ff,.d;u < oo,

Since lim, g.(x) = lim inf,, f.(x) = f(x), it follows from Theorem
B that f is integrable and

f fdu = lima, f 2.du < lim inf, f fodu. 1

(1) If f is a measurable function, g is an integrable function, and a and B
are real numbers such that a S f(x) < B a.e., then there exists a real number v,

a v =8, such thatfflgldp =‘y-f|g|dp. (Hint:
o [lglds s [f1gldu <8 [ glda)

This result is known as the mean value theorem for integrals.
(2) If {fa} is a sequence of integrable functions such that

Tier [l nlds < o,

then the series 3 _n. fa(x) converges a.e. to an integrable function f and

ffd# =21 ffndu-

(Hint: apply Theorem B to the sequence of partial sums of the series
Y we1|fa(x) | and recall that absolute convergence implies convergence.)

(3) If f and f, are integrable functions, » = 1, 2, - -, such that | fu(x) | £
| f(x) | a.e., then the functions f* and f, defined by

S*(x) = lim sups fo(x) and fa(x) = liminf, fu(x),

are integrable and

f f*du = lim sup,, f fudp Z lim inf, f fod 2 f fodp.
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(Hint: by considering separately the positive and negative parts, reduce the
general case to the case of non negative fa, and then apply Fatou’s lemma to
{f +/a} and {f = fa})

(4) A measurable function f is integrable over a measurable set E of finite
measure if and only if the series

Y- 1uE N {x: | f() | 2 n})

converges. (Hint: use Abel’s method of partial summation.) What can be
said if u(E) = 0, or if the summation is extended from n = 0?

(5) Suppose that {E,} is a sequence of measurable sets and m is any fixed
positive integer, and let G be the set of all those points which belong to E,
for at least m values of 7. Then G is measurable and

mu(G) S 25-1#(En).

(Hint: consider > ., f X, (*)du(x).)
¢
(6) Suppose that f is a finite valued, measurable function on a totally finite
measure space (X,S,u), and write
), w=1,2, -

k k k+1
Sn = "+:_'°§7‘# ({x:ﬁ <flx) = ;:

Then
f fdu = lim 5n,

in the sense that if f is integrable, then each series s, is absolutely convergent,
the limit exists, and is equal to the integral, and, conversely, if any one of the
series s» converges absolutely, then all others do, the limit exists, f is integrable,
and the equality holds. (Hint: it is sufficient to prove the result for non nega-
tive functions. Write

ko * E+1
f,.(x)=[§§ i §.<f(x)§—7,——, £k=0,1,2, -,
0 if f(x)=0,

and apply Theorem B. For the converse direction observe that
f(x) s 2fn(x) + I-‘(X))

so that f is integrable and therefore the preceding reasoning applies.)

(7) The following considerations are at the basis of an alternative popular
approach to integration. Let f be a non negative integrable function on a meas-
ure space (X,S,u). For every measurable set E we write

a(E) = inf {f(x): x e E},

and for every finite, disjoint class C = {Ey, - - -, E,} of measurable sets we write

5(C) = 228-1 a(EJu(Es).
We assert that the supremum of all numbers of the form $(C) is equal to f Sfdu.
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If fis a simple function, the result is clear. If g is a non negative simple function
such that g < f, say g = 3 0=, aixg;, we write C = {Ej, -, E,}. Then

f gdu = X i op(E) £ X0, a(EJu(Es) = 5(C).

[t follows that if {g,} is an increasing sequence of non negative simple functions
converging to f, then

lim, [ gadus S sup 5(C),
and thcreforcffdp < sup 5(C). On the other hand, for every C, s(C) §ffdp,

since $(C) is, in fact, the integral of a function such as g.

(7a) Does the result of the preceding paragraph extend to non integrable,
non negative functions?

(7b) If f is an integrable function on a totally finite measure space (X,S,u),
and if its distribution function g is continuous, (cf. 18.11), then

Jrau = [ Zxdg)

(cf. 25.4). (Hint: assume f = 0, and make use of (7) above by considering the
“approximating sums” s(C) of both integrals.)



Chapter VT

GENERAL SET FUNCTIONS

§28. SIGNED MEASURES

In this chapter we shall discuss a not too difficult but rather
useful generalization of the notion of measure; the principal dif-
ference between measures and the set functions we now propose
to treat is that the latter are not required to be non negative.

Suppose that u; and p, are two measures on a o-ring S of sub-
sets of a set X. If we define, for every set Ein S, u(E) = u(E) +
uz(E), then it is clear that u is a measure, and this result, on the
possibility of adding two measures, extends immediately to any
finite sum. Another way of manufacturing new measures is to
multiply a given measure by an arbitrary non negative constant.
Combining these two methods, we see that if {u;, + -+, ua} is a
finite set of measures and {a;, - - -, @,} is a finite set of non nega-
tive real numbers, then the set function u, defined for every set
E in S by

p(E) = 2201 aini(E),
is a measure.

The situation is different if we allow negative coefficients. If]
for instance, p; and pp are two measures on S, and if we define
p by u(E) = w(E) — us(E), then we face two new possibilities.
The first of these, namely that u may be negative on some sets,
is not only not a serious objection but in fact an interesting
phenomenon worth investigating. The second possibility presents,

however, a difficulty that has to be overcome before the investiga-
1y
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tion can begin. It can, namely, happen that p,(E) = py(E) = ;
what sense, in this case, can we make of the expression for u(E)?

To avoid the difficulty of indeterminate forms, we shall agree
to subtract two measures only if at least one of them is finite.
This convention 1s analogous to the one we adopted in presenting

the most general definition of the symbol f fdu. (We recall that

f fdu is defined for a measurable function f if and only if at least

one of the two functions f* and f~ is integrable, i.e. if and only
if at least one of the two set functions »* and »~, defined by

v H(E) = fE Srdu and »(E) = fE Fdu,

is a finite measure.) The analogy can be carried further: if f is

a measurable function such that f fdu is defined, then the set func-

tion », defined by »(E) = f fdy, is the difference of two measures.
E

The definition that we want to make is sufficiently motivated
by the preceding paragraphs. We define a signed measure as
an extended real valued, countably additive set function u on the
class of all measurable sets of a measurable space (X,S), such that
p(0) = 0, and such that p assumes at most one of the values
4+ and —oo,

We observe that implicit in the requirement of countable addi-
tivity is the requirement that if {E,} is a disjoint sequence of
measurable sets, then the series ) .y u(E,) is either convergent
or definitely divergent (to 4+ or —o)—in any case that the
symbol Y v, u(E,) makes sense.

The words “[totally] finite” and “[totally] o-finite” will be
used for signed measures just as for measures, except that u(E)
has to be replaced by | u(E) |, or, equivalently, u(E) < « has to
be replaced by —» < u(E) < ». For instance, a signed measure
p is totally finite if X is measurable and | p(X) | < .

One of our objectives in the following study is to prove that
every signed measure is the difference of two measures. If this
result is granted, it follows that we could have defined the concept


file:///fd/i
file:///jd/i

(Sec. 28] GENERAL SET FUNCTIONS 119

of signed measure on a ring and then attempted to copy the ex-
tension procedure for measures; and it follows equally that it
would have been a waste of time to do so, since we may, instead,
reduce the discussion of signed measures to that of measures.

It follows from the definition of signed measures, just as for
measures, that a signed measure is finitely additive and, there-
fore, subtractive.

Theorem A. If E and F are measurable sets and j is a signed
measure such that

ECF and |uF)| < o,
thenlp(E)l < oo,

Proof. We have u(F) = u(F — E) + u(E). If exactly one
of the summands is infinite, then so is u(F); if they are both
infinite, then (since u assumes at most one of the values 4+ and
—o) they are equal and again u(F') 1s infinite. Only one possi-
bility remains, namely that both summands are finite, and this
proves that every measurable subset of a set of finite signed
measure has finite signed measure. |

Theorem B. If u is a signed measure and {E,} is a disjoint
sequence of measurable sets such that | u(Unw1 En) | < , then
the series Y nmy w(E,) is absolutely convergent.

Proof. Write
En+ — {En if I‘(En) = 0;
0 if w(E,) <0,
and
o {E if w(E) =0,
T lo if w(E,) > 0.
Then

p(Ur=1 En?) = 0o w(En™)

#(Uzr-1 Ea7) = 20a1 w(Ea7).

Since the terms of both the last written series are of constant
sign, and since u takes on at most one of the values 4+ and —oo,
it follows that at least one of these series is convergent. Since

and
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the sum of the two series is the convergent series > ne; u(E,),
it follows that they both converge, and, since the convergence of
the series of positive terms and the series of negative terms is
equivalent to absolute convergence, the proof of the theorem is
complete. |

Theorem C. If uis a signed measure, if { E,} is a monotone
sequence of measurable sets, and if, in case {E,} is a decreasing
sequence, | w(E,) | < « for at least one value of n, then

u(lim, E,) = lim, p(E,).

Proof. The proof of the assertion concerning increasing se-
quences is the same as for measures (replacing { E,.} by the disjoint
sequence {E; — E;_;} of differences, cf. 9.D); the same is true
for decreasing sequences (reduction to the preceding case by
complementation, cf. 9.E), except that Theorem A has to be used
to ensure the finiteness of the subtrahends that occur. |

(1) The sum of two [totally] o—finite measures is a [totally] o—finite measure.
Is this assertion valid for infinite sums?

(2) A complex measure on the class of all measurable sets of a measurable
space is a set function p such that, for every mecasurable set E, u(E) = w(E) +
iu2(E), where i = \/—-l, and where u; and uy are signed measures in the sense
of this section. Are Theorems A, B, and C true for complex measures?

(3) If a signed measure u is the difference of two measures in two ways,
# = p1 — pg and g = ¥; — vy, then is it true that g3 = vy and pp = vo?

(4) The fact that a signed measure assumes at most one of the values 4o
and — follows from the requirement of additivity. (Hint: if u(E) = 4+ and
p(F) = —eo, then the right side of at least one of the relations

#(E) = w(E = F) +u(E N F),
p(F) = w(F — E) + p(E N F),

and
WEAF) =p(E - F)+ulF - E)

& indeterminate.)

§29. HAHN AND JORDAN DECOMPOSITIONS

If 4 is a signed measure on the class of all measurable sets of a
measurable space (X,S), we shall call a set E positive (with respect
to u) if, for every measurable set ¥, E N F is measurable and
s(E N F) z 0; similarly we shall call E negative if, for every
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measurable set ¥, E N F is measurable and w(E N F) < 0.
The empty set is both positive and negative in this sense; we do
not assert that any other, non trivial, positive sets or negative
sets necessarily exist.

Theorem A. If u is a signed measure, then there exist two
disjoint sets A and B whose union is X, such that A is positive
and B is negative with respect to p.

The sets 4 and B are said to form a Hahn decomposition of X
with respect to u.

Proof. Since p assumes at most one of the values 4+ and
—o0, we may assume that, say

—o < p(E) £ »

for every measurable set E. Since the difference of two negative
sets, and a disjoint, countable union of negative sets are obviously
negative, it follows that every countable union of negative sets
is negative. We write 8 = inf u(B) for all measurable negative
sets B. Let {B;} be a sequence of measurable negative sets such
that lim; u(B;) = B; if B = |Ji=1 Bi, then B is a measurable
negative set for which u(B) is minimal.

We shall prove that the set 4 = X — B is a positive set.
Suppose that, on the contrary, E, is a measurable subset of A4
for which u(E,) < 0. The set Ey cannot be a negative set, for
then B U E, would be a negative set with a smaller value of u
than u(B), which is impossible. Let &, be the smallest positive
integer with the property that E, contains a measurable set E;

for which u(E,) = }:—1 (Observe that, since u(Eo) <0, u(Eop)
and p(E,) are both finite.) Since

W(Bo = B) = wEs) — WED) S wlEo) - 1 <0,
the argument just applied to E, is applicable to Ey — E; also.
Let k, be the smallest positive integer with the property that
Ey — E, contains a measurable subset E; with u(E;) = 7};, and

proceed so on ad infinitum. Since p is finite valued for measurable
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1
subsets of E, (28.A), we must have lim,, i 0. It follows that,

n
for every measurable subset F of

Fo = Eo — U1 Ej,

we have u(F) £ 0, i.e. that F; is a measurable negative set.
Since Fj 1s disjoint from B, and since

u(Fo) = w(Eo) — ;:1 p(E;) = u(Ey) <0,

this contradicts the minimality of B, and we conclude that the
hypothesis u(Eo) < O is untenable. |}

It is not difficult to construct examples to show that a Hahn
decomposition is 7ot unique. If, however,

X=111UB1 and X=AzUB2

are two Hahn decompositions of X, then we can prove that, for
every measurable set E,

wEN A)=ulENA) and u(E N B;) = u(E N By).
To see this, we observe that
EN(4, —4) cEN A4,
so that u(E N (4, — 43)) 2 0, and
EN (4, — A4;) c EN By,

so that u(E N (4, — A4,)) £ 0. Hence p(EN (4, — 4,)) =0
and, by symmetry, u(E N (4, — A;)) = 0; it follows that

w(E N 4,) = sw(E N (Al Ud,)) =uEN 1{2)-
It follows from this result that the equations
pT(E)=wENA) and u(E)=—p(ENB)

unambiguously define two set functions u* and p~ on the class
of all measurable sets, called, respectively, the upper variation
and the lower variation of u. The set function | x|, defined
for every measurable set E by | u |(E) = uH(E) + p~(E), is the
total variation of u. (Observe the important notational distinc-
tion between | p |(E) and | u(E) |.)
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Theorem B. The upper, lower, and total variations of a
signed measure u are measures and p(E) = ut(E) — p~(E)
Sfor every measurable set E. If u is [totally] finite or o—finite,
then so also are u and p=; at least one of the measures u* and
u” is always finite.

Proof. The variations of u are clearly non negative; if every
measurable set is a countable union of measurable sets for which u
is finite, it follows from 28.A that the same is true for u* and u™.
The equation u = u* — u~ follows from the definitions of ut
and p~; the fact that u takes on at most one of the values +
and —oo implies that at least one of the set functions p* and u~
is always finite. Since the countable additivity of u* and u—
is evident, the proof is complete. |

It follows from Theorem B that every signed measure is the
difference of two measures (of which at least one is finite); the
representation of u as the difference of its upper and lower varia-
tions is called the Jordan decomposition of u.

(1) If u is a finite signed measure and if {E.} is a sequence of measurable
sets such that lim, E, exists, (i.e. such that lim sup, E, = lim inf, E,), then

p(limn Ev) = lima p(En).

(2) A finite signed measure, together with its variations, is bounded. For
this reason finite signed measures are often said to be of bounded variation.
(3) If u is a signed measure and if E is a measurable set, then

uwH(E) = sup {u(F): ED FeS} and u—(E) = — inf {u(F): ED FeS}.

An alternative and frequently used proof of the validity of the Jordan decomposi-
tion may be given by treating these equations as the definitions of u* and u~.
(4) Does the set of all totally finite sighed measures on a o-algebra form a
Banach space with respect to the norm defined by || u || = | p |(X)?
(5) If (X,S,u) is a measure space and f is an integrable function on X, then

the set function v, defined by »(E) —f f(x)du(x), is a finite signed measure, and
E

vHE) = [ frdu, (B = [ fdu.

What is | ¥ |(E) in terms of f?

(6) If u and v are totally finite measures on a g—~algebra S and if E is a set in
S, then, corresponding to every real number ¢, there exists a set 4; in S such that
A C E and such that, for every set F in S for which F C 4; [or for which
F C E — 4] we have »(F) S tu(F), [or v(F) Z tu(F)].
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(7) If pu is a signed measure and f is a measurable function such that f is
integrable with respect to | u |, then we may write, by definition,

Jau = [fan* — [rau~.

This integral has many of the essential properties of the “positive” integrals
discussed in Chapter V. If u is a finite signed measure, then, for every measur-

able set E,
|u1(B) = sup | [ fdul,
E

where the supremum is extended over all measurable functions f such that

I/l =1
(8) By the separate consideration of real and imaginary parts, integrals such

as f fdu may be defined for complex valued functions f and complex measures u;

(cf. 28.2). Motivated by (7) above, we define the total variation of a finite

complex measure u by | u |(E) = sup | f fdu |, where the supremum 1s extended
E

over all (possibly complex valued) measurable functions f such that | f]| < 1.
What is the relation between | x| and the total variations of the real and imagi-
nary parts of u?

§30. ABSOLUTE CONTINUITY

Motivated by the properties of indefinite integrals, we intro-
duced the abstract concept of signed measure, and we showed that
the abstraction had several of the important properties of the
concrete concept which it generalized. Indefinite integrals have,
however, certain additional properties (or, rather, certain rela-
tions to the measures in terms of which they are defined) that are
not shared by general signed measures. In a special case we have
already discussed one such property of very great significance
(absolute continuity, § 23); we propose now to examine a more
general framework in which the discussion of absolute continuity
still makes sense.

If (X,S) is a measurable space and p and » are signed measures
on S, we say that » is absolutely continuous with respect to u,
in symbols v < u, if ¥(E) = 0 for every measurable set E for
which | g |(E) = 0. In a suggestively imprecise phrase, » < u
means that » is small whenever u is small. We call attention,
however, to the lack of symmetry in the precise form of the defini-
tion; the smallness of u is expressed by a condition on its total
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variation. Our first result concerning absolute continuity asserts
that this asymmetry is only apparent.

Theorem A. If u and v are signed measures, then the condi-
tions

() v L py
(b) v P <Ku and v Ly,
(© |v] <[ ul,

are mutually equivalent.

Proof. If (a) is valid, then »(E) = O whenever | u|(E) = 0.
If X = 4 U B is a Hahn decomposition with respect to », then
we have, whenever | u|(E) = 0,

0% |ul(ENA) < |ulE) =0
and

0=|xl(ENB)=|ul(E)=0,
and therefore
vIE)=v(ENA) =0 and »=(E) = »(E N B) = 0;

this proves the validity of (b).
The facts that (b) implies (c) and (c) implies (a) follow from
the relations

[v[(E) = vHE) +v~(E) and 0= |w(B)| =|v|(E)

respectively. |

The following theorem establishes the relation between our
present form of the definition of absolute continuity and the one
we used (for finite valued set functions) in §23. The theorem
asserts essentially that another precise interpretation of “v is
small whenever u is small,”” which is apparently quite different
from the definition of absolute continuity, is in the presence of a
finiteness condition equivalent to it.

Theorem B. If v is a finite signed measure and if u is a
signed measure such that v < p, then, corresponding to every
positive number e, there is a positive number & such that
v l(E) < e for every measurable set E for which | p|(E) < 8.
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Proof. Suppose that it is possible, for some ¢ > 0, to find a
1
sequence {E,} of measurable sets such that | u|(E,) < 7 and
|v|[(En) =2 ¢m=1,2, ... If E = limsup, E,, then

|H|(E)§ t—nl”l(E$)< n=1>2)"'7

1
on—1?
and therefore | u [(E) = 0. On the other hand (since » is finite)

| v [(E) = limu | v |(Ea U Eppy U--2) 2 limsup, | v |[(E,) 2 e

Since this contradicts the relation » < u, the proof of the theorem
is complete. ||

It is easy to verify that the relation “<«&” is reflexive (i.e.
u <K pu) and transitive (i.e. uy <K py and pp K pz imply that
w K uz). Two signed measures u and » for which both » K u
and u < v are called equivalent, in symbols p = ».

The antithesis of the relation of absolute continuity is the rela-
tion of singularity. If (X,S) is a measurable space and u and »
are signed measures on S, we say that u and » are mutually singu-
lar, or more simply that u and » are singular, in symbols p 1 »,
if there exist two disjoint sets 4/ and B whose union is X such
that, for every measurable set E, 4 N E and B N E are measur-
able and |u|(A NE) =|v|(BNE)=0. Despite the sym-
metry of the relatlon, it is occasionally more natural to use an
unsymmetnc expression such as ‘v is singular with respect to p’*
instead of “u and » are singular.”

It is clear that singularity is indeed an extreme form of non
absolute continuity. If » is singular with respect to u, then not
only is it false that the vanishing of | u| implies that of |»]|,
but in fact essentially the only sets for which | » | does not neces-
sarily vanish are the ones for which | x| does.

We conclude this section with the introduction of a new nota-
tion. We have already used the traditional and suggestive “al-
most everywhere” terminology on measure spaces; this 1s perfectly
satisfactory as long as we restrict our attention to one measure
at a time. Since, however, in the discussion of absolute con-
tinuity and singularity we have nccessarily to deal with severai
measures simultaneously, and since it is clumsy to say “almost
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everywhere with respect to u” very often, we shall adopt the fol-
lowing convention. If, for each point x of a measurable space
{X,S), w(x) is a proposition concerning x, and if u is a signed
measure on S, then the symbol

w(x) W]l or = [u]

shall mean that w(x) is true for almost every x with respect to
the measure | u|. Thus, for instance, if f and g are two functions
on X, we shall write f = g [u] for the statement that {x: f(x) =
g(x)} is a measurable set of measure zero with respect to | u|.
The symbol [¢] may be read as “modulo p.”

(1) If u is a signed measure and f is a function integrable with respect to
| 1], and if v is defined for every measurable set E by »(E) ==L Sdu (cf. 29.7),

then << p.
(2) Let the measure space (X,S,u) be the unit interval with Lebesgue measure.
Write F = {x:0 < x < }}, and let f1 and f be the functions defined by fi(x) =

2xr(¥) — 1 and fa(x) = x. If the set functions y; are defined by ui(E) = f Sidu,
E

§=1, 2, then pa<K 1. It is not, however, true that ps(E) = 0 whenever

ui(E) = 0. If us were defined by ue(E) = L (f2 — %)du, then even this stronger

condition would be satisfied.

(3) For every signed measure u, the variations u* and u~ are mutually
singular, and they are each absolutely continuous with respect to p.

(4) For every signed measure u, u = | u |.

(5) If p is a signed measure and E is a measurable set, then |u |(E) = 0
if and only if u(F) = O for every measurable subset F of E.

(6) If u and » are any two measures on a og-ring S, then v < u + ».

(7) Let f1 and f; be integrable functions on a totally finite measure space
(X,S,p) and let y; be the indefinite integral of f;, 7 = 1, 2. If u({»: fi(x) = 0} A
{x: f2(x) = 0}) = 0, then u; = p.

(8) Let ¢ be the Cantor function (cf. 19.3), and let po be the Lebesgue-
Stieltjes measure, on the Borel subsets of the unit interval, induced by ¥;
(cf. 15.9). If pu is Lebesgue measure, then pg and p are mutually singular.

(9) If 4 and » are signed measures such that v is both absolutely continuous
and singular with respect to u, then » = 0.

(10) If vy, vs, and u are finite signed measures such that both »; and »; are
singular with respect to p, then v = v; + v, is also singular with respect to u.
(Hint: if X = 4, U By and X = 4; U B, are decompositions such that | |
is identically zero for measurable subsets of 4; and | ;| is identically zero for
measurable subsets of B;, i = 1, 2, then

X =[(410 4) U (4N By) U (4N By U (B, N By)

is such a decomposition for u and ».)
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(11) If u and » are measures on a o—algebra S such that u is finite and v < p,
then there exists a measurable set E such that X — E is of o—finite measure with
respect to », and such that, for every measurable subset F of E, »(F) is either
0 or . (Hint: use the method of exhaustion (cf. 17.3), to find a measurable set
E with the preperty that, for every measurable subset F of E, »(F) is either 0
or o, and such that u(E) is maximal; another application of the method of ex-
haustion shows that X — E is of o-finite measure with respect to ».)

(12) Theorem B is not necessarily true if » is not finite. (Hint: let X be the
set of all positive integers, and, for every subset E of X, write

wE) = Zn ee2™™ v(E) = Zn e E 2"-)

§ 31. THE RADON-NIKODYM THEOREM

Theorem A. If u and v are totally finite measures such
that v < u and v is not identically zero, then there exists a posi-
tive number e and a measurable set A such that u(A) > 0 and
such that A is a positive set for the signed measure v — eu.

Proof. Let X = 4, U B, be a Hahn decomposition with

1 .
respect to the signed measure v — —p, 7 =1, 2, ---, and write
n

AO = :—1 An) BO = :—l Bn-

Since B, ¢ B,, we have
1
0= V(BO) = ;F(Bo), n = 1: 2, )

and consequently »(B,) = 0. It follows that v(A4p) > 0 and
therefore, by absolute continuity, that u(4,) > 0. Hence we
must have u(A4,) > O for at least one value of #; if, for such a

value of 7, we write 4 = A, and € = -, the requirements of the

S -

theorem are all satisfied. |
We proceed now to establish the fundamental result (known
as the Radon-Nikodym theorem) concerning absolute continuity.

Theorem B. If (X,S,n) is a totally o—finite measure space
and if a o—finite signed measure v on S is absolutely continuous
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with respect to u, then there exists a finite valued measurable
function f on X such that

WE) = f fdu

Sfor every measurable set E. The function f is unique in the sense
that if also v(E) = f gdu, E ¢S, then f = g [ul.
E

We emphasize the fact that f is not asserted to be integrable;
it is, in fact, clear that a necessary and sufficient condition that

f be integrable is that » be finite. The use of the symbol f fdu

implicitly asserts, however (cf. § 25), that either the positive or
the negative part of f is integrable, corresponding to the fact that
either the upper or the lower variation of » is finite.

Proof. Since X is a countable, disjoint union of measurable
sets on which both u and » are finite, there is no loss of generality
(for both the existence and the uniqueness proofs) in assuming
finiteness in the first place. Since if » is finite, f is integrable,
uniqueness follows from 25.E. Since, finally, the assumption
» < p is equivalent to the simultaneous validity of the conditions

vF<p and v~ <y,

it remains only to prove the existence of f in the case in which
both u and » are finite measures.
Let & be the class of all non negative functions f, integrable

with respect to u, such that | fdu < v(E) for every measurable
E

set E, and write
a = sup {ffd,u:f e .’K’,} .
Let {f.} be a sequence of functions in X such that

lim, ff,.a'u = a.

If E is any fixed measurable set, # is any fixed positive integer,
and ga = fi U---U f,, then E may be written as a finite, disjoint
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union of measurable sets, £ = E, U.---U E,, so that g,(x) =
fi(x) forxin E;;j =1, ---, n. Consequently we have

Jde = Tiea [ S S Tierv(B) = v

If we write fo(x) = sup {fa(x): =1, 2, .-}, then fo(x) =
lim, g.(x) and it follows from 27.B that f, e % and f fodu =
Since f; is integrable, there exists a finite valued function f such

that fo = f [u]; we shall prove that if w(E) = »(E) — f fdu,
E

then the measure »; is identically zero.

If vy is not identically zero, then, by Theorem A, there exists a
positive number e and a measurable set 4 such that u(4) > 0
and such that

eu(Eﬂd)gvo(Eﬂd)=v(EnA)—f fdu
EnA
for every measurable set E. If g = f + exa, then

Lgdn=Lfdu+en(End)éj;_Afd#+V(Eﬂd)§V(E)

for every measurable set E, so that g e X. Since, however,

[edu = [fin + eue) > e,

this contradicts the maximality of f fdu, and the proof of the

theorem is complete. |

(1) If (X,S,n) is a measure space and if v(E) =f fdu for every measuraoie
E
set E, then
X = {x: f(x) > 0} U {x: f(x) < 0}
is a Hahn decomposition with respect to ».

(2a) Suppose that (X,S) is a measurable space and u and v are totally finite
measures on S such that vy pu. If I = u + v and if v(E) =L Jfdi for every
measurable set E, then 0 £ f(x) < 1 [u].

(2b) If f g = f Jfgd@ for every non negative measurable function g, then
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f

v(E) =f l——]dp for every measurable set E. (Hint: rewrite the hypothesis
g1 —

. _ . . _ _XE

in the formfg(l fdv —ffgdp and, given E, write g T—7 )

(3) Let (X,S,u) be the unit interval with Lebesgue measure and let M be a
non measurable set. Let (a1,81) and (a2,8:) be two pairs of positive real numbers
such that &y + B1 = as + B2 = 1, and let fi; be the extension of u, determined
by (a:,8:), to the o—ring § generated by S and M, i = 1, 2 (cf. 16.2). There
exist measurable functions f1 and fp such that

m(E) = fE fudly and (E) = fE Sodiy

for every measurable set E. What are the functions f; and f,?

(4) The Radon-Nikodym theorem remains true even if u is only a signed
measure. (Hint: let X = 4 U B be a Hahn decomposition with respect to
u and apply the Radon-Nikodym theorem separately tov and u% in 4 and to v
and 4~ in B.)

(5) Let u be a totally o-finite signed measure. Since both u* and u— are
absolutely continuous with respect to both u and | p |, we have

wrB) = [ fodu = [ grdlu| and w(E) = [ -au = [ e-dlul.

The functions f4, g4, f—, and g_ satisfy the relations f, = g, [u] and f- =
—g— [u]l. What are these functions?

(6) If u is a signed measure and if ¥(E) =ffd;4 and | v |(E) =f gdlul for
every measurable set E, then g = | | [u]. i £

(7) The Radon-Nikodym theorem remains true even if » is not o—finite, but,
in this case, the integrand f is not necessarily finite valued. (Hint: it is sufficient
to consider the case in which v is a measure and u is finite; in this case apply
30.11.)

(8) The Radon-Nikodym theorem is not necessarily true if p is not totally
o-finite, even if ¥ remains finite. (Hint: let X be an uncountable set and let
S be the class of all those sets which are either countable or have countable
complements. For every E in S, let u(E) be the number of points in E and let
v(E) be 0 or 1 according as E is countable or not.)

(9) If (X,S) is a measurable space and u and v are o-finite measures on S
such that v<<pu, then the Radon-Nikodym theorem may be applied to each
measurable set separately. The question might be raised whether or not a
function f may be defined once for all on the whole space X so as to serve as a
suitable integrand simultaneously for every measurable set. The answer is no,
as the following pathological example shows.

Let A be any uncountable set (with, say, cardinal number @), and let B be a
set of cardinal number 8 > a. Let X be the set of all ordered pairs (4,6) with
ae A and be B. It is convenient to call a set of the form {(a,40): ae 4} a
horizontal line, and a set of the form {(40,4): 4 € B} a vertical line. We shall
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call a set E full on a horizontal or vertical line L if L — E is countable; (cf. 12.1).
Let S be the class of all sets which may be covered by countably many hori-
zontal and vertical lines, and which are such that on every horizontal and vertical
line they are either countable or full. For every E in S let u(E) be the number of
horizontal and vertical lines on which E is full, and let ¥»(E) be the number of
vertical lines on which E is full. Clearly u and v are o-finite measures and

y<< u. Suppose now that there exists a function f on X such that »(E) = f Sfau
E

for every E in S. It is easy to see that the set {x: f(x) = 0} has to be count-
able on every vertical line and full on every horizontal line. The first require-
ment implies that the cardinal number of this set is at most aNo = «, and the
second requirement implies that the cardinal number of this set is at least
Bla — No) = 8.

(10) There is a condition on measure spaces, which is more general than
total —finiteness and more restrictive than g—finiteness, in the presence of which
the Radon-Nikodym theorem is still true. The condition is that the space be
the union of a disjoint class D of measurable sets of finite measure with the
property that every measurable set may be covered by countably many sets of
D and a set of measure zero. The following is an example of a non totally
og—finite measure space satisfying this condition.

Let X be the Euclidean plane, and let S be the class of all those sets which
may be covered by countably many horizontal lines and which are Lebesgue
measurable on each such line. If E is a Lebesgue measurable subset of a hori-
zontal line, define p(E) to be the Lebesgue measure of E; for the general E in
S, u is thereby uniquely determined by the requirement of countable additivity.

(11) If, in (9) above, B = A and the cardinal number of this set is 8; (= the
smallest uncountable cardinal), then the proof breaks down, i.e. there exists in
that case a subset E of X which is countable on every vertical and full on every
horizontal line. (Hint: well order A, i.e. assign to every 4 in A an ordinal
number £(a) < @(= the smallest uncountable ordinal) so that the correspondence
is one to one between all points of 4 and all ordinals less than @, and write
E = {(a8): £(a) > E(3)}.

(12) If u is a totally finite measure and »(E) = f fdu for every measurable
set E, then the set £

B() = {x:f(x) S 4}

is a negative set for the signed measure v — #u; (cf. (1) above). A proof of the
Radon-Nikodym theorem may be based on an attempt to reconstruct f from
the sets B(¢); (cf. 18.10). The main complication of this approach is the non
uniqueness of negative sets. A tool for partially dealing with this complication
is to select B(¢), for each ¢, so as to maximize the value of u(B(¢)).

§32. DERIVATIVES OF SIGNED MEASURES

There is a special notation for the functions which occur as
integrands in the Radon-Nikodym theorem, which is frequently
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very suggestive. If uis a totally o-finite measure and if »(E) =

f fdu for every measurable set E, we shall write
E

d
f=—y or dv = fdu.
du

All the properties of Radon-Nikodym integrands (which we may
also call Radon-Nikodym derivatives), which are suggested by
the well known differential formalism, correspond to true theorems.
d(v, + v) dn dvy .

——dp = 71; + 71’—‘) , while
others are more or less deep properties of integration. Examples
of the latter kind of result are the chain rule for differentiation
and, as an easy corollary, the substitution rule for the differentials
occurring under an integral sign; both these results are precisely

stated and proved below. It is, of course, important to remember

. ..odv .
that a Radon-Nikodym derivative ;ﬁ is unique only a.e. with
m

respect to u, and that, therefore, in the detailed verbal interpreta-
tion of a differential formula, frequent use has to be made of the
qualifying “almost everywhere.”

Some of these are trivial (e.g.

Theorem A. If \ and u are totally o—finite measures such
that u L\ and if v is a totally o—finite signed measure such that

v K u, then

dv  dvdu
— = ——[A}
72N a'yd)\[]

Proof. Since the validity of the desired equation for the upper
and lower variations of » implies its validity for » itself, we may
and do assume that » is a measure; for simplicity of notation we

. av _ d @
write o fan d)\
25.D that f = O [u] and therefore that there is no loss of generality
in assuming that f is everywhere non negative.

Let {f.} be an increasing sequence of non negative simple

= g. Since » 1s non negative, it follows from
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functions converging at every point to f, (20.B); then, by 27.B,
we have

lim, j};f,.dp =Lfdu and lim, jl;f,,gd)\ =Lfgd)\

for every measurable set E. Since, for every measurable set F,
[xedu = wENF) = [ gax = [ xegar
E EnF E

1t follows thatff,,du =ffngd)\, n=1,2, .., and therefore that
E E
E) =| fdu = d\.
WE) = [ fou = [ feir.

Theorem B. If \ and u are totally o—finite measures such
that u K\, and if f is a finite valued measurable function for

d
which f fdu is defined, then f fdu = f i d—’; A

Proof. We write v(E) = f fdu for every measurable set E,
E

d,
and apply Theorem A. It follows that »(E) = f f 2—’;4')\ for every
E

measurable set E; the desired result follows by putting £ = X. |

Our next and final result concerning the relations among signed
measures treats the Lebesgue decomposition of a totally s—finite
signed measure into an absolutely continuous part and a singular
part with respect to another totally o—finite signed measure.

Theorem C. If (X,S) is a measurable space and p and v
are totally o—finite signed measures on S, then there exist two
uniquely determined totally o—finite signed measures vy and v,
whose sum is v, such that vo L u and vy < p.

Proof. As usual we may assume that u and » are finite. Since
vi( = 0, 1) will be absolutely continuous or singular with respect
to u according as it is absolutely continuous or singular with
respect to | u |, we may assume that u is a measure. Since, finally,
we may treat »* and »~ separately, we may also assume that »
1s a2 measure.
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The proof of the theorem for totally finite measures is a useful
trick, based on the elementary observation that » is absolutely
continuous with respect to u + ». There exists, accordingly, a
measurable function f such that

v(E) =fEfdu+Lfdv

for every measurable set E. Since 0 = »(E) < u(E) + v(E),
we have 0 < f = 1[u + v] and therefore 0 = f < 1[»]. If we
write 4 = {x:f(x) = 1} and B = {x:0 < f(x) < 1}, then

V(d)=£dn+£dv=u(4)+V(/1)

and therefore (since » is finite) p(/g) =0 If
wlE) =v(ENA) and »(E) =v(EN B)

for every measurable set E, then it is clear that », L u; it remains

to prove that »; < p.
If u(E) = 0, then

L”dy = »(E N B) =Ln8fdv

and therefore j; 3(1 —f)dv=0. Since 1 —f=0[], it fol.

lows that »(E) = »(E N B) = 0; this completes the proof of the
existence of vy and ;.

Ifv = vy + v and» = 7y + 7, are two Lebesgue decompositions
of v, then vy — % = 5 — »;. Since y»; — ¥, is singular (cf. 30.10)
and #, — »; 1s absolutely continuous with respect to u, it follows
that vy = 7 and »; = #;; (cf. 30.9). |}

(1) Using the concept of integration with respect to a signed measure, the
definition of Radon-Nikodym derivatives may be extended to the case in which
p is a signed measure,and Theorem A remains true if X and i are signed measures.
(Hint: consider a Hahn decomposition with respect to each of the three signed
measures A, i, and », and construct the decomposition of X into the eight sets ob-
tained by taking one set from each decomposition and forming the intersection
of these three sets. On measurable subsets of each of the eight sets each of the
functions, A, g, and », is of constant sign and therefore, after an obvious, slight
modification, Theorem A applies.)
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2) If u and » are totally o—finite signed measures such that u = v, then

1/--

(3) If ,u and v are totally o-finite signed measures such that y<Ku, then

dv
v({x:d—“(x) = 0}) = 0.
(4) If po, p1, and u2 are totally finite measures, and if duo = fid(uo + 1) =
Sed(uo + p2) = fd(uo + w1 + pe), then we have, almost everywhere with respect

to po + 1 + pa,

du

S1(x)fo(x) :
1= ,fl(x) F ) — iy R =0,
0 if /i) = fals) = 0.

(5) Given two sequences {un! and {v,} of totally finite measures, write

=30l Fn= D fe1Vi, B= DM, V= D1V

and assume that u and v are finite measures. If 5, <K fin, n =1, 2, ---, then
v <L p and
lima 22 = 2 1]
" dpn dp ’

The proof of this assertion may be based on the following lemmas.
(5a) If {E,} is a sequence of measurable sets such that Z.(E.) = 0,7 = 1,2,
-+, then u(lim sup, E,) = 0. (Hint: Z,(U%=n Ex) S 2 k=n B2(Er).)
(5b) If {¢n} and {¥n} are sequences of functions such that ¢, = y¥n [unl,
n=12 ---, then, for a.e. x [u],

lim sup, ¢n(x) = lim sup,¥a(x) and lim inf, Pa(x) = lim inf, Pa(x).

(Hint: write E, = {x: ¢a(x) # ¥n(x)} and apply (5a).)
In view of the result (5b) it is sufficient to prove (5) for any fixed determina-

tion of the derivatives % If

ava dl‘n _
2 = fn and —d:—g,., n=12, y

then it follows from Theorem A that one such determination is

d-n ,fl+ +fn
— = [ua), =1’2,....
dﬂn g1+ +g U‘] "

(5¢) Zamt1fn =gz— and 2.%_ 1 g = 1[u]. (Hint: since

Ziam(B) = [ (et + g
and
201 vi(E) =f i+ Ffoddu, n=1,2,--,
B

the desired result follows from 27.B and 25.E.)



Chapter VII

PRODUCT SPACES

§33. CARTESIAN PRODUCTS

If X and Y are any two sets (not necessarily subsets of the
same space), the Cartesian product X X Y is the set of all ordered
pairs (x,y), where x € X and y ¢ Y. The best known example of a
Cartesian product is the Euclidean plane, which is most often
viewed as the product of two coordinate axes. Most of the
development in the sequel uses the words and concepts suggested
by this example. Thus, for instance, if / € X and BC Y, we
shall call the set E == 4 X B (a subset of X X Y) a rectangle
and we shall refer to the component sets 4 and B as its sides.
(Observe that our usage here differs from the classical terminology
which speaks of rectangles only if the sides are intervals.)

Theorem A. A rectangle is empty if and only if one of its
sides is empty.
Proof. If 4 X B %0, say (x,v) e X B, then xe.4 and
y e B, so that 4 = 0 and B » 0. If, on the other hand, neither
4 nor B is empty, then there is a point (x,y) such that (x,y) €
A X B,sothat £ X B 0. }

Theorem B. If E, = A4y X B, and E, = 4, X By are
non empty rectangles, then Ey C E, if and only if

Al C 112 and B1 C Bg.

Proof. The “if” is obvious. To prove the converse, let (x,y)
be a point in 4; X B; and suppose that there exists a point x;
137
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in A, such that x; ¢’ 4;. Then
(%1,y) e 41 X By and (x1,y) ¢’ 42 X By;

it follows that no such point x; can exist and therefore 4, c A,.
The same proof with only notational changes shows that

B1 C Bz. l

Theorem C. If 4, X By = A2 X B, is a non empty rec-
tangle, then 1{1 = Ay and Bl = Bz.

Proof. It follows from Theorem B that
I{IC./{2CAI and 31CB2CB1. I

Theorem D. If E=A4 X B, Ey = 41 X By, and E; =
Ay X By are non empty rectangles, then a necessary and suffi-
cient condition that E be the disjoint union of Ey and E,, is
that either A is the disjoint union of A, and Ay, and B = B, =
By, or else B is the disjoint union of By and By, and A = A4, =
4,.

Proof. We prove first that the condition is necessary. Since
E, c E and E; C E, it follows from Theorem B that 4, ¢ 4
and A, c A4, and therefore that A4 U 4, c 4; similarly
Bl U Bz c B. Since

E U E,c (4, U 4;) X (B, U By),

it follows that / c 4, U 4, and B < B, U B,, and therefore
A =A4,U 4, and B = B, U B,. Since, finally, a similar argu-
ment shows that

0=E NE > (4 NdA)X (B, NBy),

it follows from Theorem A that at least one of the two sets
A4, N A4, and By N B; is empty.

Suppose, for instance, that 4, N 4, = 0; we are to show that
in this case B = B; = B,. (The case B, N B; = 0 is treated
similarly.) Suppose on the contrary that there exists a point
y in B — B,. Then, if x is any point in 4,, we have (x,y) ¢ E,
but (since y ¢ By), (x,y) €’ E,, and (since x & A), (x,y) € E,.
Since this contradicts the assumption E = E; U E,, it follows
that B — B, = 0 and also, by a similar argument, B — B, = 0.
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The sufficiency of the condition is easier. If, for instance, 4
is the disjoint union of #4; and 4; and B = B, = B,, then 4 D 4,,
A>D Ay B> By, B> By,sothat ED E, U E,. Alsoif (x,y) ¢ E,

then
(x,y) e Ex or (xy) e Ey

according as x € 4; or x € 43, so that E is indeed the disjoint
union of E, and E;. |

Theorem E. If S and T are rings of subsets of X and Y
respectively, then the class R of all finite, disjoint unions of
rectangles of the form A X B, where 4 € S and B €T, is a ring.

Proof. We observe first that the intersection of two sets of
the form 4 X B is another set of that form. If either of the two
given sets, or their intersection, is empty, this result is trivial. If

Ei=4X B, Ey=A4yXB,;, and (x,y) e £y N Ey,
then x e 4, N A4, and y € By N By, so that
E‘ n Ez C (Al n Az) X (Bl n Bz)

On the other hand, by Theorem B, (4, N A4z) X (B, N By) is
contained in E, and E, and therefore in E; N E,, so that

El ﬂ Ez = (1{1 n Az) X (B] ﬂ Bz).

Since S and T are rings, 41 N 4, ¢ Sand By N Bz ¢ T. It follows
immediately that the class R is closed under the formation of
finite intersections.

Since

(4 X B)) — (42 X By) =
= [(Al n dz) X (Bl - Bz)] u [(dl - 112) X Bl]s

we see that the difference of two sets of the given form is a disjoint
union of two other sets of that form; since

U?-l E; - U;'"-'l Fj = U:"-x ﬂ}”-l (E; — F}),

it follows, using the reslt of the preceding paragraph, that the
class R is closed under the frrvetion of differences. Since R is
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obviously closed under the formation of finite, disjoint unions,
the proof of the theorem is complete. |

Suppose now that in addition to the two sets X and Y we are
also given two g-rings S and T of subsets of X and Y respectively.
We shall denote by S X T the o—ring of subsets of X X Y gener-
ated by the class of all sets of the form A4 X B, where 4 ¢S
and BeT.

Theorem F. If (X,S) and (Y,T) are measurable spaces,
then (X X Y, S X T) is a measurable space.

The measurable space (X XY, S X T) is the Cartesian
product of the two given measurable spaces.

Proof. If (x,y) e X X Y, then there exist sets 4 and B such
that xe4¢S and y e BeT; it follows that (x,y) e4 X Be
SXT. 1

We observe that this is the first time we ever referred to the
fact that a measurable space is the union of its measurable sets;
in the present chapter we shall make essential use of this property
of measurable spaces.

We shall frequently use the concept of measurable rectangle.
Two equally obvious and natural definitions of this phrase suggest
themselves. According to one, a rectangle in the Cartesian
product of two measurable spaces (X,S) and (Y,T) is measurable
if it belongs to S X T, and, according to the other, 4 X B is
measurable if /¢S and BeT. It is an easy consequence of
the results we shall obtain that for non empty rectangles the two
concepts coincide; for the time being we adopt the second of our
proposed definitions. We may say, accordingly, that the class
of measurable sets in the Cartesian product of two measurable
spaces is the o-ring generated by the class of all measurable
rectangles.

(1) The intersection of any countable class of [measurable] rectangles is a
[measurable] rectangle. Does this statement remain true if the word “count-
able” is omitted?

(2) The “only if” part of Theorem B, Theorem C, and the necessity of the
condition in Theorem D are all false for empty rectangles.

(3) Under the hypotheses of Theorem E, the class P of all sets of the form
A X B, where £e¢S and Be T, is a semiring. Is this statement true if Sand T
are not necessarily rings, but merely semirings?
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(4) If the rings S and T in (3) each contain at least two different non empty
sets, then P is not a ring.

(5) A necessary and sufficient condition that § X T be a o-algebra is that
both S and T be g-algebras.

(6) If (X,S) and (Y,T) are measurable spaces, then every measurable set in
X X Y is contained in a measurable rectangle. (Hint: the class of all those
sets which may be covered by a measurable rectangle is a g-ring.)

§34. SEcCTIONS

Let (X,S) and (Y,T) be measurable spaces and let (X X Y,
S X T) be their Cartesian product. If E is any subset of X X Y
and x is any point of X, we shall call the set E, = {y: (x,y) ¢ E}
a section of E, or, more precisely, the section determined by x.
At times when it is important to call attention not so much to
the particular point which determines the section as merely to
the fact that the section is determined by some point of the space
X (and is therefore a subset of Y), we shall use the phrase
X-section. The main point is to distinguish such a section from
a Y-section determined by a point y in Y; the latter is defined, of
course, as the set E¥ = {x: (x,y) ¢ E}. We emphasize that a
section of a set in a product space is 7ot a set in that product space
but a subset of one of the component spaces.

If f is any function defined on a subset E of the product space
X X Y and « is any point of X, we shall call the function £,
defined on the section E; by

f:t(y) =f(x,}’),

a section of f, or, more precisely an X-section of f, or, still
more precisely, the section determined by x. The concept of a
Y-section of f, determined by a point y in Y is defined similarly

by fU(x) = f(x,5).

Theorem A. Every section of a measurable set is a measur-
able set.

Proof. Let E be the class of all those subsets of X X Y which
have the property that each of their sections is measurable. If
E = A4 X B is a measurable rectangle, then every section of E
is either empty or else equal to one of the sides, (4 or B according
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as the section is a Y-section or an X-section), and therefore
E e E. Since it is easy to verify that E is a o-ring, it follows that
SXTCcCE. |

Theorem B. Every section of a measurable function is a
measurable function.

Proof. If fis a measurable function on X X Y, if x is a point
of X, and if M is any Borel set on the real line, then the measur-

ability of N(f;) N f.~*(M) follows from Theorem A and the

relations

f7H(M)

It

{y:f:00) e M} = {y:f(x,y) e M} =
{y: &%,y efM M)} = (fH(M))...
(Observe that N(f:) = (N(f))..) The proof of the measurability

of an arbitrary Y-section of f is similar. |}

i

(1) If x is the characteristic function of a subset E of X X Y, then x. and x¥
are the characteristic functions of E; and EY respectively. If, in particular, x
is the characteristic function of a rectangle 4 X B, then

x(%y) = xalx)xs(y).

Every section of a simple function is a simple function.

(2) Let X = Y = any uncountable set, and S = T = the class of all count-
able subsets. If D = {(x,y): # = y} is the “diagonal” in X X Y, then every
section of D is measurable but D is not; in other words the converse of Theorem
A is not true.

(3) If an extended real valued function f defined on the Cartesian product of
two measurable spaces X and Y has the property that, for every Borel set M on
the real line, f~1(M) intersects every measurable set in 2 measurable set, then
every section of f also has that property. Does this assertion remain valid if
the definition of measurable space is altered by omitting from it the requirement
that the space be the union of its measurable sets? What are the implication
relations between this property and measurability?

(4) A non empty rectangle is a measurable set if and only if it is a measurable
rectangle. (Hint: if 4 X B is measurable, then every section of 4 X B is
measurable.)

(5) Let (X,S) be a measurable space such that Xe S (i.e. such that S is a
v-algebra); let Y be the real line, and let T be the class of all Borel sets. If fis
a real valued, non negative function on X, then the upper ordinate set of / is
defined to be the subset

VHf) = {(x3):xe X, 0=y S f(x)}
of X X Y, and the lower ordinate set of f is
Vef) = {(x): 2 X, 05y <fl)}.
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(Observe that, for instance, the lower ordinate set of the function identically
equal to zero is empty.) The following considerations are at the basis of an
alternative treatment of measurable functions.

(5a) Iffis a non negative simple function, then 7*(f) and V4 (f) are measur-
able. (Hint: each of the sets is the union of a finite number of measurable
rectangles.)

(5b) If f and g are non negative functions such that f(x) < g(x) for all x,
then V*(f) C V*(g) and Vo (f) C Vi(g).

(5c) If {fa} is an increasing sequence of non negative functions converging
at every point to f, then {#¢(fa)} is an increasing sequence of sets whose union
is V5 (f); similarly if {f.} is decreasing to f, then {V*(f.)} is a decreasing se-
quence of sets whose intersection is /*(f).

(5d) If fis a non negative measurable function, then 7*(f) and V,(f) are
measurable sets. (Hint: if f is bounded, then there exist sequences {g,} and
{4n} of simple functions such that

0SgnSgni1 SfEhanShny, n=12,---

and such that lim, g, = lim, 4, = £)

(5e) If E is any measurable set in X X Y, and if a and 8 are real numbers
such that a > 0, then the set {(x,y) (x,ay + B) € E} is a measurable subset of
X X Y. (Hint: the conclusion is true if E is a measurable rectangle, and the
class of all sets for which the conclusion is true is a g-ring.)

(5f) If f is a non negative function such that *(f) [or V,(f)] is measurable,
then £ is measurable. (Hint: it is sufficient, for the proof of the unparenthetical
statement, to show that {x: f(x) > ¢} is measurable for every positive real

number ¢. If E = P*(f), then

Uz s (%57 + ) e By > 0f = {(69):/9) > 6,3 > 0}

the desired result follows from the fact that the sides of a measurable rectangle
are measurable.)

(5g) If the graph of a (not necessarily non negative) function f is defined as
the set {(x,7): f(x) = y}, then the graph of a measurable function is a measur-
able set.

§ 35. PRODUCT MEASURES

Continuing our study of Cartesian products, we turn now to the
case where the component spaces are not merely measurable
spaces but measure spaces.

Theorem A. If (X,S,u) and (Y,T,v) are o—finite measure
spaces, and if E is any measurable subset of X X Y, then the
Sunctions f and g, defined on X and Y respectively by f(x) =
v(E;) and g(y) = u(EY), are non negative measurable func-

tions such that | fdu = f gav.
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Proof. If M is the class of all those sets E for which the con-
clusion of the theorem is true, then it is easy to see that M is
closed under the formation of countable, disjoint unions. We
observe that the o-finiteness of u and » implies that every set in
S X T may be covered by a countable disjoint union of measur-
able rectangles, both sides of each of which have finite measure.
If, therefore, we could prove that every measurable subset of
every measurable rectangle with sides of finite measure belongs
to M, it would follow (as stated) that every measurable set belongs
to M. In other words, we have reduced the proof to the case of
finite measures; we shall complete the proof (for finite measures)
by showing that every measurable rectangle (and therefore every
finite, disjoint union of measurable rectangles) belongs to M,
and that M is a monotone class.

If E=4 X B is a non empty measurable rectangle, then
f =v(B)xa and g = u(A)xs. It follows that f and g are measur-

able and that f fdu = u(d)-v(B) = f gdv.

The fact that M is a monotone class is a consequence of the
standard theorems on the integration of sequences of functions,
specifically 26.D and 27.B. (The finiteness of the measures u
and » is used in justifying the application of these results.)

Since the class of all finite, disjoint unions of measurable rec-
tangles is a ring (33.E), and since, by definition, the class of
measurable sets is the o-ring generated by this ring, it follows
(6.B) that every measurable set is in M, and the proof of the
theorem is complete. |

Theorem B. If (X,S,u) and (Y,T ) are o—finite measure
spaces, then the set function \, defined for every set Ein 8§ X T
by

MNE) = [v(En)dute) = [uEab(),

is a o—finite measure with the property that, for every measurable
rectangle A X B,

NMA X B) = u(A)-v(B).

The latter condition determines \ uniquely.
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The measure \ is called the product of the given measures u
and », in symbols N = u X v; the measure space (X X Y, S X T,
k& X ») is the Cartesian product of the given measure spaces.

Proof. The fact that \ is a measure is a consequence of the
theorem on the integration of monotone sequences (27.B; cf. also
27.2). The o-finiteness of \ follows from the fact that every
measurable subset of X X Y may be covered by countably many
measurable rectangles of finite measure; uniqueness is implied

by 13.A. |

(1) Let X = Y be the unit interval, and Jet S = T be the class of Borel sets;
let u(E) be the Lebesgue measure of E, and let »(E) be the number of points in
E. If D = {(%,y): ¥ = 5}, then D is a measurable subset of X X Y such that

f v(D;z)du(x) = 1 and f u(DV)dv(y) = 0. In other words, Theorem A is not

true if the condition of o—finiteness is omitted.

(2) The Cartesian product of two o-finite and complete measure spaces
need not be complete. (Hint: let X = Y be the unit interval, let M be a non
measurable subset of X, let y be any point of Y, and consider the set M X { y};
cf. 34.4.)

(3) Suppose that (X,S,u) is a totally o—finite measure space and that (Y,T»)
is the real line with T = the class of all Borel sets and v = Lebesgue measure;
let X be the product measure p X ». We have already seen (34.5) that for any
non negative, measurable function, and a fortiori for any non negative, integrable
function f on X, the ordinate sets #*(f) and V4 (f) are measurable subsets of

X X Y; we now assert that A(¥,(f)) = AZ7*(f)) =ffdu. (Hint: in view

of the known results on approximation of functions by simple functions and
integration of sequences of functions, it is sufficient to establish the equation
for simple functions f.) This equation is sometimes used, in an alternative

approach to integration theory, as the definition of f fdu; it is a precise formula-

tion of the statement that “the integral is the area under the curve.”

(4) Under the hypotheses of (3), the graph of a measurable function has meas-
ure zero. (Hint: it is sufficient to consider non negative, bounded, measurable
functions on totally finite measure spaces, and to these the result of (3) applies.)

(5) If (X,S,u) and (Y,Tp) are o-finite measure spaces, and if A = u X »,
then, for every set E in H(S X T), A*(E) is the infimum of sums of the type
> a=1N(En), where {En} is a sequence of measurable rectangles covering E.
(Hint: cf. 33.3, 10.A, and 8.5.)

§ 36. FUBINI'S THEOREM

In this section we shall study the relations between integrals
on a product space and integrals on the component spaces.
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Throughout this section we shall assume that

(X,S,u) and (Y,T,w) are o—finite measure spaces and \ is the
product measure p X »on S X T.

If a function 2 on X X Y is such that its integral is defined
(1.e. if, for instance, 4 is an integrable function or a non negative
measurable function), then the integral is denoted by

[rendems or [hwnde X )

and is called the double integral of 4. If 4. is such that

f he(9)du(3) = f(x)

is defined, and if 1t happens that f Jfdp is also defined, it is cus-

tomary to write
1 = [[1.0d(dut) = [aute) 35,90,

The symbols f f h(x,y)du(x)dv(y) and f dv(y) f h(x, y)du(x) are de-
fined similarly, as the integral (if it exists) of the function g on
Y, defined by g(y) = f A¥(x)du(x). The integrals f hdudv and

f f hdvdu are called the iterated integrals of 4. To indicate the

double and iterated integrals of 2 over a measurable subset E
of X X Y, i.e. the integrals of xg4, we shall use the symbols

Lhd)\, fj;hdpdv, and thvap.

Since X-sections (of sets or functions) are determined by points
in X, it makes sense to assert that a proposition is true for almost
every X-section, meaning, of course, that the set of those points
x for which the proposition is not true is a set of measure zero in X,
The phrase “almost every Y-section” is defined similarly; if a
proposition is true simultaneously for a.e. X-section and a.e.
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Y-section, we shall simply say that it is true for almost every

section.
We begin with an elementary but important result.

Theorem A. A necessary and sufficient condition that a
measurable subset E of X X Y have measure zero is that almost
every X-—section [or almost every Y—section] have measure zero.

Proof. By the definition of product measure we have

[rEddut),
ME) =
f w(EY)du( ).

If M(E) = 0, then the integrals on the right are in particular
finite and hence (by 25.B) their non negative integrands must
vanish a.e. If, on the other hand, either of the integrands
vanishes a.e., then A\(E) = 0. |

Theorem B. If 4 is a non negative, measurable function on
X XY, then

f/zd(p X ) =ff1;d,‘dp =fflzdvdu.

Proof. If % is the characteristic function of a measurable set
E, then

[y = o) and [hx0dut) = u(E),

and the desired result follows from 35.B. In the general case we
may find an increasing sequence {4,} of non negative simple
functions converging to 4 everywhere, (20.B). Since a simple
function is a finite linear combination of characteristic functions,
the conclusion of the theorem is valid for every A, in place of 4.

By 27.B, lim., f Bad\ = f B If fu(x) = f Ba(%,7)dv( ), then

it follows from the properties of the sequence {4,} that {f.}
is an increasing sequence of non negative measurable functions
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converging for every x to f(x) = f A(x,y)dv(y); (cf. 27.B). Hence

f is measurable (and obviously non negative); one more applica-
tion of 27.B yields the conclusion that

lima [fadu = [ .

This proves the equality of the double integral and one of the
iterated integrals; the truth of the other equality follows simi-
larly. |

Both Theorems A and B are sometimes referred to as parts of
Fubini’s theorem; the following result is, however, the one most
commonly known by that name.

Theorem C. If % is an integrable function on X X Y, then
almost every section of h is integrable. If the functions f and g

are defined by f(x) = [ Hx,9)dn(5) and () = [H.2)du(o),
then f and g are integrable and

fﬁd(p X v) =ffa'u =fgdv.

Proof. Since a real valued function is integrable if and only
if its positive and negative parts are integrable, it is sufficient to
consider only non negative functions 4. The asserted identity
follows in this case from Theorem B. Since, therefore, the non
negative, measurable functions f and g have finite integrals, it
follows that they are integrable. Since, finally, this implies that
f and g are finite valued almost everywhere, the sections of A
have the desired integrability properties, and the proof is com-
plete. |

(1) Let X be a set of cardinal number ¥y, let S be the class of all countable
sets and their complements, and, for 4 in S, let u(A4) be O or 1 according as 4
is countable or not. If (Y,Tp) = (X,S,u), if Eisasetin X X Y which is count-
able on every vertical line and full on every horizontal line (cf. 31.11), and if 4
is the characteristic function of E, then % is a non negative function such that

f B(xy)du(x) =1 and f B(x,9)dv(y) = 0.

Why is this not a counter example to Theorem B?
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(2) If (X,S,n) and (Y,Tp) are the unit interval with Lebesgue measure, and
if E is a subset of X X Y such that E; and X — EV are countable for every x
and y (cf. (1)), then E is not measurable.

(3) The following considerations indicate an interesting extension of the
tesults of this section. Let (X,S,u) be a totally finite measure space and let
(Y,T) be a measurable space such that Y& T. Suppose that to almost every
x in X there corresponds a finite measure v, on T so that if ¢(x) = v.(B), then,
for each measurable subset B of Y, ¢ is a measurable function on X. Ify(B) =

fv,(B)dp(x), if g is a non negative measurable function on Y, and if f(x) =

fg( ¥)dv.(y), thenfis a non negative measurable function on X and f Sfdu = f gav.

(4) The proof of Fubini’s theorem sometimes appears to be slightly more
complicated than the one we gave—the complication is caused by completing
the measure A. In other words, the theorems of this section remain true if A
is replaced by X. (Hint: every function which is measurable (S X T) is equal
a.e. [A] to a function which is measurable (S X T); (cf. 21.1)).

In (5)-(9) below, we shall assume that the measure spaces (X,S,u) and
(Y,Tw) are totally finite. It is easy to verify that the results obtained may be
extended to totally o—finite measure spaces, and, therefore, to each measurable
set in the product of two o—finite measure spaces.

(5) If E and F are measurable subsets of X X Y such that »(E;) = »(F.)
for [almost] every x in X, then A(E) = A(F). (Certain usually not rigorously
stated special cases of this assertion are known as Cavalieri’s principle.)

(6) If f and g are integrable functions on X and Y respectively, then the
function A, defined by A(x,y) = f(x)g(y), is an integrable function on X X Y
and

flzd(ﬂ)(v) =ffdp-fgdv.

(7) Suppose that u(X) = »(Y) = 1 and that 4y and By are measurable sub-
sets of X and Y respectively such that u(A4p) = v(Bo) = 3. Let x be the char-
acteristic function of (4o X Y) A (X X By) and write f(x,y) = 2x(x,5). If,
for every measurable set £ in X X Y,

MNE) = fE F(,3)dN (x5,

then X is a finite measure on 8 X T with the property that X(4 X Y) = u(4)
and N(X X B) = v(B), whenever £/£8S and Be T. In other words, the product
measure N is not uniquely determined by its values on such special rectangles.

(8) The existence of the product measure is often proved by the following
direct but combinatorially somewhat complicated method. The class of all
finite, disjoint unions of measurable rectangles is a ring R, (33.E); if

UP-1 (4 X B;) and U1 (C; X D))
are two representations of the same set in R, then since

Ut U (4 N Gy) X (B: N Dy))
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is another representation of the same set, we have
21 p(4) v(By) = 271 u(Cy) -¥(D;).
In other words, a set function A is unambiguously defined on R by
MU=t (4: X By)) = 20wy p( ) -w(By).

It can be shown (essentially by proving a weakened form of Fubini’s theorem
for the sets of R) that A is a measure to which the extension theorem (13.A)
may be applied.

(9) If A and B are arbitrary (not necessarily measurable) subsets of X and Y

respectively, then
A*(4 X B) = p*(4)-v*(B).

(Hint: if 4* and B* are measurable covers of 4 and B respectively, then the
relation 4 X B C A* X B* implies that \*(4 X B) £ u*(A)-v*(B). The re-
verse inequality may be proved by considering a measurable cover £* of A X B.
Since E* NN (A* X B*) is also a measurable cover of 4 X B, it is permissible to
assume that E* C A* X B*. It follows from Fubini’s theorem that

NE®) 2 [ WEMdu(x) 2 w(4*)-v%(B))

§ 37. FINITE DIMENSIONAL PRODUCT SPACES

In the preceding sections we have developed the theory ot
product spaces for two factors; our next task is to investigate
how this theory may be extended to any finite number of factors.
We suppose that » (>1) is a positive integer, and that Xi, -+, Xa
are sets; we define the Cartesian product of these sets to be the
set of all ordered n—tuples of the form (xy, - - -, x,), where x; € X,
i=1,---,n. We shall denote this Cartesian product by

Xi XX Xn or XiayX; or X{Xpi=1,---,n}

If A4; is any subset of X;, i =1, .-+, n, the set Xi=1 4; is a
rectangle.

It is worth while to ask about Cartesian product, as about
every algebraic operation, whether or not it is associative. If,
for instance, X;, X5, and Xj are three sets, then, without changing
the order in which they are presented, we may form the three new
sets (Xl X Xz) X Xa, X X (Xz X Xs), and X; X X; X Xs. In
what sense may we consider these three Cartesian products to
be equal? Clearly they do not consist of the same elements;
it is incorrect to confuse the ordered pair ((x,x2),x3), Whose first
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element is itself an ordered pair, with the ordered triple (xy,xs,x3).
Just as clearly, however, there is a “natural” one to one corre-
spondence between any two of the three Cartesian products
under discussion, namely the one which makes the points

((x1,%2),%3),  (x1,(¥2,%3)), and  (x1,%2,%3)

correspond to each other. Since it will turn out that this corre-
spondence preserves all those structural properties of product
spaces which are of interest to us, we shall wilfully fall into the
trap we just pointed out and we shall consistently treat the three
products described above as identical. We shall carry this identifi-
cation procedure to its logical conclusion, and in the case, for
instance, of seven factors, we shall consider the element

(((xl;x2))x3)) ((x4)x5)) (xﬁ)x7)))

of the set ((X] X Xz) X X3) X ((X4 X X5) X (Xe X X7)) to be
the same as the element

(%1,%2,X3,%4,X5,X6,%7)

OftheSCtXl X X X X3 X X, XX5 XXG X X7.

The identification just described simplifies the language of
many proofs. Since, for instance, we may view X; X ---X X,
as a repeated product

(- (X1 X X2) X X3) X--+) X X,

of two factors at a time, we may prove the analogs of the theorems
of § 33 by mathematical induction on #. Some slight care has to
be exercised in the formulation of the results. The correct version
of the generalization of 33.D, for example, is the assertion that if

E = X?—ldi) F = X?-x Bi, and G = X?—l C;

are non empty rectangles, then E is the disjoint union of F and
G if and only if there is a j, 1 < j < n, such that 4; is the dis-
joint union of B; and Cj and such that

A,'=B;'=C.', for i?éj.
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The concept of a section (of a set or a function) also requires a
minor modification; an Xj-section, determined by a point x;
in Xj, of a set in X/.; X, is a subset of

X{X:12i<n i),

If (X;,8)),1 =1, -, n, are measurable spaces, we shall denote

by
Sy X+++X S, or Xia1Si, or X {Sii=1,---, n}

the o-ring generated by the class of all those rectangles X7, 4;
for which 4;eS;, 1 =1, ---, n, and we define the Cartesian
product of the given measurable spaces as the measurable space
(X; X+ X Xpny S X--:X S,). It follows that every section
of a measurable set [or a measurable function] is a measurable
set [or a measurable function]. Proceeding by mathematical
induction, it is now trivial to define the Cartesian product of
o—finite measure spaces (X;,S,,u;), 7 = 1, - - -, n; there is one and
only one measure u (denoted by p; X -+ X p,) on S§; X-+-X S,
such that

}1(111 XX /{n) = II?ﬂl #i(/{i)

for every measurable rectangle 4, X---X A,. The extension of
Fubini’s theorem is also immediate, so that the integral of any
integrable function in a product space may be evaluated by form-
ing the iterated integral in any order.

It is customary to refer to a product space X = X'.; X; as
n~dimensional. This terminology is not meant to define dimen-
sion, nor to assert that #—dimensionality 1s an intrinsic structural
property of a space; it serves merely to remind us of the way in
which X was built from the components X;. A measure space
might appear as three dimensional in one context and two di-
mensional in another; if, for instance, » = 3, then we may view

X as X7 X X, X X3 or as Xy X X3, (where Xy = X; X X,).

In (1)-(5) below we shall assume that X; is the real line, S; is the class of al.
Borel sets, and u; is Lebesgue measure, § = 1, - -+, n; we write

(X)S)#) = X:‘- 1 (Xiysi)“i)'
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(1) Sets of the o-ring S are called the Borel sets of #—dimensional Euclidean
space. The class of all Borel sets coincides with the g-ring generated by the
class of all open sets.

(2) If ¢ is a Borel measurable function on X, and if fi, - - -, f, are real valued,
measurable functions on a measurable space (Y,T) for which Y& T, then the
function f, defined by f(y) = ¢(f1(1), ***, fa(1)), is a measurable function on
Y; (cf. 19.B).

(3) The completed measure f is called n-dimensional Lebesgue measure;
most of the results of §§ 15 and 16 are valid for . If, in particular, U and C
are the class of all open sets and the class of all closed sets respectively, then, for
every set E in X,

p*E) = inf {p(U): EC UeU} and us(E) = sup {u(C): ED CeC}.
(4) If T is any linear transformation defined by
Ty, ooy xn) = (41, oy m)y 5= Zimraixi+bi, i=1,--,n,
then, for every set E in X,
p*(T(E)) = |A|-p*(E) and px(T(E)) = | A|-us(E),

where A is the determinant of the matrix (a;;). (Hint: it is sufficient to prove
the assertion for measurable rectangles E whose sides are intervals. Treat first
the following special cases.

(4a) yi=xi+ biyi=1,---,m

(4b) y; = xsif i 7% jand i # k; y; = x and yr = x;.

(4c) yi = xs1f i # j; y; = xj =& xx, where k # j.

(4d) ys = % if i # f; y; = cx;j.

The general case follows from the fact that T may be written as the product
of transformations of the types (4a)-(4d).)
(5) The function ¢; on X, defined by

Di(xr, X)) =% j=1,-ym,
is measurable.

(6) There is a way of defining n-dimensional Lebesgue measure which does
not make use of the general theory of product spaces. To indicate this method,
we shall consider the space X; X+ X Xy, where X; = X = the unit interval.
For every x in X, let x = .oyaza3- -+ be a binary expansion of x and write

Xi = OOnyiOanpiccty =1, m

(For each x which has two binary expansions, select a definite one of them, say for
instance the terminating one.) The transformation T from X to X1 X - -+ X Xa,
defined by T(x) = (1, - - -, xa), has the property thatif aset Ein Xj X-+- X Xn
is measurable, then T~Y(E) = {x: T(x) & E} is a measurable subset of X. (For
the proof, consider the case in which E is a rectangle whose sides are intervals
with binary rational end points.) The equation (u1 X+ + X ) (E) = u(T~Y(E))
{where p is Lebesgue measure in X) may be used as the definition of the product
measure p; X -+ - X fa; this definition is consistent with our earlier one.
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(7) By the familiar zig-zag diagonal process, i.e. by writing
X1 = 00040 -,
X2 = Q300802 ¢ ¢,
X3 = .QgOrgQl13Q18” * °,

X4 = .Q1o014Q0190%95° * ©

the procedure of (6) may be extended to yield a definition of product measure
in an “infinite dimensional” analog of Euclidean space.

§ 38. INFINITE DIMENSIONAL PRODUCT SPACES

The first step of an extension of product space theory to
infinitely many dimensions suggests itself naturally. If {X.} is
a sequence of sets, the Cartesian product

X = x:-l Xi
is defined as the set of all sequences of the form (xy, xo, - - +) where
x;e X 1 =1,2, ---. If each X; 1s a measure space, with a

o-ring S; of measurable sets and a measure u;, it is not quite
clear, however, how the concepts of measurability and measure
should be defined in X. In this section we shall show how this
may be done, under the assumption that the spaces X; are totally
finite measure spaces such that p(X;) =1,7i=1,2, ---. We
observe that the measure on every totally finite measure space
(X,S,n), for which u(X) s 0, may be trivially altered (by divid-
ing the measure of every measurable set by u(X)) so that the
measure of the entire space is 1. We shall see, however, that
since the number 1 plays a distinguished role in the formation of
products (particularly of infinite products), the condition u;(X,)
= 1 is not merely an inessential normalization.

Suppose then that, for each i = 1,2, ---, X;is a set, S;is a
o—algebra of subsets of X;, and u; is a measure on S; such that
ui(X;) = 1. In this case we define a rectangle as a set of the
form X, 4;, where 4; € X; for all i and 4; = X; for all but a
finite number of values of . We define a measurable rectangle
as a rectangle X;.; 4; for which each A4; is a measurable subset
of X;; in view of the preceding definition, this condition is a
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restriction on only a finite number of the A’s. A subset of
Xi=1 X; will be called measurable if it belongs to the o-ring S
(which is in fact a g-algebra) generated by the class of all measur-
able rectangles; we shall write S = X,%.; S..

Suppose that [ is any subset of the set I of all positive integers;
we shall say that two points

¥ = (%1, %, --+) and y = (y,ys )

agree on J, in symbols ¥ = y (J), if x; = y; for every j in J.
A set E in X is called a J-cylinder if x = y (J) implies that x and
y belong or do not belong to E simultaneously. In other words,
E is a J-cylinder if altering those coordinates of any point whose
index is not in J cannot remove the point from E, nor insert it
into E if it was not already there (cf. 6.5d). If, for instance,
J =1{1, -+, n} and 4; is an arbitrary subset of Xj,7 = 1, -- -, n,
then the rectangle 4; X+ X 4n X Xpp1 X Xpqe X-+- is a
J—cylinder.
We shall write

X® = XX,y n=0,1,2 -,

in view of our identification convention for product spaces, we
may write X = X2, X; = (X; X---X X,) X X™, Since each
space X™ is an infinite dimensional product space such as
X(= X©), the considerations applied (above and in the sequel)
to X, may also be applied to X™. For every point (x, -+, x,)
in X; X---X X, and every set E in X, we shall denote by
E(xy, - -+, xa) the section of E (in X™) determined by (xy, - - -, xa).
We observe that every such section of a [measurable] rectangle
in X is a [measurable] rectangle in X™.

Theorem A. If | = {1, .-, n} and if a subset E of X is a
[measurable] J-cylinder, then E = A X X™, where A is a
[measurable] subset of Xy X -+ - X X,

Proof. Let (Xn41, ¥aq2, * + -) be an arbitrary point of X and
let A be the X™—-section (in X; X ---X X,) of E, determined by
this point. Since both the sets £ and 4 X X™ are J-cylinders,
it follows that if a point (xy, %5, - - ) of X belongs to either of them,
then so does the point (x, * -, X, ®ni1s Xniz, - ). It is clear,
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however, that if a point of this latter form belongs to either one
of the sets E and 4 X X™, then it belongs also to the other.
Using once more the fact that both these sets are J-cylinders,
and hence that if (x;, *+, ¥n, Faq1, Xnys, * ) belongs to either
of them, then so does (x1, -« Xn, ¥nt1, X¥ng2, - - ), We conclude
that £ and 4 X X' consist of the same points. The fact that
the measurability of E implies that of 4 follows from 34.A. |}

If m and » are positive integers, m < n, then it may happen
that a non empty subset E of X is simultaneously a {1, ---, m}-
cylinder and a {1, - -, n}—cylinder. By Theorem A we conclude
that

E=A4AXX™ and E=BX X",

where /< X; XX Xn» and Bc X; X---X X,. Since we
may rewrite the first of these relations in the form

E=(AX Xnp1 XX Xp) X X,

it follows from 33.C that B = 4 X X, X---X X,. Conse-
quently if £ is measurable, so that both 4 and B are measurable,
then

(i X+ X p)(4) = (a1 X -+ + X ua)(B).

It follows that a set function u is unambiguously defined for
every measurable {1, - - -, n}—cylinder # X X™ by the equation

p(Ad X X™®) = (u X+ X pa)(A).

We shall denote the domain of definition of g, i.e. the class of all
measurable sets which are {1, ---, #n}~cylinders for some value
of n, by F; the sets of F may be referred to as the finite dimen-
sional subsets of X. It is easy to verify that F is an algebra,
that S(F) = S, and that the set function u on F is finite, non
negative, and finitely additive.

We shall denote the analogs of F and u in the space X™,
n=12 ---, by F and u‘™ respectively. It follows from our
results for finite dimensional product spaces that if E belongs tc
F, then every section of the form E(x;, ---, x,) belongs to F™,
and

W) = [ f WO (B, - x)du () <+ dun(en).
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Theorem B. If {(X.Siu:)} is a sequence of totally finite
measure spaces with uX;) = 1, then there exists a unique
measure u on the o-algebra S = Xi=1S; with the property
that, for every measurable set E of the form 4 X X™,

(E) = (m X -+ X pa)(A).

The measure p is called the product of the given measures
iy w = Xi=1 pi; the measure space

(X?—x Xi, :-1 Sb =1 lli)

is the Cartesian product of the given measure spaces.

Proof. In view of 9.F and 13.A, all we have to prove is that
the set function p on the algebra F of all finite dimensional measur-
able sets is continuous from above at 0, i.e. that if {E,} is a
decreasing sequence of sets in F such that 0 < ¢ < u(E;),7 = 1,
2, ---, then ;=1 E; > 0.

IfF; = {x,: uM(E;(x1)) > g-} , then it follows from the relation

w(Ey) = f WO (Ey(er))ds (1) =

= [ OB i) + [ 1w (Ey(3)) i)
Fj Fy
that u(E;) < wm(F;) + % , and therefore that

€

m(Fy) = 2

Since {F;} is a decreasing sequence of measurable subsets of X,
and since yu,; (being countably additive) is continuous from above
at 0, it follows that there exists at least one point %, in X; such
that p®(E;(7)) = -2"5 j=1,2, ---. Since {E;(%)} is a decreas-
ing sequence of measurable subsets of X®, the argument just
applied to X, {E;}, and € may be repeated for XV, {E;(%)},

and % . We obtain a point %, in X, such that u®(E;(%,, %)) = 2,
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7 =1,2, ---. Continuing in this manner, we obtain a sequence
{%1, %2, +--} such that %, e X, » = 1,2, -+, and

OB, - T Bams S = 1,2

€
PAS

The point (%, %3, ---) belongs to ()=, E;. To prove this
assertion, we consider any particular E; and we select the positive
integer 7 so that E; is a {1, ---, n}-cylinder. The fact that
u ™ (Ej(F, -+, %)) > 0 implies that E; contains at least one
point (x;, xg, ---) such that x; = %; for7 = 1, ---, n. The fact
that Ejisa {1, - - -, n}—cylinder implies then that (%, %, - - -) itself
belongs to E;. |

(1) It is not essential for the results of this section that the index set [ is
the set of positive integers; any countably infinite set may be used for I. (The
space X = X {X;: ie I} consists, by definition, of all functions x defined on /
and such that their value x(i) at each index i is a point of X;.) The proof of this
assertion may be carried out by an enumeration of I, i.e. by establishing an
arbitrary but fixed one to one correspondence between the given set I and the
set of positive integers. The case, for instance, in which 7 is the set of a// integers
has many applications.

(2) The generalization of product space theory to uncountably many factors
is surprisingly easy. If I is an arbitrary index set, and if, for each 7 in I,
(X:,S:,m) is a totally finite measure space with u;(X;) = 1, then we may define
X = X {Xi:ie I} asin (1), and the concepts of rectangle, measurable rectangle,
and measurable set verbatim as in the countable case. Since the class of all
those sets which are J~cylinders for a countable subset J of I is a g-algebra
containing all measurable rectangles, it follows that each measurable set E is a
J—cylinder for a suitable J. If u(E) is defined to be ()¢ ;) (E), then pis a
measure on the class of all measurable sets and u has the product property which
Jjustifies its being denoted by Xy ¢ 7 .

(3) It is trivial to combine the theories of finite and infinite dimensional
product spaces and thus to produce a theory of product spaces in which a finite
number of the factors is not required to be a totally finite measure space but
allowed to be o-finite.

(4) If X = Xi.1 Xiis a product space such as the one described in Theorem
B, and if, for each 4, E; is a measurable set in X;, then E = X{.; E;is a measur-

able set in X and
B(E) = TIf-1 pi(E) = lima [0 1 mi(Ed).

(Hint: if Fo = E; X-+-X Ea X X™, then {F,} is a decreasing sequence of
measurable sets in X such that

Nr-1Fa= X1 E: and p(Fa) = [If-1m(E).)
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(5) It is possible to use the theory of product spaces to give a completely non
topological construction of Lebesgue measure on the real line (cf. the proof of
8.C), and hence on n-dimensional Euclidean space (cf. 37.6). To obtain such a
construction let (Xo,So,u0) be the measure space whose points are the two real
numbers 0 and 1, with Sp = the class of all subsets of Xy, and uo({0}) = po({1})
=1, Foreachi = 1,2, -+, write (X;,S;,us) = (Xo,So,i0), and form the product

space
(X,S,I.l) = (X:D- 1 Xi; X:’- 1 St', X;o- 1 ‘-‘ﬂ)-

(5a) For each point ¥ = (x1, %3, +-+) in X, the set {x} is measurable and
u({x}) = 0. (Hint: cf. (4).)

(5b) The set E of all points x = (x1, &2, +-+) in X for which %; = 1 for all
but a finite number of values of 7 is measurable and has measure zero. (Hint:
E is countable.) We shall write X X - E_and in what follows, we shall
consider the measure space (X,S,), where S=S N X and G(EN X) =
u(E), EeS. -

(5¢) If for each x = (x1, x3, -+ ) in X we write 2(x) = 2_{u; x:/2%, then the
functlon z establishes a one to one correspondence between X and the interval

= {2: 0 £ z < 1}. (Hint: consider the binary expansion of each z in Z with
the agreement that, if the expansion is not unique, the terminating expansion
is selected in preference to the infinite one.)

(5d) If 4 =1{2: 02a=<2<8é=1}, and E = {x: z(x) e 4}, then E is
measurable and g(E) = 4 — 4. (Hint: it is sufficient to consider the case in
which g and 4 are binary rational numbers.)

(Se) If A4 is any Borel set in Z and E = {x: z(x) & 4}, then E is measurable
and fi(E) is equal to the L.ebesgue measure of 4. (Hint: the set function »,
defined by v(A4) = f(E), is a measure which coincides with Lebesgue measure on
intervals.)

The considerations of (5a)—(5e) serve to construct Lebesgue measure on the
interval Z. Lebesgue measure on the entire real line may be obtained by con-
sidering the line as a countable, disjoint union of such intervals. Alternatively
we may consider the space I of all integers (with the class of all subsets of I
playing the role of the class of measurable sets and the measure of a set defined
to be the number of its points), and observe the existence of an obvious one to
one correspondence between the real line and the product space I X Z.

(6) A construction similar to the one in (5) may be obtained by considering
the space (Xo,So0,u0), where X is the set of all positive integers, Sy is the class of
all subsets of X, and uo(E) = X 1e£ 2% We form as before the product space
X = X?.1 X;, whose points this time are sequences of positive integers. For
each x = (x1, x3, +-+) in X we write

€
2(x) = E:-lz—(n+”~+zq)_

By the consideration of binary expansions it may be proved that the conclusions
of (5¢), (5d), and (5e) are valid for tbis z.

(7) Suppose that Xo = {x: 0 < xo < 1} is the semiclosed unit interval; let
So be the class of all Borel sets in X, and let up be Lebesgue measure on Se.

We write
(X:,Sius) = (Xo,Sopo), £=1,2, ¢
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and we form the product space X = X1 X;. There exists a one to one corre-
spondence between X and Xp such that every Borel set in Xj corresponds to a
measurable set (i.e. to a set belonging to X¢.1S:) in X, and such that corre-
sponding sets have equal measures. (Hint: if Y; is the two-point space described
in (5) and denoted there by X, and if Y;; = Yofori =0,1,2, --- andj = |,
2, +++, then X; = X7~ Yij,i =0, 1,2, ---. The correspondence is based on
the usual correspondence between doubly infinite sequences, i.e. elements of
X = X1 Xi = X1 X7-1Ysj, and simple sequences, i.e. elements of
Xo = X1 Yo;)



Chapter VIII

TRANSFORMATIONS AND FUNCTIONS

§39. MEASURABLE TRANSFORMATIONS

In every mathematical system it is of interest to investigate
the transformations that leave some or all structural properties
of the system invariant. While it is not our intention to study in
great detail the transformations that occur in measure theory, we
shall in this section discuss some of their fundamental properties.

A transformation is a function T defined for every point of a
set X and taking values in a set Y. The set X is called the
domain of T'; the set of those points of Y which are of the form
T(x) for some x in X is the range of T. A transformation whose
domain is X and whose range is in Y is often described as a
transformation from X into Y; if the range of Tis Y, T is called a
transformation from X onto Y. For every subset E of X, the
image of E under T, in symbols T(E), is the range of the trans-
formation T from E into Y; for every subset F of Y, the inverse
image of F under T, in symbols T~1(F), is defined to be the
set of all those points of X whose image is in Fj; i.e.

T~Y(F) = {x: T(x) e F}.

A transformation T is one to one if T'(x;) = T(x;) occurs when
and only when x; = x,. The inverse of a one to one transforma-
tion T, denoted by T, is the transformation which is defined
for every y = T(x) in the range of T by T7!(y) = x.

If T is a transformation from X into Y and § is a transformation
from Y into Z, the product of § and T, in symbols ST, is the

transformation from X into Z defined by (ST)(x) = S(T(x)).
161
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A transformation T from X into Y assigns in an obvious way
a function f on X to every function g on Y;f is defined by f(x) =
g2(T(x)). Itis convenient and natural to write f = gT.

Theorem A. If T is a transformation from X into Y, if
gisafunction on Y, and if M is any subset of the space in which
the values of g lie, then

{x: (gT)(x) e M} = T'({ y:g(y) e M}).

Proof. The following statements are mutually equivalent: (a)
xo € {x: (gT)(x) e M}, (b) g(T(x0)) € M, (c) if yo = T(xo), then
£2(30) e M, and (d) T(xo) ¢ {y: g(y) e M}. The equivalence of
the first and last ones of these statements is exactly the assertion
of the theorem. |}

If (X,S) and (Y,T) are measurable spaces and if T is a trans-
formation from X into Y, how should the concept of measurability
be defined for T? Motivated by the special case in which Y
is the real line, we shall say that T is a measurable transformation
if the inverse image of every measurable set is measurable. We
observe that this language is inconsistent with our earlier one
concerning measurable functions; because of the special role of
the real number 0, a measurable function is not necessarily a
measurable transformation. This slight inconsistency is amply
repaid by convenience in applications; confusion can always be
avoided by use of the proper one of the terms “function” and
“transformation.” In the important case in which X itself be-
longs to S and Y is the real line, the two concepts, measurable
transformation and measurable function, coincide.

If T is a measurable transformation from (X,S) into (Y,T),
we shall denote by T7!(T) the class of all those subsets of X
which have the form T-!(F) for some F in T; it is clear that
T7(T) is a o-ring contained in S.

Theorem B. If T is a measurable transformation from
(X,S) into (Y,T), and if g is an extended real valued measurable
Sunction on 'Y, then gT is measurable with respect to the o-ring
T7YT).

Proof. Theorem A implies that, for every Borel set M on the
real line,



[Sec. 39) TRANSFORMATIONS AND FUNCTIONS 163
N(gT) N (gT) (M) = {x: (gT)(x) e M — {0}} =
= T ({y:2(y) e M — {0}}) = T (N(g) N g1 (M));

it follows from the measurability of T that the set on the left
belongs to T7'(T). |

A measurable transformation T from (X,S) into (Y,T) assigns
in an obvious way a set function » on T to every set function
won S; v is defined for every F in T by »(F) = uw(T7U(F)). Itis
convenient and natural to write » = pT™2.

Theorem C. If T is a measurable transformation from a
measure space (X,S,u) into @ measurable space (Y,T), and if g
is an extended real valued measurable function on Y, then

fedur = [(eT)au,

in the sense that if either integral exists, then so does the other
and the two are equal.

Proof. It is sufficient to treat non negative functions g. If g
is the characteristic function of a measurable set F in Y, then it
follows from Theorem A that gT is the characteristic function
of T7Y(F) and therefore

[edwT=) = TH@E) = WTE) = [(eTran

[t follows from this relation that the asserted equality is valid
whenever g is a simple function. In the general case let {g,} be
an increasing sequence of simple functions converging to g; then
{g.T} is an increasing sequence of simple functions converging
to gT and the desired conclusion follows by taking limits. |

If, in the notation of Theorem C, F is a measurable subset of
Y, then an application of Theorem C to the function xrg yields
the relation

JET0) = [, eTe)duc).

We observe that either side of this equation may be obtained from
the other by the formal substitution y = T(x).
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Theorem D. If T is a measurable transformation from a
measure space (X,S,u) into a totally o—finite measure space
(Y, Tp), such that pT™ is absolutely continuous with respect
t0 v, then there exists a non negative measurable function ¢ on
Y such that

Je@enaus = fe(»sany)

Sfor every measurable function g, in the sense that if either integral
exists, then so does the other and the two are equal.

The function ¢ plays the role of the Jacobian (or, rather, the
absolute value of the Jacobian) in the theory of transformations
of multiple integrals.

dT™)

Proof. Write ¢ = o (cf. §32), and apply 32.B to the
14

result of Theorem C. |

If T is a one to one transformation from a measurable space
(X,S) onto a measurable space (Y,T), and if both T and T!
are measurable, we shall say that T is measurability preserving.
A measurability preserving transformation T from a measure
space (X,S,u) onto a measure space (Y,T,v) is measure preserving
if uT7! =,

(1) The product of two measurable transformations is measurable.

(2) If T is a measurable transformation from (X,S) into (Y,T), and if a func-
tion f on X is measurable with respect to T-!(T), then f(x;) = f(x2) whenever
T(x1) = T(x0). (Hint: if Fy is a measurable set in Y containing T(x;), then
there exists a measurable set F in Y such that

{x: f(x) = fGx)} N T7HF) = T-VF).

The fact that x; € T~}(F) implies that x2 & T1(F).)

(3) If T is a measurable transformation from (X,S) onto (Y,T), and if a real
valued function f on X is measurable with respect to 77}(T), then there exists a
unique measurable function g on Y such that f = g7. (Hint: in view of (2), g
is unambiguously defined for every y = T(x) by g(y) = f(x). The fact that we
have, for every Borel set M on the real line,

T({y: g(y) e M}) = {x: f(x) e M},

implies, since T(X) = Y, that N(g) N {y:g(y) e M} e T.) Does this result re-
main true if T maps X into Y?
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(4) Suppose that X = Y = the unit interval, S = the class of all Borel sets,
and T = the class of all countable sets. If the transformation T is defined by
T(x) = x, then T is a one to one, measurable transformation from X onto Y,
but T is not measurability preserving. Is it possible to construct such an exam-
ple for which (X,S) = (Y,T)?

(5) If T is a measurable transformation from (X,S) into (Y,T), and if u
and v are two measures on S such that y << y, then yT1 < uTL,

§40. MEASURE RINGS

A Boolean ring is a ring in the usual algebraic sense, with the
property that every element is idempotent. Equivalently, a
Boolean ring is a set R and two algebraic operations (called addi-
tion and multiplication) defined for pairs of elements of R, sub-
Jject to the following restrictions. (a) Both addition and multipli-
cation are commutative and associative, and multiplication is
distributive with respect to addition. (b) There exists in R a
unique element (denoted by 0) such that the result of adding O
to any element E is E. (c) The result of adding any element to
itself is 0. (d) The result of multiplying any element E by itself
is E.

A typical example of a Boolean ring is a ring of subsets of a set
X with EAF and E N F playing the roles of the sum and the
product of E and F, respectively. Since our introduction of
Boolean rings is motivated exclusively by rings of sets, we shall
adopt the mnemonic device of always denoting addition and
multiplication in Boolean rings by A and N.

Most of the concepts we introduced and results we established
for rings of sets carry over without change to Boolean rings in
general. If| in particular, the formation of unions and differences
1s defined by

EUF=(EAF)A(ENF)
and
E—-F=EA(ENF),

then these operations are subject to the same formal identities
as the corresponding operations on sets. A similar statement is
true about the inclusion relations £ c F and E O F, defined by

ENF=E and ENF=F

respectively.
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We recall that the union of any class of sets is the smallest set
containing them all and their intersection is the largest set con-
tained in them; similar statements are true about unions and inter-
sections (as far as they can be formed) in every Boolean ring.
If, for instance, E and F are elements of 2 Boolean ring R, then
E U F is indeed the smallest element containing both E and F;
ie. EC EUF,Fc EUF,and, if Gis an element of R for which
EcG and Fc G, then EU Fc G. For an infinite set of
elements in a Boolean ring, however, there need not be any ele-
ment that contains them all, and, even if there is one, there need
not be a smallest one. A Boolean o-ring is a Boolean ring S
with the property that every countable set of elements in S has
a union; it is easy to verify that every countable set of elements
in a Boolean s-ring has an intersection. A typical example of a
Boolean g-ring is, of course, a g—ring of subsets of a set X.

A Boolean algebra is a Boolean ring R in which there exists an
element different from O (which, for obvious reasons, we shall
denote by X), with the property that E < X for every E in R.
A Boolean o-algebra is a Boolean o-ring which is a Boolean
algebra.

The definitions of the concepts of additivity, measure, o—finite-
ness, etc. for functions defined on a Boolean ring are the same
as the corresponding definitions for set functions on a ring of sets.
A measure u on a Boolean ring is positive if it vanishes for the
zero element only.

A measure u on a o-ring S of subsets of a set X is usually
not positive. There are, however, several well known procedures
which have the effect of making a positive measure out of u. One
such procedure is to consider the class N of measurable sets of
measure zero and then, after observing that N is an ideal in the
ring S (these words being used in their customary algebraic
sense) to replace S by the quotient ring S/N. Another (equiva-
lent) procedure is to write £ ~ F whenever u(EA F) = 0 and
then, after observing that the relation “~” is reflexive, sym-
metric, and transitive, to replace S by the set of all equivalence
classes with respect to the relation ~.

The most usual and most convenient procedure in measure
theory (which is the one we shall adopt) is still another one.
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We shall not replace S by another system—the elements of the
Boolean o-ring that we propose to consider are to be measurable
sets. We shall; however, redefine the concept of equality; if
two sets E and F in S are such that u(E A F) = 0, then we shall
consider them equal and we shall write E = F[u]. If E, = F,[4],
n=12,---, then

E1 - F1 = E2 - F2 and U:-l En = U:-l Fn [I‘])

so that even with the altered concept of equality, S is a Boolean
o-ring with respect to the familiar set operations. If E = F [u],
then u(E) = u(F), so that even with the altered concept of
equality, the measure u is unambiguously defined on S. Since
the statements u(E) = 0 and E = 0 [u] are obviously equivalent,
we see that, after the alteration of the concept of equality, u
becomes a positive measure.

If (X,S,u) is a measure space, we shall use the symbol S(u)
to denote the o-ring S with equality interpreted modulo p, as
described above.

A measure ring (S,u) is a Boolean o-ring S and a positive meas-
ure u on S. The preceding considerations show that if (X,Su)
is a measure space, then (S(u),u) is a measure ring; we shall call
it the measure ring associated with X or simply the measure ring
of X. A measure algebra is a Boolean algebra which is at the
same time a measure ring. The phrases [totally] finite and
o—finite are used for measure rings and measure algebras in the
same way as for measure spaces.

An isomorphism between two measure rings (S,u) and (Tp)
is a one to one transformation T from S onto T such that

T(E — F) = T(E) — T(F), T(U7-1 Ea) = Us-1 T(En),

and

r(E) = »(T(E)),

whenever E, F, and E, are elements of S, n = 1,2, ---. Two
measure rings are isomorphic if there exists an isomorphism be-
tween them. Two measure spaces (X,S,u) and (Y,T,) are
isomorphic if their associated measure rings (S(u),x) and (T(»)»)
are isomorphic.
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An atom of a measure ring (S,u) [or of a measure p] is an ele-
ment E different from 0 such that if F c E, then either F =0
or F = E; a measure ring with no atoms is non atomic. If
(X,S,u) is a measure space whose measure ring is non atomic,
then both the measure space X and the measure u are called non
atomic.

If (S,n) is a measure ring, we shall denote by § [or 8(u)] the set
of elements of finite measure in S and, for any two elements E
and F in 8, we shall write

p(E)F) = w(EAF).

It is easy to verify that the function p is a metric for 8; we shall
call 8 the metric space associated with (S,u), or, simply, the
metric space of (S,u). We shall also use the symbol $(u) for the
metric space associated with the measure ring (S(p),u) of a measure
space (X,S,u). A measure ring or a measure space is called
separable if the associated metric space is separable.

Theorem A. If S is the metric space of a measure ring (S,u),
and if

f(EF)=EUF and gEF)=ENF,

then f, g, and also p, are all uniformly continuous functions of
their arguments.

Proof. The desired results are immediate consequences of the
relations

H((El Uur)— (Ez UF)) + w((E U Fz) - (El U Fl))} <
((Ex N F) — (B N F)) + p((E: N F) — (Ex N FY)))
S Wl — E) + w(Fy — F) + w(Ey — Ey) + p(F — F1)
and
|(B) = w(F) | = | w(E - F) — u(F — E)| =
SwWE-F)+uF-E). 1

Theorem B. If (X,S,u) is a o—finite measure space such
that the a-ring S has a countable set of generators, then the metric
space $(u) of measurable sets of finite measure is separable.
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Proof. Let {E,} be a sequence of sets in S such that S =
S({E.}). Because of the s—finiteness of u, there is no loss of
generality in assuming that u(E,) < = for every n = 1, 2,
Since (5.C) the ring generated by {E,} is also countable, we
may assume that the class {E,: n=1,2, ---} is a ring. It
follows from 13.D that, for every E in $(u) and for every positive
number ¢, there exists a positive integer # such that p(E,E,) < e
Since this means that a countable set is dense in 8(u), the proof
of the theorem is complete. |

(1) The metric space § of a measure space (X S,u) is complete. (Hint: if
{E.} isa fundamental sequence in 8, and if xn is the characteristic function of
Enn=1,2 ---, then {xa} is fundamenta] in measure and therefore 22.E may
be applied.)

(2) Is the metric space of a measure ring complete?

(3) There is a concept of completeness for Boolean rings which is related to
but not identical with the concept of the same name for metric spaces. A Boolean
ring R is complete if every subset E of R has a union. Clearly every complete
Boolean ring is a Boolean a—algebra in the converse direction it is true that
every totally finite measure algebra is complete. (Hint: let E be the set of all
finite unions of elements of E. Write a@ = sup {u(E): E¢E}, find a sequence
{En} of elements of E such that lim, p(E,) = a, and set E = U,,-, E,)

(4) The result of (3) remains true for totally a-—ﬁmte measure algebras.

(5) If p is the metric on the metric space 8 of a measure ring (S,u), then p
is translation invariant in the sense that p(E A G, FAG) = p(E,F) whenever
E, F, and G are in §.

(6) If a one to one transformation T from a measure ring (S,u) onto a measure
ring (T,») is such that T(E — F) = T(E) — T(F), T(EU F) = T(E) U T(F),
and u(E) = »(T(E)), whenever E and F are in S, then T is an isomorphism.

(7) If aone to one transformation T from a measure ring (S,u) onto a measure
ring (T,») is such that u(E) = »(T(E)) and £ C F if and only if T(E) C T(F),
then T is an isomorphism.

(8) A metric space $ with metric p is convex if, for any two distinct elements
E and F in 8, there exists an element G, different from both E and F and such

that
p(E,F) = p(E,G) + p(G,F).

The metric space of a o-finite measure ring is convex if and only if the measure
ring is non atomic.

(9) An isomorphism between two measure rings is an isometry between their
metric spaces.

(10) A totally o—finite measure ring has (at most) countably many atoms.

(11) If s is the metric space of a measure space (X,S,u) and if v is a finite
measure on S such that ¥ <, then the function » is unambiguously defined
and continuous on §.

(12) If (X,S,u) is a o—finite measure space and {v,} is a sequence of finite
signed measures on S such that each v, is absolutely continuous with respect to
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p and such that lim, »,(E) exists and is finite for every E in S, then the set
functions v, are uniformly absolutely continuous with respect to u. (Hint:
let 8 be the metric space of (X,S,u) and write, for each fixed positive number ¢,

& = Mr-x Nim=t {E: Ees, | va(E) — vm(E) | < ;}

Since, by (11), each & is closed, and since, by (1), 8 is a complete metric space,
the Baire category theorem implies that there exists a positive integer ko, a
positive number ro, and a set Eg in § such that {E: p(E,Ep) < ro} C &, Let

& be a positive number such that § < 7y and such that | v.(E) | < §- whenever
uw(E)y<dandn =1, .-, k. Observe thatif u(£) < 8, then

p(Ey — E,Eg) < ry and p(Ey U E,E;) < ro,
and

[va(B)| =
S | () | + | va(Eo U E) — wy(Eo U E) | + | va(Eo ~ E) — wio(Eo — E) |)

(13) If, in the notation of (12), v(E) = lim, v,(E), then v is a finite signed
measure and vy < .

(14) If {va} is a sequence of finite signed measures such that lim, v,(E) =
v(E) exists and is finite for every measurable set E, then »(E) is a signed measure.

. . . 1
Hint: if |va(E) | S en, =1, 2, -, write p(E) = Z:_,le”](E) and

apply (13).)

(15a) Every Boolean ring R is isomorphic (in the customary algebraic sense
of that word) to a ring of subsets of some set X. (Hint: consider the Boolean
algebra Ry of two elements 0 and 1, and let X be the set of all homomorphisms
of RintoRo. If| for every Ein R,

T(E) = {x: xe X, x(E) = 1},

then T is a homomorphism from R into the algebra of all subsets of X all that
remains to be proved is that if £& R and E = 0, then there exists an x in X for
which x(E) = 1. If R is finite, this result is easy. In the general case let X*
be the set of all functions from R into Ry; in the customary product topology
X* is a compact Hausdorff space. If R is any finite subring of R such that
EeR, and if )‘(:*(ﬁ) is the set of all those functions x* in X* which are homo-
morphisms on R and for which x*(E) = 1, then the relation

N X*(R) O X*(®R)

(where R is the ring generated by R,, - - -, R,,) shows that the class { X*(R)} of
sets has the finite intersection property.) This result is known as Stone’s
theorem.

(15b) The proof of Stone’s theorem, outlined above, shows that R is isomorphic
to a ring of open-closed sets in a compact Hausdorff space. If R is a Boolean
algebra, then R is isomorphic to the ring of all open-closed sets in a compact
Hausdorff space. (Hint: changing the notation of (15a) slightly, let X be the
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set of all those homomorphisms of R into Ry which map the maximal element of
R on 1. Then the image of R under T contains a base for the topology of X.
If a class of open-closed subsets of a compact Hausdorff space is a base and is
closed under the formation of finite unions, then it contains every open-closed

set.)

(15¢) Every Boolean o-algebra S is isomorphic to a o-algebra of subsets of
some set X modulo a o-ideal. (Hint: map S by an algebraic isomorphism T
on the algebra of all open-closed sets in a compact Hausdorff space X; let S
be the o-ring generated by the class of all open-closed subsets of X and let Ny
be the class of all sets of the first category in Sg. If {E,} is a sequence of open-
closed sets, write E = T(Jn<1 T7Y(E,)); it follows that E — Un=y En is
nowhere dense. In other words, the class of all open-closed sets is closed, modulo
Ny, under the formation of countable unions. The only essential thing that is
still lacking is the fact, which ensures that T remains an isomorphism even after
reduction modulo Ny, that no non empty open-closed set belongs to Ny; this
result is, however, a special case of the Baire category theorem, which is just as
valid for locally compact spaces as for complete metric spaces.)

§41. THE ISOMORPHISM THEOREM

The purpose of this section is to prove that the concept of a
measure ring is not as general as it might appear. We shall show,
in fact, that every measure ring, subject to certain not too restric-
tive conditions, is the measure ring of a measure space. Of the
many theorems of this type we shall discuss only a rather special
one, which we selected because it is important both historically
and in current applications.

In what follows we restrict our attention to totally finite meas-
ure algebras. If (S,u) is a totally finite measure algebra, then,
unless we explicitly say otherwise, the symbol X will denote the
maximal element of S; the algebra S and the measure u are called
normalized if u(X) = 1. A partition of an element E of S is a
finite set P of disjoint elements of S whose union is E. The
norm of a partition P = {E,, ---, E}, denoted by |P|, is the
maximum of the numbers p(E;), + -+, u(Ex). IfP = {E,, - -+, Ei}
is a partition of E and if F is any element of S contained in E,
we shall write P N F for the partition {E, N F, ---, E, N F}
of F.

If P, and P, are partitions, we shall write P, < P, if each
element of P; is contained in some element of P;; a sequence
{P.} of partitions is decreasing if Poyy S P, form =1,2, ---.
A sequence {P,} of partitions is dense if to every element E of S
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and to every positive number e there corresponds a positive integer
n and an element E, of S which is equal to a union of elements of
P, and is such that p(E,E;) = uw(EA E) < e

Theorem A. If (S,u) is a totally finite, non atomic measure
algebra, and if {P,} is a dense, decreasing sequence of partitions
of X, then lim, | P, | = 0.

Proof. Since {|P.|} is a decreasing sequence of positive
numbers, it has a limit; we shall derive a contradiction from the
assumption that this limit is a positive number .

If P, = {E,, ---, Ex}, then at least one of the elements E;
must be such that

IP,,ﬂE,Ig_a fOI‘ 71=1,2,"'.

Let F; be such an element and consider the sequence {P, N F,}
of partitions of F;. By a repetition of the argument just used
we may find an element F; of the partition P; such that F, ¢ F;
and

|[P.,NF|=z6 for n=1,2, -,

and we may proceed so on ad infinitum.

If F = (\n-1 Fn, then u(F) = & > 0, and therefore, since F is
not an atom, there exists an element F, such that Fy ¢ F and
0 < u(Fy) < u(F). We observe that the element Fj is either
contained in or disjoint from every element of each of the parti-
tions P,, n = 1,2, ---. It follows that if ¢ is a number smaller
than either of the numbers u(Fy) and u(F) — u(F,), then no
element of S which is a union of such partition elements can have
a distance less than ¢ from F,. Since this contradicts the density
of {P,}, the proof of the theorem is complete. |

Theorem B. [f Y is the unit interval, T is the class of all
Borel subsets of Y, and v is Lebesgue measure on T, and if
{Q.} is a sequence of partitions into intervals of the maximal
element Y of the measure algebra (Tw), such that lim,| Q, |
= 0, then {Q,} is dense.

Proof. To every positive number e there corresponds a posi-

tive integer # such that | Q, | < ; . If E is any subinterval of Y,
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let E; be the uniquely determined interval of the partition Q,
with the property that the left end point of E is contained in E,.
If E; does not contain the right end point of E, let E; be the inter-
val of Q, which is adjacent to E; on the right, and proceed so on a
finite number of times until the process terminates with an
interval E; of Q, which does contain the right end point of E.
The union of the intervals E;, - -+, E; is at a distance less than e
from E; this proves that every subinterval of Y may be approxi-
mated by unions of elements of {Q,}. Since the class of all finite
unions of intervals is dense, the proof of the theorem is com-

plete. |

Theorem C. Every separable, non atomic, normalized meas-
ure algebra (S,u) is isomorphic to the measure algebra (Tw) of
the unit interval.

Proof. Let {E,}] be a dense sequence in the metric space
$(u) of (S,u). For each n = 1,2, ---, the set of elements of the
form (., 4;, where, for each i =1, ---, n, A, is either E; or
X — E,, is a partition P, of X. It is clear that the sequence
{P,} of partitions is decreasing; the density of {E,} implies that
the sequence {P,} of partitions is dense. It follows from Theorem
A that lim, | P, | = O.

To each element E of the partition P, we may make correspond
a subinterval T(E) of Y so that u(E) = »(T(E)) and so that
these intervals constitute a partition of Y. Separately within
each of these intervals we imitate similarly the behavior of P,,
and we proceed so on by induction. We obtain in this manner a
sequence {Q,} of partitions of Y into intervals; the fact that the
transformation T, from partition elements of {P,} into intervals,
is measure preserving implies that lim, | Q, | = 0, and therefore,
by Theorem B, that {Q,} is dense.

If we define T not only for partition elements occurring in
{P,} but also for finite unions of such elements by assigning to
each such finite union the corresponding finite union of partition
elements of {Q,}, then the transformation T is an isometry from
a dense subset of the metric space $(u) onto a dense subset of
3(v). It follows that there is a unique isometric transformation
T from $(u) onto 3(») which coincides with T everywhere that
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the latter is defined. Since T preserves unions and differences,
and since these operations are uniformly continuous functions of
their arguments, it follows that T is an isomorphism. ||

(1) If (S,u) is a o-finite, non atomic measure ring and if Eoe S, Ey 0,
then, for every positive number €, there exists an element E of S such that
EC Ejand 0 < u(E) < e (Hint: if u(Ep) < « and if E; is an element of S
such that E; C E; and 0 < u(E;) < u(Eo), then either u(Er) < 3u(Eo) or
I-l(Eo - El) = %#(Eo)-)

(2) If (S,u) is a o-finite, non atomic measure ring, and if Eo¢e S, then, for
every extended real number a with 0 £ a £ u(Ep), there exists an element E
in S such that £ C E, and u(E) = a. (Hint: since the case a = = is trivial,
there is no loss of generality in assuming that u(E,) < . The desired result
follows by a transfinite exhaustion process. The method is similar to the one
used in proving that any two points in a complete, convex metric space may be
joined by a segment, and in fact the present assertion is a special case of this
general theorem in metric geometry; (cf. 40.2 and 40.8).)

(3) If (S,u) is a totally g—finite, non atomic measure algebra, and if Eo€e S,
then, for every extended real number a with u(Ep) £ a £ u(X), there exists an
element E in S such that Eg C E and p(E) = @. (Hint: if a is finite, apply (2)
to X — Ep and p(X) — a.)

(4) If (S,u) is a totally finite measure algebra, then the set of all values of u
is a closed set.

(5) If a o-finite, non atomic measure ring (S,u) contains at least one element
different from 0, then its metric space $(u) has no isolated points. TIs it true that,
conversely, if $(u) has no isolated points, then (S,u) is non atomic?

(6) Every separable, non atomic, totally g—finite measure algebra (S,u) such
that u(X) = oo, is isomorphic to the measure algebra (T,») of the real line.
(Hint: it follows from (2) that there exists a sequence {X,} of elements in S
such that X = Jn.y X» and p(Xa) =1, 7 =1, 2, ---, and hence such that
Theorem C is applicable, for each #, to the algebra of subelements of X,.)

(7) Every measure algebra is isomorphic to the measure algebra of a measure
space; (cf. 40.15c¢).

§42. FUNCTION SPACES

There are certain metric spaces associated with an arbitrary
measure space (X,S,u) which are similar to the space $(u) of
measurable sets of finite measure. The one lying nearest at hand
is the class £; (or £,(u)) of all (extended real valued) integrable
functions. If for fin £, we write

171 = f1.71dw,

and for f and g in £, we write p(f,g) = || f — g I, (cf. § 23), then
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the function p has all but one of the usual properties of a metric.
The missing property is, of course, the positiveness of p; if p(f,g)
= 0, it does not necessarily follow that f = g We know what
does follow: by 25.B, p(f,g) = 0 is equivalent to f = g [u]. We
adopt again the same attitude as in the case of the space of
measurable sets of finite measure. Two elements (i.e. functions)
in £; are to be regarded as equal if their distance is zero, or,
equivalently, if they are equal almost everywhere [u]; with this
understanding £, becomes a metric space which (cf. 26.B) is
even known to be complete.

For some purposes in analysis it is desirable to generalize these
considerations. If p is a real number, p > 1, we shall denote by
£, (or £,(u)) the class of all those measurable functions f for
which | f|? is integrable. In analogy with the situation in £,
we shall identify two elements of £, if they are equal almost
everywhere [u]; up to a certain point the theory of £, imitates
that of £, very closely. We define, for instance, for f in £,,

710 = (f1rbau)

and we write, if f and g are in £, p,(f,2) = ||f — g ll,. At this
stage we run into difficulties. While it is clear that p,(f,g) =
po(g,f) = 0, and while it is equally clear that p,(f,g) = 0 if and
only if f = g [u], it is not clear that the triangle inequality is valid,
nor yet, and this is much more serious, that p, is always finite.
In order to settle these difficulties we proceed now to present
proofs of two classical results; the following one is known as
Holder’s inequality.

Theorem A. If p and q are real numbers greater than 1
1 1

such that ; +—-=1, and if fe £, and g e £y, then fge £,
q

and || fg || = [1f o1l & llo-

Proof. We consider an auxiliary function ¢ defined for all

B LN ..
positive real numbers ¢ by ¢(¥) = ; + — . Differentiating we
q

obtain
() =7 =m0,
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so that 1 is (in the domain under consideration) the only critical
value of ¢. Since

Hmz-od’(t) = liml—vwd)(t) = 00,

it follows that the value of ¢ at 1 is a minimum, and therefore
that

24 e 1 1

sz ey = 4o =1

? q ? g

If 2 and 4 are any two positive numbers, and if we write ¢ =
a''1/b''? it follows that
aP1 p1 aP b9

1= + or ab= -+ —,
bp agq ? 9

and it is clear that the latter inequality remains valid even if 4
and 4 are allowed to be 0.

We turn now to the proof of the theorem. If either || f |, =0
or || g ll, = O, then the result is trivial; in all other cases we may

write |
|f lg]
a= nd 4= .
Il ° gl

Applying the last written inequality we obtain
el 1 s 1 lsl
IUMMgm=pf q
flraw 7 ] g lod

Since fg is measurable, this inequality shows already that fg & £,;
by integrating it we obtain the desired result. |
Our next result is known as Minkowski’s inequality.

Theorem B. If p is a real number greater than 1, and if f
and g are in £,, then f + g ¢ £, and

I+ gl = 1f 1+ 1l & llo-

Proof. Holder’s inequality for a measure space containing
two points, each of measure 1, yields the elementary inequality

| @by + a2l | < (@ [P+ | a2 IP)'P(| 6y |2 + | 62 |99,
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1
where, as before, ;7 4+ - = 1. It follows that
q

lf+elPsIfllf+el +lgllf+el <
S (fPP+ g )Pl f + glee)e,
and hence that
|t +gl> s 2?le(lf]P + | g |?).

This implies that f + g £ £,; the desired inequality follows from
the relations

UIf +2l07 = fIf + g lrdu s

< [I7117 +glr=au + flgl-1 £+ glridu <

s (fisiae) " (fis + gloan)
t(flera)” (fir+gban)” =

=(Iflo+ lgllUf+ g ll2)"'% 1

Since it follows from Theorem B that if f, g, and 4 are in £,
then

po(f) = lf =gl s If=2lp+ 12— glls = ps(f,}) + pp(h,),

we see that £, is indeed a metric space; the proof that serves to
establish the completeness of £, carries over with only trivial
changes and establishes the completeness of £,.

(1) The metric space £,(r) on a measure space (X, S,u) is separable if and
only if the space $(u) of measurable sets of finite measure is separable. (Hint:
if a class of sets is dense in $(u), then the set of all finite linear combinations with
rational coefficients of the characteristic functions of these sets is dense in £,(u).)

(2) Another occasionally useful space is the set 91 of all essentially bounded
measurable functions. If we write, for any fin 91,

| £llw = ess. sup. {| fx) |: x € X}
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and, for f and g in M, pe(f,g) = ||/ — £ ||, then M (with our by now familiar
conventions as to what constitutes equality for two elements of a measure
theoretically defined function space) becomes a complete metric space.

(3) The space £ is deservedly the most extensively studied of the function
spaces we described; it is in a legitimate sense the most direct and fruitful
generalization of ordinary, finite dimensional, Euclidean space. A linear
functional on £; is a real valued function A on £ such that

Alaf + Bg) = aA(f) + BA(e)

whenever o and B are real numbers and f and g are in £,. A linear functional A
is bounded if there exists a positive, finite constant ¢ such that | A(f)| <
cl[ f |2 for every fin £5. It is an elementary geometric property of £; (whose
proof depends on nothing deeper than that £, is complete) that corresponding
to every bounded linear functional A there exists an element g of £2 such that

A(f) = f fedu for every f in £2. This fact may be used to prove the Radon-

Nikodym theorem (of which, incidentally, it is in turn a reasonably easy conse-
quence). For the sake of simplicity we shall restrict our outline of this proof
to the case of finite measures. Suppose then that x4 and v are two finite measures
such that y<< u and write A = ¢ + ».

(3a) If, for every f in £2(\), A(S) =ffa'v, then A is a bounded linear func-
tional on £3(\).
(3b) If A(S) =ffgd)\, then 0 £ g < 1 [Al. (Hint: if £ is the characteristic

function of a measurable set E, then A(f) = v(E) = \(E).)
(3c) If E = {x: g(x) = 1}, then M(E) = 0. (Hint: A\(E) = w(E).)

(3d) ff(l — g)av =ffgdp for every non negative measurable function f.

Be) Ifg = ] £ 2’ then, for every measurable set E, v(E) =f godp. (Hint:
- E

write f = le )
(4) Suppose that (X,S,u) is a finite measure space and write, for any two real
valued measurable functions f and g,

|f—g]
1+ [f -zl

The function pg is 2 metric; convergence with respect to po is equivalent to con-
vergence in measure.

po(fig) = f du.

§ 43. SET FUNCTIONS AND POINT FUNCTIONS

In this section we shall study the connection between certain
functions of a real variable and finite measures on the real line.
Throughout this section we shall assume that
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X is the real line, S is the class of all Borel sets, and p is
Lebesgue measure on S.

We shall consider monotone, non decreasing functions f on X,
i.e. functions f for which f(x) < f(y) whenever x < y; for brevity
of expression we shall simply call such functions monotone. If f
is a bounded monotone function, then it is easy to see that

lim, ., _of(¥) and lim,_, ;. f(x)
always exist and are finite; it is customary to denote these limits
by f(—) and f(4=) respectively.

Theorem A. If v is a finite measure on S and if, for every
real number x,

) = ({5 —0 <t < x}),
then f, is a bounded monotone function, continuous on the left
and such that f,(—x) = 0.

Proof. The boundedness and monotoneness of f, follow from
the corresponding properties of ». Since f,(—#n) = »((—x, —n)),
n=1,2, -, it follows that

fv(—w) = limnfv(_n) = V(n:-o {t: — o0 < 4 < -n}) =
= »(0) = 0.
To prove that f, is continuous on the left at each x, suppose that

{x.} is an increasing sequence of numbers such that lim, x, = x;
we have

0 = »(Nrar [xa) = limg v([2a,%) = lima (£,(*) — fo(xa)). B
The following result goes in the converse direction.

Theorem B. Iff is a bounded monotone function, continuous
on the left and such that f(—o) = 0, then there exists a unique
Sinite measure v on S such that f = f,.

Proof. In all details this proof parallels the construction of
Lebesgue measure. If, in other words, we define » for every
semiclosed interval by »([,6)) = f(4) — f(a), then the results of
§ 8 are valid for » in place of u and hence the extension theorem
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13.A may be applied. The only argument which needs modifica-
tion is the one used to establish 8.C. We are to prove that if
[20,60) is a semiclosed interval contained in the union of a sequence
{[4:,6:)} of semiclosed intervals, then

y([aO)bO)) =—<— Z?—l ”([ai)éi))'
If ay = by, the result is trivial; otherwise let € be a positive number
such that € < 4, — ao. Since f is continuous on the left at a4;,
to every positive number § and every positive integer i there
corresponds a positive number ¢; such that

fl@) — f(a; — €) <2£',, i=1,2 -

If Fo = [ao,bo - 6] and U,‘ = (a.- - éi,b,'), 1= l, 2, ey then
Fy ¢ U:-1 U, and therefore, by the Heine-Borel theorem, there
1s a positive integer # such that

F,c Ui- U
From the analog of 8.B for » we obtain
[(bo — €) = flao) £ 201 (f(6:) — flai — €)' =
= 20 (f6:) = f(a))) + 2iar (flai) —~ flai — &) =
< 201 (f(6) — f(a)) + 6.

Since e and § are arbitrary, the desired result follows from the
fact that f is continuous on the left at 4,. |

Theorems A and B establish a one to one correspondence be-
tween all finite measures » on S and some functions f, of a real
variable; the following two theorems show how certain measure
theoretic properties of » may be characterized in terms of the
corresponding function f,.

Theorem C. If v is a finite measure on S, then a necessary
and sufficient condition that f, be continuous is that v({x}) = 0
Sfor every point x.

Proof. If {x,} is a decreasing sequence of numbers such that
lim, x, = x, then

v({x]) = »(Nna1 [6%2)) = limav(fx,x0)) = lim, (fi(xa) = fi(x)).
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The proof is completed by the observation that f, is continuous
at x if and only if the last term of this relation vanishes. |

A real valued function f of a real variable is called absolutely
continuous if to every positive number e there corresponds a
positive number 8§ such that

a1 [ f) = fa) | < e

for every finite, disjoint class {(a;,6;): ¢ =1, - - -, n} of bounded
open intervals for which > /., (4; — a) < 8.

Theorem D. If v is a finite measure on S, then a necessary
and sufficient condition that f, be absolutely continuous is that
v be absolutely continuous with respect to p.

Proof. If v « p, then to every positive number e there corre-
sponds a positive number § such that »(E) < € for every Borel
set E for which u(E) < 8. Hence if {(4:,6:):i=1%---,n} isa
finite, disjoint class of bounded open intervals for which

w(Ui=11808) = 251 (b — @) < 3,

2| fE) — fila) | = 2iaiv(land)) =
= V(U?—l [a,-,b,-)) <e

Suppose, conversely, that f, is absolutely continuous. Let e
be any positive number and let & be a positive number such that
Dt (b — a5) < 8 implies X tuy | fo(6:) — fu(@s) | <e IfEisa
Borel set of Lebesgue measure zero, then there exists a disjoint
sequence {[2:,6;)} of semiclosed intervals such that

Ec U?_l [a;,b,-) and Z?_] (b, - ﬂ,‘) < 6.

Since it follows that D 7., | £,(6;) — f,(a:) | < € for every positive
integer n, we have

V(E) = Z;':] V([abbi)) = E:-I |fv(bz) _fV(al') I Se

Since e is arbitrary, we must have »(E) = 0. |

For the statement of the next result (which is an easy but
frequently useful consequence of the Lebesgue decomposition
theorem) we need one more definition. We shall say that a finite

then

il
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measure » on S is purely atomic if there exists a countable set C
such that »(X — C) = 0.

Theorem E. If v is a finite measure on S, then there exist
three uniquely determined measures vy, va, and vz on S whose
sum is v and which are such that v, is absolutely continuous
with respect to p, vy is purely atomic, and vy is singular with
respect to u but vs({x}) = O for every point x.

Proof. According to the Lebesgue decomposition theorem
(32.C) there exist two measures v, and »; on S whose sum is »
and which are such that v, is singular and », is absolutely con-
tinuous with respect to u. Let C be the set of those points x
for which »o({x}) £ 0; the finiteness of » implies that C is count-
able. If we write

v(E) = vo(E N C) and w3(E) = vo(E — C),

then it is clear that the decomposition » = »; + v, + v3 has all
the desired properties. Uniqueness follows from the uniqueness
of the Lebesgue decomposition and the easily verifiable unique-

nessof C. |

(1) All the results of this section remain true for signed measures » if the condi-
tion that f, be monotone is replaced by the condition that it be of bounded
variation, (Hint: every function of bounded variation is the difference of two
monotone functions.)

(2) Several of the well known properties of monotone functions and absolutely
continuous functions may be proved by using the methods of this section; we
indicate two examples.

(2a) A monotone function has (at most) countably many discontinuities.
(Hint: for bounded monotone functions f which are continuous on the left and
such that f(—«) = 0, apply Theorem B and the reasoning in the proof of
Theorem C. The general case can be reduced to this special case by some obvious
transformations.)

(2b) If a bounded monotone function f is absolutely continuous and such
that f(—) = 0, then there exists a non negative Lebesgue integrable function

& such that f(x) = fjw¢(t)a’u(t). (Hint: apply Theorems B and D.)

(3) The purpose of the following considerations is to show that the results of
15.C and 15.1 can be extended to a very wide class of measures including the
ones discussed in this section.

(3a) If two finite measures u and v on a g-ring S of subsets of X agree on a
lattice L of sets in S, then u and » agree on the o-ring S(L) generated by L.
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(Hint:if EeL, FeL, and E C F, then u(F — E) = v(F — E). Apply 5.2, 8.5,
and 13.A))

(3b) If two finite measures p and » are defined on the class of Borel subsets
of a metric space X and agree on the class U of open subsets of X then they agree
for all Borel sets.

(3c) If u is a finite measure defined on the class of Borel subsets of a metric
space X, and U is the class of open subsets of X, then u(E) = inf {u(U): E
C UeU} for every Borel set E. (Hint: the set function y* defined by v*(E) =
inf {u(U): EC UeU} is a finite metric outer measure which defines a measure
v on the class of Borel sets, and v agrees with u on U.)

(3d) If p is a measure on the class of Borel subsets of a metric space X,
and C is the class of closed subsets of X that have finite measure, then u(E) =
sup {u(C): E D CeC} for every Borel set E of o—finite measure. (Hint: it is
sufficient to consider sets E of finite measure. Write »(F) = u(E ) F) and
apply (3c) tov and X — E.)

(3e) If u is a measure on the class of Borel subsets of a separable, complete,
metric space X, and Cg is the class of compact subsets of X that have finite
measure, then u(E) = sup {u(C): E D Ce Co} for every Borel set E of o—finite
measure, (Hint: apply (3d) and 9.10.)

(4) Ifyis a finite measure on S and if a Borel set Ej is an atom of », then there
exists a point Xg in Ep such that ¥(Ey — {x5}) = 0. (Hint: by means of (3) the
general case may be reduced to the case in which Ej is closed and bounded.)

(5) Ifvis a finite measure on S, then a necessary and sufficient condition that
/» be continuous is that » be non atomic.

(6) Most of the results of this section remain true for measures and signed
measures ¥ which are not necessarily finite; what is essential is that »(E) be
finite whenever E is a bounded interval.

(7) In connection with (6) and for the purpose of constructing counter exam-
ples, it is interesting to observe that there exist o~finite measures v on S which
are absolutely continuous with respect to p, but for which »(E) = e for every
interval E with a non empty interior. (Hint: let f be a positive, Lebesgue

€
integrable function such that f f*du = » for every positive number ¢; for
-t

example write f(x) = (¢!*'\/Tx[)~% If {ry, rs, --+} is an enumeration of the
set of all rational numbers, if, for every x,

1
g) = T gafx = 7a),

and if, for every Borel set E, ¥»(E) = f 22%du, then v has all the desired properties.
B

Observe that sincefga’u =2 % ffdu, the function gis finite valued a.e. [p].)



Chapter 1X

PROBABILITY

§ 44. HEURISTIC INTRODUCTION

The purpose of this section is to give an intuitive justification
for the measure theoretic treatment of probability.

The principal undefined term in the theory of probability is
“event.” Intuitively speaking, an event is one of the possible
outcomes of some physical experiment. To take a rather popular
example, consider the experiment of rolling an ordinary six-sided
die and observing the number x (= 1, 2, 3, 4, 5, or 6) showing
on the top face of the die. “The number x is even”— it is less
than 4”—“it is equal to 6”—each such statement corresponds to
a possible outcome of the experiment. From this point of view
there are as many events associated with this particular experi-
ment as there are combinations of the first six positive integers
taken any number at a time. If, for the sake of aesthetic complete-
ness and later convenience, we consider also the impossible event,
“the number x is not equal to any of the first six positive integers,”
then there are altogether 2% admissible events associated with the
experiment of the rolling die. For the purpose of studying this
example in more detail let us introduce some notation. We write
{2,4,6} for the event “x is even,” {1,2,3} for “x is less than 4,”
and so on. The impossible event and the certain event (=
{1,2,3,4,5,6}) deserve special names; we reserve for them the
symbols 0 and X respectively.

Everyday language concerning events uses such phrases as

these: “two events E and F are incompatible or mutually exclu-
184
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sive,” “the event E is the opposite of the event F or complemen-
tary to F,” “the event E consists of the simultaneous occurrence
of F and G,” and ‘“‘the event E consists of the occurrence of at
least one of the two events F and G.” Such phrases suggest that
there are relations between events and ways of making new events
out of old that should certainly be a part of their mathematical
theory.

The notion of complementary event is probably closest to the
surface. If E is an event, we denote the complementary event by
E’: an experiment, one of whose outcomes is E, will be said to
result in E’ if and only if it dges not result in E. Thus if E =
{2,4,6}, then E' = {1,3,5}. We may also introduce combina-
tions of events suggested by the logical concepts of “and” and
“or.” With any two events E and F we associate their “union”
E U F and their “intersection” E N F; here E U F occurs if
and only if at least one of the two events £ and F occurs, while
E N F occurs if and only if both E and F occur. Thus if £ =
{2,4,6} and F = {1,23}, then EU F = {1,234,6} and EN F
= {2}.

The considerations of the preceding paragraphs, and their
obvious generalizations to more complicated experiments, justify
the conclusion that probability theory consists of the study of
Boolean algebras of sets. An event is a set, and its opposite event
is the complementary set; mutually exclusive events are disjoint
sets, and an event consisting of the simultaneous occurrence of
two other events is a set obtained by intersecting two other sets—
it is clear how this glossary, translating physical terminology into
set theoretic terminology, may be continued.

For the traditional theory of probability, concerned with simple
gambling games such as the rolling die, in which the total number
of possible events is finite, the above heuristic reduction of the
class of all pertinent events to a Boolean algebra of sets is ade-
quate. For situations arising in modern theory and practice,
and even for the more complicated gambling games, it is neces-
sary to make an additional assumption. This assumption is that
the system of events is closed under the formation of countably
infinite unions, or, in the technical language we have already used,
that the Boolean algebra is in fact a g—algebra.
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Perhaps an example, though a somewhat artificial one, might
illustrate the need for the added assumption. Suppose that a
player determines to roll a die repeatedly until the first time that
the number showing on top is 6. Let E, be the event that the
first 6 appears only on the nth roll. The event £ = J; .1 En
occurs if and only if the game ends in a finite number of rolls.
The occurrence of the opposite event E’ is at least logically (even
if not practically) conceivable, and it seems reasonable to want
to include a discussion of it in a general theory of probability.
Numerous examples of this kind, together with some rather deep
lying technical reasons, justify the statement that the mathemati-
cal theory of probability consists of the study of Boolean os-alge-
bras of sets.

This is not to say that all Boolean g-algebras of sets are within
the domain of probability theory. In general, statements con-
cerning such algebras and the relations between their elements
are merely qualitative; probability theory differs from the general
theory in that it studies also the quantitative aspects of Boolean
algebras. We proceed now to describe and motivate the introduc-
tion of numerical probabilities.

When we ask “what is the probability of a certain event?”,
we expect the answer to be a number, a number associated with
the event. In other words, probability is a numerically valued
function u of events E, that is of sets of a Boolean s-algebra. On
intuitive and practical grounds we demand that the number u(E)
should give information about the occurrence habits of the event
E. 1If, in a large number of repetitions of the experiment which
may result in the event E, we observe that E actually occurs only
a quarter of the time (the remaining three quarters of the experi-
ments resulting therefore in E’), we may attempt to summarize
this fact by saying that u(E) = 1. Even this very rough first
approximation to what is desired yields some suggestive clues
concerning the nature of the function u.

If, to begin with, u(E) is to represent the proportion of times
that E is expected to occur, then u(E) must be a non negative
real number, in fact a number in the unit interval [0,1]. If E
and F are mutually exclusive events—say E = {1} and F =
{2,4,6} in the example of the die—then the proportion of times
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that the union E U F (= {1,24,6} in the example) occurs is
clearly the sum of the proportions associated with E and F
separately. If an ace shows up one sixth of the time and an even
number half the time, then the proportion of times in which the
top face is either an ace or an even number is 1 + 3. It follows
therefore that the function u cannot be completely arbitrary;
it is necessary to subject it to the condition of additivity, that is
to require that if £ N F = 0, then u(E£ U F) should be equal to
w(E) + p(F). Since the certain event X occurs every time, we
should also require that u(X) = 1.

We are now separated from the final definition of probability
theory only by a seemingly petty (but in fact very important)
technicality. If u is an additive set function on a Boolean
o-algebra of sets, and if {E,} is an infinite disjoint sequence of
sets in the algebra, then it may or may not be true that
p(Ur=1 En) = 2n-1n(E,). The general condition of countable
additivity is a further restriction on p—a restriction without
which modern probability theory could not function. It is a
tenable point of view that our intuition demands infinite additivity
just as much as finite additivity. At any rate, however, infinite
additivity does not contradict our intuitive ideas, and the theory
built on it is sufficiently far developed to assert that the assump-
tion is justified by its success. To sum up:

numerical probability is a measure u on a Boolean s-algebra
S of subsets of a set X, such that p(X) = 1.

In our development of measure theory in the preceding chapters,
the concepts ‘“‘measurable function,” “integral,” and “product
space” played important roles; in the immediately following
paragraphs we shall introduce the probability meaning of these
concepts.

We begin with the frequently used term “random variable.”
“A random variable is a quantity whose values are determined
by chance.” What does that mean? The word ‘“‘quantity”
suggests magnitude—numerical magnitude. Ever since rigor has
come to be demanded in mathematical definitions, it has been
recognized that the word “variable,” particularly a variable whose
values are ‘‘determined” somehow or other, means in precise
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language a function. Accordingly a random variable is a func-
tion: a function whose numerical values are determined by chance.
This means, in other words, that a random variable is a function
attached to an experiment—once the experiment has been per-
formed the value of the function is known. We have seen that
the analytic correspondent of an experiment is a measure space
X; it follows that a function of outcomes is a function of the
points x of X. A random variable is a real valued function on the
measure space X.

The preceding sentence does not yet fully describe the cus-
tomary usage of “random variable.” A function f on the measure
space X is called a random variable only if probability questions
concerning the values of f can be answered. An example of such
a question is “what is the probability that f lies between o and
B?” In measure theoretic language: “what is the measure of the
set of those points x for which the inequality a < f(x) < 8 is
satisfied?” In order for all such questions to be answerable, it
is necessary and sufficient that the sets that occur in them belong
to the basic g—algebra S of X; in other words a random variable
is a measurable function.

Let us consider in detail the random variable f associated with
an honest die by the definition f(x) = x. The possible values of
f are the first six positive integers. The arithmetic mean of these
values, that is the number §(1 +2 + 3 + 4 + 5 4+ 6), 1s of con-
siderable interest in probability theory; it is called the average,
or mean value, or expectation of the random variable f. If the
die is loaded, so that the probability p, associated with x is not
necessarily %, then the arithmetic mean is replaced by a weighted
average; in this case the expectation of fis 1-p, +-- -+ 6-ps.
The analogs of such weighted sums, in cases where the number of
values of the function need not be finite, are given by integrals;
if the measurable function is integrable, then its expectation
is by definition the value of its integral.

We see thus that measurable functions and their integrals have
their probability interpretations; in order to find such an inter-
pretation of product spaces, we continue to study the example of
the die. For simplicity we make again the classical assumption
that any two faces are equally likely to turn up and that conse-
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quently the probability of any particular face showing is 1.
Consider the events E = {246} and F = {1,2}). The first
notion we want to introduce, the notion of conditional probability,
can be used to answer such questions as these: ‘“what is the
probability of E when F is known to have occurred?”’” In the
case of the example: if we know that x is less than 3, what can
we say about the probability that x is even? The adjective
“conditional” is clearly called for in the answer to a question of
this type: we are evaluating probabilities subject to certain
preassigned conditions.

To get a clue to the answer, consider first the event G = {2}
and ask for the conditional probability of E, given that G has
already occurred. The intuitive answer is perfectly clear in this
case, and is independent as it happens of any such numerical
assumptions as the equal likelihood of the faces. If x is known
to be 2, then x is certainly even, and the probability must be 1.
What made the answer easy was the fact that G was contained in
E. The general question of conditional probability asks us to
evaluate the extent (measured by a numerical probability or
proportion) to which the given event F is contained in the un-
known event E. Phrased in this way, the question almost sug-
gests its own answer: the extent to which F is contained in E
can be measured by the extent to which E and F are likely to
occur simultaneously, that is by u(E N F). Almost—not quite.
The trouble is that (£ N F) may be very small for two reasons:
one is that not much of F'is contained in E, and the other is that
there is not very much of E altogether. In other words it is not
merely the absolute size of £ N F that matters: it is the relation
or proportion of this size to the size of F that is relevant.

We are led therefore to define the conditional probability of
E, given that F has already occurred, in symbols ur(E), as the
ratio u(E N F)/u(F). For E = {2,4,6} and G = {2}, this gives
the answer we derived above, ug(E) = 1; for E = {2,4,6} and
F = {12}, we get the rather reasonable figure ur(E) = 1. In
other words if it is known that x is either 1 or 2, then x is odd or
even (i.e. equal to 1 or equal to 2) each with probability %.

Consider now the following two questions: ‘“F happened, what
is the chance of E?” and simply “what is the chance of E?”’
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The answers of course are up(E) and u(E) respectively. It might
happen, and it does happen in the example given above, that
the two answers are the same, that, in other words, knowledge of
F contributes nothing to our knowledge of the probability of E.
It seems natural in this situation to use the word “independent”:
the probability distribution of E is independent of the knowledge
of F. This motivates the precise definition: two events £ and F
are independent if ur(E) = p(E). The definition is transformed
into its more usual form and at the same time gains in symmetry
if we recall the definition of ur(E). In symmetric form, E and F
are independent in the sense of probability (statistically or
stochastically independent) if and only if u(E N F) = p(E)u(F).

Suppose now that we wish to make two independent trials of
the same experiment—say, for example, to roll an honest die
twice in succession. In a compound experiment such as this one,
we do not expect the reported outcome of the experiment to be a
number, but rather a pair of numbers (x;,x;). The points of the
measure space associated with the compound experiment are,
in other words, the points of the Cartesian product of the original
measure space with itself; the problem is to determine how the
probability is distributed among these points. For a clue to the
answer, consider the events E = “x; < 3” and F = “x; < 4.7
We have u(E) = % and p(F) = %;if we interpret the independence
of trials to mean the independence of any two events such as E and
F, we should have u(E N F) = L.

On the basis of the preceding paragraph we shall say that, if
the analytic description of an experiment is given by a measure
space (X,S,u), then the analytic description of the experiment
consisting of two independent trials of the given one is the
Cartesian product of (X,S,u) with itself.

What we can do once we can do again. Just as two repetitions
of an experiment give rise to two dimensional Cartesian products,
similarly any finite number of repetitions (say #) give rise to
n—-dimensional Cartesian products. The procedure can be ex-
tended also to infinity: the analytic model of an infinite sequence
of independent repetitions of an experiment is an infinite dimen-
sional Cartesian product space. Even if an actually infinite
sequence of repetitions of an experiment is practically unthinkable,
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there is a point in considering infinite dimensional product spaces.
The point is that many probability statements are assertions con-
cerning what happens in the long run—assertions which can be
made precise only by carefully formulated theorems concerning
limits. Hence even if practice yields only approximations to
infinity, it is the infinite sequence space that is the touchstone
whereby the mathematical theory of probability can be tested
against our intuitive ideas.

We leave now these heuristic considerations and, in the next
section, turn to the detailed investigation of the basic concepts
and results of probability theory.

§ 45. INDEPENDENCE

A probability space is a totally finite measure space (X,S,u)
for which u(X) = 1; the measure u on a probability space is
called a probability measure.

If E is a finite or infinite class of measurable sets in a probability
space (X,S,u), the sets of the class E are (stochastically) inde-

pendent if
(i1 E) = [Tia1 w(E)

for every finite class {E;: i = 1, ---, n} of distinct sets in E.
In case the class E contains only two sets E and F, the condition
of independence is expressed by the equation

w(E N F) = p(E)u(F).

An illuminating example of two independent sets E and F is
obtained by taking for X the unit square with Lebesgue measure,
X={(x)):0=x=1, 0= y=1}, and writing E = {(x,9):
0sxslLasy=2étland F={(xy):csx<d,0=<y <1},
where a, 4, ¢, and 4 are arbitrary numbers in the closed unit
interval. We remark that it is nof sufficient for the independence
of the sets of a class E (even if E is a finite class) that any two
distinct sets of E be independent.

If & is a finite or infinite set of real valued measurable functions
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on a probability space (X,S,u), the functions of the set & are
(stochastically) independent if

”(n:"-ﬂ {x:fi(x) eMi}) = II?—l y({x:f,-(x) eM;})

for every finite subset {f;: i = 1, - -, n} of distinct functions in
& and every finite class {M;: i = 1, - -, n} of Borel sets on the
real line. An equivalent way of expressing this condition is to
say that if, for each fin & M, is a Borel set on the real line, then,
for every possible choice of the Borel sets My, the sets of the class
E = {f~'(M;):f e &} are independent. An illuminating example
of two independent functions f and g is obtained by taking for
X the unit square, as in the preceding paragraph, and defining
fand g by f(x,y) = x and g(x,y) = y.

As our examples of independent sets and functions might
indicate, there 1s a very close connection between the concepts
of stochastic independence and Cartesian product. Suppose, in
fact, that f; and f, are two independent functions on a probability
space (X,S,u) and consider the transformation T from X into the
Euclidean plane, defined by

T(x) = (fi(x), fa(x))-

If measurability in the plane is interpreted in the sense of Borel,
then the facts that X is a measurable set and f; and f; are measur-
able functions imply that T is a measurable transformation; simi-
larly, of course, the functions f; and f, are themselves measurable
transformations from X into the real line. A direct comparison
with the definition of independence shows that the fact that f;
and f, are independent can be very simply expressed by the
equation
pT™ = /™ X uf™

(If the transformation T is denoted, as it may well be, by the
symbol f; X f5, then the last written equation takes the form of
an easily remembered distributive law.) If the functions g, and
g2 on the plane are defined by

£(yuy2) =31 and  g(yny2) = ys
then it is easy to verify that f; = g7 and f; = g,7. From these
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very simple considerations we may already draw a non trivial
conclusion.

Theorem A. If fi and f; are independent functions, neither
of which vanishes a.e., then a necessary and sufficient condition
that both fi and f, be integrable is that their product fif; be
integrable; if this condition is satisfied, then

fflfzd# =ffld#‘ff2dp.

Proof. Using the notation established above, we see (by 39.C)
that the integrability of | f; | is equivalent to the integrability of
g, 1 = 1, 2, and, by Fubini’s theorem, the integrability of | g |
and | g; | implies that of | g1g2 |- Conversely, of course, if | g12 |
is integrable, then almost every section of | g1 g, | is integrable.
Since each such section is a constant multiple of | g, | or of | g |
and since the assumption that f; and f; do not vanish a.e. implies
that these constant factors may be selected to be different from
zero, it follows that the integrability of | g; g2 | implies that of
| g1 | and | go|. Since, finally, another application of 39.C shows
that | g1g2 | 1s integrable if and only if | fif; | is integrable, the
assertion concerning integrability is proved. The multiplicative
relation follows from Fubini’s theorem. |

The use of product spaces in the study of independent functions
extends far beyond the simple case indicated by the reasoning
above. Suppose, for instance, that {f,} is a sequence of inde-
pendent functions and let Y be the Cartesian product of a sequence
of real lines in each of which measurability is interpreted in the
sense of Borel. If, for every x,

T(x) = (fi(x),fo(x), - +),

then T is a measurable transformation from X into Y; a neces-
sary and sufficient condition that the functions f, be independent
is that pT7' = pfi ! X pfy™ X---. If the functions g, on Y
are defined to be the coordinate functions, g.(y1, 2, - ) = ¥n,
n=12 ---, thenf, = g,T,n =1,2, ---. Similar results are
true of course for arbitrary (finite, countable, or uncountable)
sets of functions.
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Theorem B. If {fijii=1, -, k;f =1, -, m} is a set
of independent functions, if ¢; is a real valued, Borel measurable
Sfunction of n; real variables,i = 1, -+, k, and if

fi(x) = ¢i(fil(x)) Y in;(x))y

then the functions fi, - - -, fi are independent.

Proof. The theorem is an easy application of the relations
established above between product spaces and independence.
Suppose that Y;; is the real line, i = 1, - -+, ks =1, - -+, n;, and
Y = Xi; Yij. 1f we write

T(x) = (fll(x)) e ”flnl(x)’ v ')fkl(x)’ te ':fknb(x))’

gij(_ylb s Vim0 Y1, ')yknk) = Dij
and

& = d’i(gil) tt Ty gini)y

then f; = g;T, i =1, ---, k. Since the independence of the g;’s
1s obvious, the independence of the f;’s follows. |

We conclude this section by introducing a frequently used
notation of probability theory. If fis a real valued measurable
function on a probability space (X,S,u), such that f? is integrable,
then it follows from Schwarz’s inequality (i.e. Holder’s inequality
with p = 2, cf. 42.A) that f itself is integrable and that, in fact,

( ffde)zé f?dp.

If f fdu = a, then the variance of f, denoted by o2(f), is defined

by ¢2(f) =f(f — a)%du. Since the integral of a constant func-

tion over a probability space is equal to the value of the constant,
it follows from the definition of &, by multiplying out the last
written integrand, that

2 = (fraw) - ( ffdu>2;

it is clear that, for any real constant ¢, o®(¢cf) = c2d*(f).
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Theorem C. If f and g are independent functions with a
Jfinite variance, then

(f + g) = &#(f) + (g).
Proof. We have

(f+2) =f(f+g)2du - (f(,f-l—g)d,;)Z:
= [rau+2 [feds + 2 - (. fd,;)z
() ()~ o

the desired result follows from Theorem A. |

(1) If Fis a measurable set of positive measure in a probability space (X,S,u),
and if, for every measurable set E, ur(E) = u(F N1 E)/u(F), then ur is a proba-
bility measure on S such that ur(#) = 1; the sets E and F are independent if
and only if up(E) = u(E). The number ur(E) is called the conditional probability
of E given F.

(2) If{E;:i =1, ---,n} is a finite class of measurable sets of positive measure,
then

k(E: n.--N E,) = p(E)ug(Es) - -+ ke n---n Ena(En).

This result is known as the multiplication theorem for conditional probabilities,
(3) If {Eizi =1, ---, n} is a finite, disjoint class of measurable sets of posi-

tive measure whose union is X (i.e. if { £;} is a partition of X), then, for every

measurable set F, u(F) = > t=1u(E:)ug,(F), and, if F has positive measure,

ur(Ej) = p(Ej)peF)/ 201 w(Epe(F).

This result is known as Bayes’ theorem.

(4) Two partitions of X, say {Ei:i=1,---,n} and {Fj:j = 1, - - -, m}, are
called independent if u(E; N Fy) = p(E)u(F;) for i =1, ---, n and j = 1,
-+.,m. Two sets E and F are independent if and only if the partitions { E,£’}
and {F,F’} are independent.

(5) Let X = {x: 0 < # < 1} be the unit interval with Lebesgue measure.
For every positive integer # define a function f, on X by setting fn(x) = +1
or —1 according as the integer i for which LG—l =x< % is odd or even.
The functions f, are called the Rademacher functions. Any two of the functions

J1, fo, and f1f» are independent, but the three together are not.

(6) If f and g are independent integrable functions, if M is a Borel set on the

real line, and if E = f~1(M), then f Sedu =L fdy-fgdp. (Hint: observe that
j
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xt(x) = xm(f(x)) and apply Theorem B to show that the product of f and xm(/f)
is independent of g.)
(7) Iffand g are measurable functions with finite variances such that o(f)o (g)

# 0, their coefficient of correlation is defined by

ffgd# - ffdw f gdp
U= ey

where o(f) = \/d’(f) is the standard deviation of f. The functions f and g are
uncorrelated if 7(f,g) = 0. If f and g are independent, then they are uncor-
related. A necessary and sufficient condition that o®(f + g) = o%(f) + o¥(g)
is that f and g be uncorrelated.

(8) Is it true that if f and g are uncorrelated, then they are independent?
(Hint: let X be the unit interval and write f(x) = sin 2mwx, g(x) = cos 2wx.)

(9) If f and g are independent integrable functions such that (f + g)% is
integrable, then f? and g? are integrable.

§ 46. SERIES OF INDEPENDENT FUNCTIONS

Throughout this section we shall work with a fixed probability
space (X,S,u). Our first result is known as Kolmogoroff’s in-
equality.

Theorem A. Iff;, i =1, ---, n are independent functions
such tlzatff,-du —o0, andfffdp <w,i=1, -, n, and if

fx) = Uiar | 251fi(x) | Gee. f is the maximum of the abso-

lute values of the partial sums of the f’s), then, for every positive
number e,

1
p{x:|f) | 2 €) = z Dok 2(fi).
Proof. We write
E={wlf®| 2 d, o= Thit

and

Ep = {x:|se@) | = ¢} N Migicr {x:]5:x) | <€}
We have

f Sa2du =f -szd,u + P(Ek) Zk<i§n fszdu =
Ez Ep

> f si2du 2 p(EQ)e.
Ex
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Since E = Ji-1 Ex and since the sets E; are disjoint, it follows
that

Tt ) = [+ S 2 fE sa2dy =
= Ttos [ sidn 2 Tior wEE = w(BDE. |

Theorem B. If {fa} is a sequence of independent functions
such that f Fodi = 0 and 2., 2(fa) < o, then the series

De1fa(x) converges a.e.
Proof. If we write
$a(x) = Dl filx), m=1,2, -,
an(x) = sup {| smyr(¥) — sm(x) |: kb = 1,2, .-},
a(x) = inf {an(x):m = 1,2, ---},

then a necessary and sufficient condition for the convergence of
D1 fn(x) at x is that a(x) = 0. By Kolmogoroff’s inequality
we have, for every positive number ¢ and every pair of positive
integers m and n,

1
Il({x: U:-l l 5m+k(x) - .s',,,(x) I 2 5}) = :‘; E;?:':H Uz(fk):
and therefore

u({x: an(x) 2 ¢}) <

E:-M-H Uz(fk)-

Mol =

It follows that
1
p({x:a(x) 2 ) = :221?-"»4»1 *(fx)

and therefore, using the convergence of D n.; c?(fa), that
u({x: a(x) = €}) = 0. The desired result is implied by the
arbitrariness of e. ||

The next result goes in the converse direction.

Theorem C. If {f.} is a sequence of independent functions
and ¢ is a positive constant such that f Sodp = 0and |fa(x) | S ¢
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a.ean=1,2, -+ and if 3 a1 fa(x) converges on a set of posi-
tive measure, then

:—-l 0'2(_fn) < 0,

Proof. If so(x) =0 and s.(x) = D2 iuifilx), n=1,2, ---,
then Egoroff’s theorem implies (cf. 21.2) that there exists a posi-
tive number 4 such that the set

E = Nizof{x:|sa(x) | = 4}
has positive measure. If we write
E.=Nlafxels:x)|S£d), n=0,1,2, -0,
then {E,} is a decreasing sequence of sets whose intersection is E.
If Ffo,=E.,,—E,n=1,2, ---, and «a, =f5,.2dn, n=0,
1,2, -, then -
an — ony = | s.2du — f sndp — f Snr’dp =
Ent Fa Ena

[ f2du+2 f Fsnsds — f s2dy, n=1,2, -
En_1 E, Fy

n—-1

Since

fo2du = p(En_i)o®(f) and f Fasnsdu = 0,
E, En—l

n—1

and since p(E,—1) = u(E) and |s.(x)| S c+d for ¥ in F,,
n=12,---,it follows that

an = an_1 Z p(E)o?(fa) — (¢ + dPPu(Fn), n=1,2,---.
Summing over # from 1 to k we obtain
&z WENd® Z ar Z p(E) w1 *(fn) — (c +4d)% 1

We remark that Theorems B and C imply that if {f,} is a
uniformly bounded sequence of independent functions such that

f Sadp =0 for n =1, 2, ---, then the series > ;. fa(x) either

converges a.e. or diverges a.e.; the measure of the convergence
set 1s always one of the extreme values, 0 or 1.
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Theorem D. If { fu} is a sequence of independent functions
and ¢ is a positive constant such that | fo(x) | S c a.e., n =1,
2, <on, thenm I omaifn(x) converges a.e. if and only if both the

series 3 ey f Sndp and 3 5ay *(fn) are convergent.

Proof. The “if” follows by applying Theorem B to the se-
quence {g.} defined by ga(x) = fu(x) — ffnd ym=1,2, -,

To prove the converse, we consider the Cartesian product of the
space X with itself and on it the functions 4, defined by 4,(x,y) =
falx) = fu(3), m =1,2, ---. Since the convergence a.e. of
> a1 fa(x) implies that D n.; A.(x,y) converges a.e., and since

[hadtux ) = 0,

it follows from Theorem C that > ., ¢?(%,) < ». Since, how-
ever, a*(h.) = 26*(f.), we see that D> m.;d®(fn) < . Since
d?(ga) = d*(fn), it follows from Theorem B that Y .., g.(x)

converges a.e. and therefore the relation
ffnd}t =f"(x) - gn(x)) n=12 -,

implies the convergence of > ., f Sadp. 1

All our preceding results on series are included in the following
very general assertion, known as Kolmogoroff’s three series
theorem.

Theorem E. If {f.} is a sequence of independent functions
and ¢ is a positive constant, and if E, = {x: | fa(x)| S ¢},
n=12 -, then a necessary and sufficient condition for the
convergence a.e. of D meifu(X) is the convergence of all three
series

) oo wE),
(b) e f&fndu,
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o (s (L))

Proof. If we write

gn(x) = :{ *)

then it is clear that the series

DomaiSa(x)y w1 ga(x), and Dow.y Aa(%)

converge at the same points. It follows from Theorem D (applied
separately to {g.} and {4.}) that D> .. fa(x) converges a.e.
if and only if all four series

(@ Sio ([ S = culE),

(e) 2nau (fEnfn%t - (Lﬂf,.d#)z—l- Fu(E)u(ES")
= 260(5) [ )

are convergent. It is readily verified that the convergence of (d)
and (e) (with all choices of the ambiguous signs) is equivalent
to the convergence of (a), (b), and (c). All that the verification
requires, in addition to the obvious additions and subtractions,
is the remark that, since the terms of a convergent series are
bounded, the termwise product of two convergent series one of
which has non negative terms is convergent. |

fn(x)

and /zn(x) = { if ”fn(x)’ s ¢

—c Hf,.(x)l > ¢

(1) The following result, which is implicitly contained in our earlier discus-
sion of the relation between mean convergence and convergence in measure,
is known as Tchebycheff’s inequality. 1f f is a measurable function with finite
variance, then, for every positive number e,

wllx: 1 /6) — [fu] 2 ) S Fe2).

Kolmogoroff’s inequality for # = 1 reduces to Tchebycheff’s. Since, in the
notation of Theorem A,

{e:|f)| = ¢l = Urar {x: [ ki filx) | = e,

an application of Tchebycheff’s inequality separately to each partial sum yields

u(le: 10 | Z €) S 5 Tk (0 — £+ Do),
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(2) An interesting special case of Theorem D is obtained by considering the
sequence {f.} of Rademacher functions; (cf. 45.5). 1f {cn} is a sequence of real
numbers, then Y 2.1 cafn(x) converges or diverges a.e. according as the series
> m=1¢a? converges or diverges. In the language of probability: a necessary
and sufficient condition for the convergence with probability 1 of the series
> w=1 =k cn is the convergence of D a1 ¢a%, it being understood that 4 and —
are equally likely and that the ambiguous signs are determined independently
of each other.

(3) The fact that the convergence set of a series of independent functions
must have measure 0 or 1 is a consequence of the following very general princi-
ple, known as the zero-one law. Suppose that the probability space X is the
Cartesian product of a sequence { X} of probability spaces. If, for each positive
integer n, Jo={n+1, n+2, ---}, and if a measurable set £ in X is a
Jn——cylinder for every n, then u(E) = 0 or 1. (Hint: write, for every measur-
able set F, »(F) = w(E N F). If Fis a J-cylinder for a finite set J, then
¥(F) = p(E)u(F); since a finite measure on the class of all measurable subsets
of X is uniquely determined by its values on such cylinders, this relation remains
valid for E in place of F.)

(4) If {E.} is a sequence of independent sets, then u(lim sup, E,) = O if
and only if Y m. p(Es) < 0; (cf. 9.6). (Hint: let x, be the characteristic func.
tion of E,, and apply Theorem D to the sequence {xn}.) This result is known
as the Borel-Cantelli lemma.

(5) Two sequences { f.} and {g.} are equivalent in the sense of Khintchine if

o= u({x: falx) # galx)}) < oo,

If {f.} is a sequence of independent functions, then a necessary and sufficient
condition for the convergence a.e. of the series ) w1 fa(*) is the existence of an
equivalent sequence {g.} of independent functions with finite variances such

that the series Y 2., f gadu and X3, 0%(g,) are convergent.

(6) If {fa} is a sequence of integrable functions and if f is a measurable
function with finite variance such that, for every positive integer », the functions

fh "',fmf - (fl ++fﬂ)

are independent, then each f, has finite variance and the series

T5e1 Un) = [fad)

converges a.e. (Hint: apply 45.9 and the three series theorem.)

§47. THE LAW OF LARGE NUMBERS

There are several limit theorems in the theory of probability
which are collectively known as the law of large numbers; in this
section we present two typical ones. The first of these is known
as Bernoulli’s theorem or the weak law of large numbers.
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Theorem A. If { f.} is a sequence of independent functions
with finite variances, such that f fadp=0,mn=1,2, -+ and

.1 1
lim, = dra162(f) = O, then the sequence [— p f;] of aver-
n n
ages converges to O in measure.
Proof. Since ¢® is homogeneous of degree 2 and, for inde-
pendent functions, additive, we have

[z =2 Ss) - L5 i

n

In other words, the principal assumption of the theorem is equi-
valent to the assumption that the sequence of averages converges
to zero in the mean of order two (i.e. converges to zero in the
space £,), and this implies convergence in measure. |

Two real valued measurable functions f and g on a probability
space (X,S,u) have the same distribution if u(f~*(M)) = u(g~'(M))
for all real Borel sets M. It is easy to verify that if f and g are
two integrable functions with the same distribution and if F =

f1(M) and G = g~(M), for some real Borel set M, thenffdy =
F

f gdp.  An interesting special case of Bernoulli’s theorem is the
G

one in which every two terms of the sequence { f,} have the same
distribution. In this case o?(f.) = 0®(f;) for every positive integer

1 1 .
n, and hence —; S %)) = - a2(f1), so that the assumption on
n

the asymptotic behavior of {d?(f,)} is automatically satisfied.

As auxiliary propositions for the proof of a sharper form of
the law of large numbers we need the following two results from
elementary analysis.

Theorem B. If {y,} is a sequence of real numbers which

e .1
converges to a finite limit y, then lim, — 3 1oy s = .
n

Proof. Corresponding to every positive number ¢, there exists

_ . €
a positive integer 7 such thatif n > 7, then |y, — y| < 5 Let
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n; be a positive integer greater than 7y and such that

€
TEmln-yl <5
If n > ny, then
1 n 1 n
I(*Z;-ly.-)—ﬂ ==X (i—»| s
n n
1
= ‘;Zi"l (.yt _y)l +| Z?-nﬁ‘l (.yt'-y)l <

n — ng
<e |

€
< E Slyi—y|+ )
Theorem C. If { y,} is a sequence of real numbers such that

. . . 1
the series D may — Yu is convergent, then lim, — 3 7 1 y; = 0,
n n

Proof. We write

1
So = O, Sn = Zzal yn Ih = Z?—l.yi) n = 1) 2, Tt e

Since y; = i(s; — $5—1), 2 = 1,2, --+, and
Iy = Z;-l 15; — Z’?—Li iSig = — 23-1 s; + (" + 1)-‘n+1,

n=12 -
it follows that

tn+1 n 1 n
71+1— 7+ 1 nz:—151+5n+l-

Since the sequence {s.} converges to a finite limit, and since, by
1 ..

Theorem B, the sequence [— p A s;} converges to the same limit,
n

we have

. Fnq
lim, Y- =0. |
[T
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Theorem D. If { f.} is a sequence of independent functions
with finite variances, such that f Sfadp =0, n=1,2, ---, and

o 02(fn)

1
nel < oo, then the sequence [ h f,-} converges to 0
n

almost evervwlzere.

We remark that the hypothesis and, correspondingly, the con-
clusion of Theorem D are stronger than those of Theorem A.
The present theorem is one form of the strong law of large num-
bers.

1

Proof. We write g.(x) = —fa(x), n =1, 2, ---, and apply
n

46.B to the sequence { g.}. Sincefg,.du =0,n=1,2,---, and

*(fa
Doma103(gn) = 2omai —i_j;‘z < o,

it follows that the series

n=1 fn(x)

converges a.e.; the desired result follows from Theorem C. |

(1) Two measurable functions have the same distribution if and only if they
have the same distribution function; (cf. 18.11).

(2) If {0:®} is a sequence of non negative real numbers and if 7 and » are
positive integers such that m < n, then

g2+ -+ ot 01 +- ot om? + Omir®
n* n* (m + 1)

This inequality can be used to show that the assumptions of Theorem D are
not weaker than those of Theorem A. That they are properly stronger may be
shown by constructing a sequence {fa} of independent functions for which
2 .+l
U = e 7D
(3) Theorem D is the best possible result of its kind (involving restrictions on
a%(f.) only) in the following sense: if {o,2} is a sequence of non negative real

++

o . .
numbers such that Y 2_, —"2 = oo, then there exists a sequence {f.} of inde-
n

pendent functions such thatff,,dp =0, 0’ (fa) =05 n=1, 2, .-+, and
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1 . .
{— e, f;} does not converge to 0 a.e. (Hint: construct f, so that if 6,2 < #2,
n

then
0"2

I‘({x:fn(x) = ”}) = l‘({x:fn(x) = —”}) = 573:

2
p(lxifal) = 0}) =1 =75,

and if 6,2 > 72 then

p({x: falx) = 0a}) = p({x: falx) = —0a}) = 3.

Observe that if ]im,,i- > t.1yi =0, then lim,.% ¥n =0, and apply the Borel-

Cantelli lemma to {x: | fa(%) | 2 n}.)

(4) If {fa} is a sequence of independent functions satisfying the conditions
of Theorem D, then there exists an equivalent sequence {gn} of independent
functions such that

sz 1 o(8x) =@

n? >

in other words, the converse of the strong law of large numbers is not true.
(5) The following weak converse of the strong law of large numbers is true.
If {fa} is a sequence of independent functions and ¢ is a positive constant, such

1 1
thatfj,.du =0and |~ fu®) | Scae, n=1,2 -, andif {; z;;'_,/,.} con-

verges to 0 a.e. then

2
«© a (f")
Zﬂ‘l n2+‘ < o
for every positive number e. (Hint: if { ¥} is a sequence of real numbers such

1 1 )
that lim, - % 19 = 0, or even such that the sequence {; DA y,-} is bounded,

In .

then the series D 3., =T+ is convergent for every positive number e.)

(6) The conclusion of Theorem D remains true if the assumption f fndu =0,

n=1,2, ---,is replaced by lim”% > ff.-a'p =0.

(7) The following is another theorem which is sometimes known as the strong
law of large numbers. If {fa} is a sequence of independent integrable functions

with the same distribution, such thatff,.du = 0, then lim,.-:;zz'.l fi=0 ae.

The sequence of assertions below is designed to lead up to a proof of this result.
1

(7a) If En= {x: | fi(x)| S n}, then Z:";EL: f2duy < 0. (Hint: let

Xn be the characteristic function of E,, and write g = Z;‘,’-l;:—zx,.f;’. If

k—-1<|fix)]| s k, then xa(x) = O whenever # < &, and this implies by an
elementary computation that | g(x) | <2|fi(x)| and hence that g is integrable.)
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7b) If Fp = {x: lf,.(x) | < n} and if gn = xp,fn, then the sequence {ga}
of mdependent functions is equivalent to {fa}.

(7c) Tim, = z,_, fg.du—O (Hint: fg,dp f fidu = f fidu and (Ed is

an mcreasmg sequence of measurable sets whose union is X; (cf. Theorem B).)

(7d)y 501 2¢72(g,.) < w0, (Hint:observe thatfg,,zdp =J;, fnldp =L_ fi%du

and apply (7a). This establishes the convergence of X s, %, f gn2du; the con-

1 2 .
vergence of ) pw1 p (fg,,dp) follows from the relation

(Jfos)'s (fla1a)")

(8) The following converse of the version of the strong law of large numbers
stated in (7) is true. If {f.} is a sequence of independent functions with the

e .1 ..
same distribution such that hm,.; > #..fi =0 ae., then f, is integrable.

(Hint: the relation lim, % fn = 0 a.e., together with the Borel-Cantelli lemma,

implies the convergence of the series D m.1 u({x: | fa(x) | > #}). Observe that
p({x: | falx) | > #}) = p({x: | fi(x) | > n}) and apply 27.4.)

(9) Applying the strong law of large numbers to the Rademacher functions
we obtain the celebrated theorem of Borel on normal numbers: almost every
number in the unit interval has in its binary expansion an equal number of 0’s
and l’s. Similar considerations are valid with respect to any other radix r in
placeof 2 (» = 3), and yield the theorem concerning absolutely normal numbers:
almost every number is normal with respect to every radix simultaneously.

§ 48. CONDITIONAL PROBABILITIES AND EXPECTATIONS

If E and F are measurable subsets of a probability space
(X,S,u) such that u(F) % 0, we have defined the conditional
probability of E given F by the equation

pr(E) = w(E N F)/u(F)

(cf. §44 and 45.1), and we have investigated slightly its de-
pendence on E. We are now interested in the way in which pr(E)
depends on F. If Fis such that both u(F) and u(F") are different
from 0, we introduce a measurable space Y consisting of exactly
two points y; and y, (with the understanding that every subset
of Y is measurable), and a measurable transformation T from X
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into Y, defined by T(x) = y; or y, according as x ¢ F or x e F’.
If for every subset £ of Y we write

ve(4) = w(E N T7H4)) and »(4) = vx(d) = (T7(4)),

then, clearly,

ur(E) = VE({}’I}) VE’({}’Z})

v({3}) v({52})

In other words conditional probability may be viewed as a measur-
able function on Y—that function which is, roughly speaking, the
ratio of the two measures vg and ».

Generalizing the considerations of the preceding paragraph, we
may consider a finite, disjoint class {F, ---, F,} of measurable
sets of positive measure such that {Ji., F; = X, and correspond-
ingly we may introduce a measurable space Y of # points y,
cooy¥n. If T(x) = y; wheneverx e Fy;i=1,-.- n,then Tisa
measurable transformation from X into Y, and once more we may
represent conditional probabilities as ratios of two measures on
Y. These considerations motivate the following general defini-
tion. If Tis any measurable transformation from the probability
space (X,S,u) into a measurable space (Y,T), and if we write
ve(F) = w(E N T7'(F)) whenever E and F are measurable sub-
sets of X and Y respectively, then it is clear that vg and uT!
(= vx) are measures on T such that vz < uT71. It follows from
the Radon-Nikodym theorem that there exists an integrable func-
tion pg on Y such that

w(E N T-Y(F)) = f 2E()duT ()

and  up (E) =

for every F in T; the function pg is uniquely determined modulo
pT1. We shall call pg(y) the conditional probability of E given
y or the conditional probability of E given that T(x) = y. Some-
times we shall use the phrase “the conditional probability of E
for a given value of T(x)” to refer to the number pg(T(x)). We
shall generally write p(E,y) for pr(y); on the occasions when it
is necessary to consider p as a function of its first argument we

shall write p¥(E) = p(E,y).
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If F is such that u(T(F)) # 0, we may divide the equation
which defines p by u(T7!(F)) and obtain the relation

wE N TT(F)) _ 1
w(T7H(F)) w(T7H(F))

Since the extreme left term of this relation is the conditional proba.
bility of E given T-!(F), it is formally plausible that as “F
shrinks to y,” the left term should tend to the conditional proba-
bility of £ given y and the right term should tend to the integrand
P(E,y). The use of the Radon-Nikodym theorem is a rigorous
substitute for this rather shaky ‘“difference quotient” approach.

ey (E) = fp P(E,y)duT ().

Theorem A. For each fixed measurable set E in X,
0= p(Ey) < 1 WT);
Sor each fixed disjoint sequence {E,} of measurable sets in X,

p(U:=l Em}’) = Z:=1P(Em}’) [#T—l]-

Proof. The inequality is an immediate consequence of the
fact that 0 < u(E N T7Y(F)) < u(E) for every measurable subset
Fof Y. To prove the equation, observe that

fp (Ut Ex)duT(3) = u(Urr En) N T(E)) =
= i wlEa 0 THE) = Tie [ p(En)duT(9) =
F

=L(Z:=1p(En,y))dﬂT_l()'):

and apply the uniqueness assertion of the Radon-Nikodym
theorem. |

Theorem A asserts that p¥ behaves in certain respects like a
measure. [t is easy to obtain more evidence in this direction
and to prove, for instance, that p(X,y) = 1 [uT ], thatif E, C E,,
then p(E.y) < p(Eay) [wT7'], and that if {E,.} is a decreasing
sequence of measurable sets in X, then

2(Nne1 Enyy) = lim, p(ELy) [wT71
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It is important, however, to remember that the exceptional sets
of measure zero depend in each of these cases on the particular
sets E; under consideration, and it is in general incorrect to con-
clude that p¥ is a measure for almost all values of y.

The defining equation of p(E,y) may also be written in the form

f xe(x)du(x) f p(E,y)duT'(y). If, more generally, f is

any mtegrable functxon on X, then we may consider its indefinite
integral », defined by

WF) = [, Se)adus),

for all measurable sets F in Y, as a signed measure on T. Since
clearly v « uT71, it follows from the Radon-Nikodym theorem
that there exists an integrable function ¢; on Y such that

[ /@) = [T ()
T7NF) F

for every F in T; the function ¢ is uniquely determined modulo
wT~'. We shall call ¢(y) the conditional expectation of / given
y; we shall also write e(f,y) instead of ¢ (y).

Since the relation between p and ¢ is similar to the relation
between a measure and an indefinite integral, it might seem that
some such equation as

«(£y) = [x)dp)

ought to hold. Since, however, p¥ is not in general a measure,
the right term of this equation is undefined; the misbehavior ot
 is reflected, slightly enlarged, in the misbehavior of e.

Theorem B. If f is an integrable function on Y, then fT
is an integrable function on X and e(fT,y) = f(y) [0 T].

Proof. It follows from 39.C that fT is integrable and that
S/ TENE) = [ J)AUT () for every Fin T.
1 Suppqse that (X,S,u) and (Y,Tp) are probability spaces and consider

their Cartesian product (X X Y, S X T, u X »). If T(x,y) = x, then T is a
measurable transformation from X X Y onto X. For every measurable set E
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in X X Y, p(E,;x) = v(E:) [u], and hence, in this case, pg may indeed be defined
for each E so that p* is a measure for every x.
(2) Suppose that (X,S,u) and (Y,T,v) are probability spaces and let A be a

probability measure on S X T such that A K pu X », say A(E) =Lfd(y X ).
If T(x,y) = x, then, for every measurable set £in X X Y,

PE) = [xalss)fe)dv(y) lul

(3) If T is a measurable transformation from a probability space (X,S,u)
into a measurable space (Y,T), then p(TYF),y) = xr(y) T for every
measurable set Fin Y.

(4) The purpose of the following considerations is the construction of an exam-
ple for which the conditional probabilities p(Z,y) cannot be determined so that
pY is a measure for almost every y. Let Y be the closed unit interval, let T
be the class of all Borel subsets of Y, and let v be Lebesgue measure on T. Write
X = Y and let S be the o-ring generated by T and a set M such that both M
and M’ are thick in Y. A probability measure p is unambiguously defined on S

by writing
w4 0 M) U (BN M) =w(A)

whenever £ and B are in T; we consider the transformation T from X onto Y
defined by T(x) = x. Suppose that there exists a set Cy of measure zero in T
such that p¥ is a measure on S whenever y &’ C.

(4a) 1f Dy = {y: p(M,y) % 1}, then ¥»(Dy) = 0.

(4b) If Eyis the set of those points y for which it is not true that p(T—1(F),y)
= xr(y) identically for all Fin T, then »(Epg) = 0. (Hint: let R be a countable
ring such that S(R) = T. If, for each Fin R,

EoF) = {y: p(T7'(F),y) # xr(0)},

then »(Ey(F)) = 0. Make use of the fact that if two probability measures
agree on R, then they agree on T also.)

(4c) Ify e’ Co U Do U Ey, then y e M. (Hint: the relations p(M,y) = 1 and
(T 1({y}),y) = 1, together with the fact that p¥ is a measure, imply that

(M 0 T7({5]),9) = 1)

Since (4c) implies that the Borel set Co’ M Dy’ N E¢' of measure 1 is con-
tained in the set M, we have derived a contradiction with the assumption that
M’ is thick.

(5) If X is the real line and u is a probability measure on the class S of all
Borel sets in X, and if T is a measurable transformation from X into a measur-
able space (Y,T), then the conditional probabilities p(E,y) may be determined
so that p¥ is a measure for almost every y. (Hint: write ¢(x,9) = p((~%,x),¥).
There exists a measurable set Co in Y such that uT~1(Cy) = 0 and such that if
y &’ Co, then ¢¥ is a monotone function on the set of all rational numbers in X

. 1 .
and, moreover, lim, gv (x - ;) = g¥(x) for every rational number x. Let ¥

be a left continuous monotone function on X which agrees with g7 for rational
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values of x» and let ¥ be the measure on S determined by the conditions
PU((—wx)) = g¥(x); write F(E,y) = PY(E).)

(6) If T is a measurable transformation from a probability space (X,S,u)
into a measurable space (Y,T), and if it is possible to determine the conditional
probabilities p(E,y) so that p¥ is a measure for almost every y, then

e(h9) = [x)dp*(x) T

for every integrable function f on X. (Hint: the relation is true if f is the char-
acteristic function of a measurable set.)

(7) If T is a measurable transformation from a probability space (X,S,u) into
a measurable space (Y,T), and if f and g are integrable functions with respect
tou and pT ! respectively, such that the function 4 defined by A(x) = f(x)g(T(x))
is integrable on X, then

e(h,y) = e(f,9)2(y) T

§ 49. MEASURES ON PRODUCT SPACES

Does there exist a sequence of independent random variables
with prescribed distributions? More precisely, if {u.} is a se-
quence of probability measures on the Borel sets of the real line,
does there exist a probability space (X,S,u) and a sequence {f.}
of independent functions on X such that u(f,"'(E)) = u.(E)
for every Borel set E and every positive integer n? More gen-
erally, if {(X.,S,,un)} is a sequence of probability spaces, does
there exist a probability space (X,S,u) and, for each positive
integer #, a measurable transformation T, from X into
X1 X+ X Xn such that uT,™ = gy X+ X un? The affirma-
tive answers to these questions are given by 38.B.

It 1s important for the purposes of probability theory to intro-
duce the concept of independence, and, at the same time, to
empbhasize that it is not the general case. The main purpose of
this section 1s to formulate and prove a theorem which does for
dependent random variables what 38.B did for independent ones—
a theorem, in other words, which asserts that there always exists
a sequence of random variables with prescribed joint distributions.
Unlike 38.B, however, the theorem of this section will apply to
the case of uniformly bounded, real valued functions only; in
other words, the components of the product space which we shall
treat are all unit intervals. The result and its proof extend to
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more general cases, which, however, all have in common the fact’
that they depend on topological concepts. This peculiar and
somewhat undesirable circumstance appears to be unavoidable;
it is known that the general measure theoretic analog of Theorem
A below is not true.

Suppose that, for each positive integer n, X, is the closed unit
interval and S, is the class of all Borel sets in X,, and write
(X,S) = Xra1 (Xn,S,). Let F, be the o-ring of all measurable
{1, - -+, n}-cylinders in X and let F (= Jr., F.) be the ring of
all measurable, finite dimensional subsets of X; (cf. § 38).

Theorem A. If p is a set function on F such that, for each
positive integer n, u is a probability measure on ¥, then u has a
unique extension to a probability measure on S.

Proof. We define a measurable transformation T, from X onto
the measurable space Y, = X!.; X;, by
Tn(xl, ctcy Xny Xngly *° ) = (xl, Tty xn)) n = 1, 2) Y

and we write, for every measurable subset 4 of Y,, v.(4) =
w(T.~2(4)). If {E;} is a decreasing sequence of sets in F such
that 0 < e S u(Ey), i = 1,2, ---, then, for each fixed i, there is

a positive integer # and a Borel set 4; in Y, such that E; =
T."(4;). Let B; be a closed subset of 4, such that »,(A4; — B;)

=< 2;_:4 If F; = T,7'(B;), then F; is a compact subset of the

product space X (in its product topology) and u(E; — F;) = E}‘

If G, = M-, F;, then {G} is a decreasing sequence of compact
subsets of X. Since

wE; = G) = p(Utar (Bx = F)) = w(Ub (Bi = F) =

it follows that

[SAI

w(Ge) = w(Ey) — p(Ee — Gy) 2 —2-

and hence that G, # 0,k = 1,2, ---. Since a decreasing sequence
of non empty compact sets has a non empty intersection, it follows
that u is continuous from above at 0 and hence countably addi-
tive; the desired result follows from 13.A. |
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Retaining the notation established above we proceed to the
proof of an interesting property of product spaces of the type
discussed in Theorem A.

Theorem B. For every measurable set E in X,
lim, p(E,Ta(x)) = xe(x) [ul;

in other words, the conditional probabilities of E, for given
values of the first n coordinates of a point x, converge (except
perhaps on a set of x’s of measure zero) to 0 or 1 according
asxeFEorx¢ E.

Proof. It is convenient to prove almost uniform convergence
instead of almost everywhere convergence—it follows, of course,
from 21.A and 21.B that the two are equivalent. Let e and 6§
be any two positive numbers and suppose that § < 1. By 13.D
there exists a positive integer 7 and a measurable {1, ---, no}-

o
cylinder Ey such that u(E A E,) < 52— We write B = EA E,
and we observe that if x ¢’ B, then
xe(%¥) = xg,(%).

If C" = {x: p(B)Tn(x)) g 6}) Dn = Cn - Ul§"<n Ci) n = 1, 2,
«++yand C = Upa1 Cn = Ur=1 D, then, for each n, C, and D,
are measurable {1, -- -, n}-cylinders. It follows that

w(B N D,) = L P(B,Ta(x))du(x) = su(Dy),

and hence that

f2§> w(B) 2 w(BNC) = pB N Uz D) =

=S  w(BND,) =83 cnD,) =
= u(Ur-1D») = 8u(C).

)
If we write 4 = B U C, then u(4) < %+§ < e Since

| P(E,Ta(x)) — p(Eo,Tu(x) | £ p(E A FEo,Tu(x)) [,
n=1,2 -,
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we may assume that these relations are valid for every x in X.
If n = ny, then it follows from 38.A and 48.B that

| 2(E,Ta(x)) — x£,x) | = p(B,Ta(x)).

If, in addition, x € 4, then, in the first place xz,(x) = xz(x) and,
in the second place p(B,T,(x)) < 8, so that| p(E,T.(x)) — xe(x) |
<s 10

(1) Suppose that {(X,Snun)} is a sequence of probability spaces, (X,S) =
Xira1 (Xn,Sh), and u is a set function on F such that, for each positive integer 7,
u is a probability measure on F,. If, on each F,, u is absolutely continuous with
respect to the product measure X{.; i, then p has a unique extension to a
probability measure on S. (Hint: cf. the proof of 38.B.) The result and the
method of proof extend to all cases in which the conditional probabilities
P(E,Tn(x)) may be determined so that for almost every fixed x they define
probability measures on each Fy.

(2) The statement and the proof of Theorem A remain correct if the spaces
X, are compact metric spaces. It follows, by a trivial compactification, that
Theorem A is true if each Xy is the real line. Does it remain true for arbitrary
compact spaces?

(3) Retaining the notation of (1), we proceed to give an example to show that
Theorem A is not necessarily true if the spaces X, are not intervals. Let Y
be the unit interval, T the class of all Borel subsets of Y, and » Lebesgue measure
on T. Let {X,} be a decreasing sequence of thick subsets of Y such that
Ni-1Xn=0. Write S, = TN X,; if E€S,, so that E = F N X, with F
in T, then write t,(E) = »(F). Form the product space (X,S) = X5=1 (Xa,Sn),
and, for each positive integer n, let S, be the measurable transformation from
Xninto X7 X+ X X defined by Sa(xn) = (21, ***y20),2i = ¥nyi =1, ---, m.

(3a) For each measurable {1, - - -, n}—cylinder E in X,

(E=AX Xnp1 X Xnya X-++, 481 XX S,),

write u(E) = pn(S,~1(A)). The set function u is thereby unambiguously de-
fined on F and, for each fixed positive integer », u is a probability measure on F,,

(3b) If E; is the set of all those points (x1, 2, - -+) in X whose first § coordi-
nates are all equal to each other, i = 1,2, ---, then E;eF;. (Hint: if

Di={(yy, - 3 ==},

then D; is a measurable subset of the /~dimensional Cartesian product of Y
with itself, and

Ei=[D: N (X1 XX X)) X Xigr X Xiga X-+2.)

(3¢) The set function p on F is not continuous from above at 0. (Hint: con-
sider the sets E;, i =1, 2, -+, defined in (3b), and observe that u(E;) =1
and (.1 E: = 0.)

(4) The zero—one law (46.3) is a special case of Theorem B. Indeed if Eisa
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Ju—cylinder and if F is a measurable subset of Yy, then T~ (F)isa {1, ---, n}~
cylinder and

RE N Ta"YF)) = (BT~ F) = L R(E)ditn,

and therefore p(E,Tx(x)) is a constant (= u(E)) almost everywhere [u]. It
follows from Theorem B that xg(x) = u(E) [u], and hence that u(E) is either
Oorl.



Chapter X

LOCALLY COMPACT SPACES

§ 50. TOPOLOGICAL LEMMAS

In this section we shall derive a few auxiliary topological
results which, because of their special nature, are usually not dis-
cussed in topology books.

Throughout this chapter, unless in a special context we explicitly
say otherwise, we shall assume that X is a locally compact
Hausdorff space. We shall use the symbol § for the class of all
real valued, continuous functions f on X such that 0 < f(x) = 1
for all x in X.

Theorem A. If C is a compact set and U and V are open
sets such that C € U U V| then there exist compact scts D and
E suchthat Dc U, Ec V,and C= D U E.

Proof. Since C — U and C — ¥ are disjoint compact sets,
there exist two disjoint open sets  and # such that C — U c U
and C—Vc/V,wewite D=C—0and E=C-7. It
is easy to verify that D < U, E c V, and that D and E are com-
pact;since UN 7P =0, wehave DUE = (C—-0) U (C- /)
=C—-UOn’==c 1

Theorem B. If C is a compact set, F is a closed set, and
C N F = 0, then there exists a function f in § such that f(x) = 0
Sor x in C and f(x) = 1 for x in F.

Proof. Since X is completely regular, corresponding to each
point y in C there exists a function f, in § such that f,(y) = 0 and

fu(®) =1 for x in F. Since the class of all sets of the form
216
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{x: f,(x) < 1}, y in C, is an open covering of C, and since C is
compact, there exists a finite subset { y;, +--, ¥} of C such that

C c Ui {x:£,(x) < 3}

If we write g(x) = H,_l fu.(x), then g e &; since 0 S f,(x) s 1
for all x in X and all y in C, it follows that glx) < 2 forxin C
and g(x) = 1 for x in F. It is easy to verify that lff 2g—1)
UO, thenfed, f(x) =0 for xin C, and f(x) = 1 for x in F. |

It is sometimes relevant to know not only whether or not a
function f (in §) can be found which vanishes on C, as in Theorem
B, but also whether or not it may be chosen so as not to vanish
anywhere else. The answer is in general negative; the following
theorem contains some of the pertinent details.

Theorem C. If f is a real valued continuous function on
X and c is a real number, then each of the three sets

{x:f(x) Z ¢}, {x:f(x) S ¢}, and {x:f(x) = c}

is a closed Gs. If, conversely, C is a compact Gy, then there
exists a function f in § such that C = {x: f(x) = 0}.

Proof. Since {x: f(x) 2 ¢} = {x: —f(x) < —c} and since
{x: f(x) = ¢} = {x: f(x) 2 c} N {x: f(x) £ ¢}, it is sufficient to
consider the set {x: f(x) < c}. The fact that this set is closed

(and that, for every n =1, 2, ---, the set {x:f(x) <c+ l}
n

is open) follows from the continuity of f; the fact that it is a
G; 1s shown by the relation

(#:/0) 5 f = Mims [ <4 -

Suppose, conversely, that C = [}n.; Un, where C is compact
and {U,} is a sequence of open sets. For every n =1,2, ---,
there exists a function f, in § (Theorem B) such that f,(x) = 0
for x 'm C and fa(x) =1 for x in X — U,. If we write f(x) =

Z,,_l f,.(x), then fe§ and f(x) =0 tor x in C. For any

% in X C there exists at least one positive integer # for which
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x ¢ X — U,; it follows that, for x in X — C, f(x) = %f"(x) =

1
T > 0, and therefore that C = {x: f(x) = 0}. |

Theorem D. If C is compact, U is open, and C < U, then
there exist sets Co and Uy such that Cy is a compact Gs, U, is
a g—compact open set, and

CcUycCcUlU.

Proof. Since there exists a bounded open set 7 such that
C c 7V c U, there is no loss of generality in assuming that U
is bounded. Let f be a function in § such that f(x) = 0 for x
in C and f(x) = 1 for x in X — U, (Theorem B); write

Up= {x:f(x) < 3} and G, = {x:f(x) < }}.

Clearly C c Uy c Cy < U and, by Theorem C, C, is a closed
G;. The fact that C; is compact follows from the boundedness of
U; the fact that Uy is o—compact is shown by the relation

1 1
Uo = Un-: {x:f(x) = 77 5} |
Theorem E. [f X is separable, then every compact subset
Cof XisaGs.

Proof. If a point x of X is not in C, then there exist two
disjoint open sets U(x) and ¥(x) such that C ¢ U(x) and x £ V' (x).
Since X is separable and since the class {7 (x): x ¢’ C} is an open
covering of X — C, there exists a sequence {x,} of points in X
such that

X — Cc Ui V(x,).
It follows that

Nr=1 Ulxn) 2 €2 N7y (X = Z(xa)) D 7= Ulxa). |

(1) An alternative proof of Theorem B may be given by introducing the one-
point compactification of X and using the known fact that every compact
Hausdorff space is normal, and that therefore if C and D are two disjoint closed
subsets of a compact Hausdorff space, then there exists a function f in § such
that f(x) = 0 for x in C and f(x) = 1 for ¥ in D.
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(2) Theorem C may be applied to prove the result, which is also easy to prove
directly, that the class of all compact Gj’s is closed under the formation of finite
unions and countable intersections.

(3) If X* is the one-point compactification, by x*, of an uncountable discrete
space X, then the one-point set {x*} is a compact set which is not a G;.

(4) Let I be an arbitrary uncountable set; for each 7 in I, let X; be the (com-
pact Hausdorff) space consisting of the two real numbers 0 and 1, and let X
be the Cartesian product X; Xi.

(4a) Every one-point set in X is a compact set which is not a G;.

(4b) We call a subset E of X an Ny-set if there exists a countable set Jin I
such that E is a J-cylinder; (cf. 38.2). A compact set Cin X is a G; if and only
if it is an Ng-set. (Hint: if C is compact, U is open, and C C U, then, by the
definition of topology in X, there exist a finite subset J of I and an open set Up
which is a J-cylinder such that C C U, C U.)

(4c) If fis any real valued continuous function on X and M is any Borel set
on the real line, then f~}(M) is an R¢—set.

(5) Let X* and Y* be the one-point compactifications (by ¥* and y*) of a
countably infinite and an uncountable discrete space, respectively. The subsets

({#*} X 9 = {(=*»"} and (X* X {5*]) — {(=*%)}

of the locally compact Hausdorff space (X* X Y*) — {(x*y*)} may be used to
show that Theorem B is false if C is not required to be compact.
(6) The class of all g-compact open sets is a base; (cf. Theorem D).

§ 51. BOREL SETS AND BAIRE SETS

The relations between measurability and continuity are most
interesting, and have been studied most, in locally compact
spaces. We continue with our study of a fixed locally compact
Hausdorff space X; in the present section we shall introduce the
basic concepts and results of a theory of measurability in X.

We shall denote by C the class of all compact subsets of X,
by S the o—ring generated by C, and by U the class of all open sets
belonging to S. We shall call the sets of S the Borel sets of X,
so that, for instance, U may be described as the class of all open
Borel sets. A real valued function on X is Borel measurable
(or simply a Borel function) if it is measurable with respect to
the o-ring S.

Theorem A. Every Borel set is o—bounded; every o—bounded
open set is a Borel set.

Proof. Every compact set is trivially bounded and therefore
o—bounded. The class of all s—bounded sets is a o—ring; since this
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o-ring includes C, it contains every set of the o-ring generated
by C.

Suppose, conversely, that U is open and that {C,} is a sequence
of compact sets such that

UcU:-:C. =K.
Since, for n = 1,2, ---, C, — U is compact, it follows that
D = Uit (Ca — U) eS;

since D = K — U, it follows that U = K — (K — U) £S. |

We shall denote by C, the class of all those compact subsets
of X which are Gs’s, by S, the o—ring generated by Cy, and by U,
the class of all open sets belonging to S,. We shall call the sets
of Sy the Baire sets of X, so that, for instance, Uy may be de-
scribed as the class of all open Baire sets. A real valued function
on X is Baire measurable (or simply a Baire function) if it is
measurable with respect to the o—ring S,.

On first glance it might appear that the Borel sets are the
obvious objects of measure theoretic investigation in locally
compact spaces. There are, however, several natural reasons
for the introduction of the apparently artificial concept of Baire
set. First: the theory of Baire sets is in some respects simplet
than the theory of Borel sets, and knowledge about Baire sets
frequently provides a successful tool for dealing with Borel sets;
(cf. § 63). Second: the study of Baire sets is connected with the
reasonable requirement that the concept of measurability in X
should be so defined as to ensure that every continuous function
(or at least every continuous function which vanishes outside
some compact set) is measurable; (cf. Theorem B below). Third:
the class of all Baire sets plays a distinguished role, in that it is
the minimal o-ring which contains sufficiently many sets to de-
scribe the topology of X; (cf. Theorem C below). Fourth: in
all classical special cases of the theory of measure in topological
spaces (e.g. in Euclidean spaces) the concepts of Borel set and
Baire set coalesce; (cf. 50.E).

Theorem B. If a real valued, continuous function f on X is
such that the set N(f) = {x: f(x) # O} 15 o-bounded, then f is
Baire measurable.
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Proof. If a o-bounded open set U'is an F,, then there exists a
sequence {C.} of compact sets such that U = Jr-;C.. By
50.D, for each positive integer # there exists a compact Baire
set D, such that C, ¢ D, c U. It follows that U = {;., D,
and hence that U is a Baire set. The assumptions on f imply
that, for every real number ¢, the set N(f) N {x: f(x) <c} is a
o—bounded open set which is an F,. ||

Theorem C. If B is a subbase and if S is a o-ring contain-
ing B, then S O S,.

Proof. If Cis a compact set and U is an open set containing
C, then there exists a set E which is a finite union of finite inter-
sections of sets of B (and which therefore belongs to 8) such that
Cc Ec U. Hence, if C = [}y, U,, where each U, is open,
then, for every # = 1,2, - - -, there exists a set E, in § such that
C c E, c U,; it follows that C = [);.; E. €S. Since we have
thus proved that Co ¢ S, the desired result follows from the
definition of S;. |

The class of Baire sets was defined to be the o-ring generated
by the class of compact G;’s; it appears conceivable (though upon
reflection somewhat improbable) that a compact set may be a
Baire set without being a G;, 1.e. that compact sets other than the
generating ones manage to get into Sg. The purpose of the follow-
ing theorem 1s to show that this does not happen.

Theorem D. Every compact Baire set is a G;.

Proof. Let C be a compact set in Sy; by 5.D, there exists a
sequence {C.} of sets in Cy such that C belongs to the o-ring
S({C.}). By 50.C, for every n =1, 2, -- -, there exists a func-
tion f, in & such that C, = {x: fa(x) = 0}. If for each pair, »
and y, of points in X we write

1
d('x',v) = :ul i‘,; lfn(x) —fn(y) l’

then d(x,x) = 0, d(x,y) = d(y,x), and 0 = d(x,y) < d(x,2) +
d(z,y). Itfollows thatif we write x = y whenever d(x,y) = 0, then

the relation “=” is reflexive, symmetric, and transitive, and
therefore an equivalence relation; we denote the set of all equiv-



222 LOCALLY COMPACT SPACES [Skc. 51

alence classes by =. For every x in X we write £ = T(x) for the
(uniquely determined) equivalence class which contains x.

If T(x,) = T(y1) and T(x3) = T(yz) (1.e.if x; = y; and x3 = y,),
then

d(x1yx2) < d(x1,31) + d(y1,y2) + d(y2x2) = d(y1,52)s

and, by symmetry, d(y1,y2) £ d(x1,%2), so that d(x1,x2) = d(y1,2).
This means that if & = T(x;) and £, = T(x;) are two elements of
=, then the equation 8(%;,£;) = d(x,x) unambiguously defines
the number &8(%),£). Since 8(%,%) = 0 implies that & = &,
the function § is a metric on E. If & = T(xo) is any point of the
metric space E, if 7y is any positive number, and if E = {£: 8(£,£)
< ro}, then T7YE) = {x: d(xo,x) < ro}; since d(xo,x) depends
continuously on x, this proves that T is a continuous transforma-
tion from X onto E.

A subset of X is the inverse image (under T) of a subset of &
if and only if it has the property that it contains, along with any
of its points, all points equivalent to that one (i.e. if and only
if it is a union of equivalence classes). Since each C, has this
property, since the class of all inverse image sets is a o-ring, and
since C e S({C.}), it follows that there exists a subset T' of &
with T7Y(T') = C. Since T(T}(T")) = T, since T 1s continuous,
and since C is compact, it follows that I' is compact. Since every
closed (and therefore every compact) subset of a metric space is
a Gj, there exists a sequence {A,} of open subsets of = with

P = n:al An.

If we write U, = T7'(A,), n=1,2, ---, then C = (o1 Un;
since, by the continuity of T, U, is open, it follows that C € Co. |

Theorem E. If X and Y are locally compact Hausdorff
spaces, and if Ay, By, and S, are the o—rings of Baire sets in
X, Y, and X X Y respectively, then Sy = Ay X B,.

Proof. If 4 and B are compact Baire sets in X and Y respec-
tively, then 4 X B is a compact G;, and hence a compact Baire
set in X X Y. Since Ay X By is the o-ring generated by the class
of all sets of the form 4 X B, it follows that Ay X By < S,.
If U and 7 are open Baire sets in X and Y respectively, then
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U X V eAy X By. Since the class of all sets of the form U X V'
is a base for X X Y, it follows from Theorem C that Ay X By, O
So-

We conclude this section by stating, for the purpose of refer-
ence, an easily verified theorem related to the generation of Borel
sets and Baire sets; (cf. 5.2 and 5.3).

Theorem F. The class of all finite, disjoint unions of proper
differences of sets of C [or of Co) is a ring; the o-—ring it generates
coincides with S [or, respectively, with Sy).

(1) The definition of Borel set for the real line, when it is considered as a
locally compact space, is equivalent with the definition in § 15.

(2) The entire space X is a Borel set if and only if it is o~compact.

(3) Theo-ring generated by the class of all bounded open sets, or, equivalently,
the o-ring generated by U, coincides with S. (Hint: for every compact set C,
let U be a bounded open set containing C, and consider U — (U — C).)

(4) If X is the product space of 50.4, then the class of Baire sets coincides
with the class of measurable sets, as defined in § 38.

(5) The o-ring generated by the class of all bounded open Baire sets, or,
equivalently, the o-ring generated by Uy, coincides with So. (Hint: if C is
compact, U is open, and C C U, then there exists a bounded open Baire set
Upsuch that CcC Uy C U.)

(6) The term “Baire set” is suggested by the term “Baire function” as used
in analysis. If ® is the smallest class of functions which contains all continuous
functions and contains the limit of every pointwise (but not necessarily uni-
formly) convergent sequence of functions in it, then the functions of ® are called
the Baire functions on X. A necessary and sufficient condition that a set be a
Baire set is that it be a Borel set and that its characteristic function be a Baire
function.

(7) Every Boolean g-algebra is isomorphic to the class of all Baire sets,
modulo Baire sets of the first category, in a totally disconnected, compact
Hausdorff space. (Hint: cf. 40.15¢ and observe that the o-ring generated by
the class of all open—closed sets in a totally disconnected, compact Hausdorff
space coincides with the class of all Baire sets.)

§ 52. REGULAR MEASURES

A Borel measure is a measure u defined on the class S of all
Borel sets and such that u(C) < « for every C in C; a Baire
measure is a measure po defined on the class Sy of all Baire sets
and such that po(Cy) < » for every C, in C,.

Several aspects of the theories of Borel measures and Baire
measures are so similar to each other that it is worth while to
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develop them simultaneously; for this purpose we adopt the fol-
lowing notational device. Throughout this section we shall use
C, 0, and S to stand either for C, U, and S or else for C,, Uy,
and Sy, respectively, and we shall study a measure £ which is a
Borel measure if S = S and a Baire measure if S = S,.

A set E in S is outer regular (with respect to the measure ) if

G(E) = inf {a(U): E c U £0};
a set E in S is inner regular (with respect to f) if
A(E) = sup {2(C): E > CeC}.

A set E in S is regular if it is both inner regular and outer regular;
a measure fi is regular if every set E in S is regular.

Loosely speaking, a measure is regular if all its values may be
calculated from its values on the topologically important com-
pact sets and open sets; if it 1s desired that the measure theoretic
structure of X be not completely unrelated to its topological
structure, the condition of regularity is a natural one to impose.
The measure theoretic behavior of a non regular set is very
pathologlcal

It is easy to verify that if E €S and A(E) = «, or if E€T,
or if E is the intersection of a sequence of sets of finite measure
in 0, then E is outer regular Dually, if E ¢S and ﬁ(E) =0,
or if E ¢ C, or if E is the union of a sequence of sets in C, then
E is inner regular. Our first purpose in the sequel is to show that
the regularity of certain sets implies the regularity of many others.
The motivation of the particular steps in the proof is furnished
by 51.F; we progress from compact sets to their differences, and
from differences to unions of differences. After that we shall show
that the class of regular sets has sufficient closure properties to
justify the application of the theorem on the monotone class
generated by a ring, and thus we shall obtain the conclusion that
certain measures are necessarily regular.

Theorem A. If every set in C is outer regular, then so is
every proper difference of two sets of C; if every bounded set in
is inner regular, then so is every proper difference of two sets

of C.



[Skc. 52 LOCALLY COMPACT SPACES 225

Proof. Let C and D be two sets in € such that Co> D. It
C is outer regular, then, for every ¢ > 0, there is a set U in U such
that Cc U and g(U) < 4(C) +e. Since C—~DcU— D0,
the relations

AMU—-D)—pC—-D)=p(U-D)—-(C—-D)) =
=pU=-0C) =) - a(C) = ¢

imply that C — D is outer regular.

To prove the assertion concerning inner regularity, let U be a
bounded set in O such that C < U. If the bounded set U — D
(in 0) is inner regular, then, for every ¢ > 0, there is a set E
in € such that Ec U — D and ﬂ(l] — D) £ a(E) + e Since
C—-D=CNU-=D)>CnN E eC, the relations

AC—-D) —p(CNE)=p(C—-—D)—-(CNE)=
=p(C —~-D) - E) =
sa(U~-D)—-E)=
= QU - D) — a(E) < ¢

imply that C — D is inner regular. |

Theorem B. A finite, disjoint union of inner regular sets of
Jfinite measure is inner regular.

Proof. If {Ei, ---, E,} is a finite, disjoint class of inner reg-
ular sets of finite measure, then, for every ¢ > 0 and for every
i=1, .-, n, there exists a set C; in C such that

C:ic E; and p(E) S 8(C) + ;

If = Ci and E = Ji., E;, then ED CeC, and the

relations
AE) = 200 AE) S -1 8(C) + e = 4(C) + ¢

imply that E is inner regular. ||
It is easy, but unnecessary, to prove the analogous result for
outer regular sets; the following theorem is much more inclusive.
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Theorem C. The union of a sequence of outer regular sets is
outer regular; the union of an increasing sequence of inner
regular sets is inner regular.

Proof. If {E.} is a sequence of outer regular sets, then, for
every € > 0 and for every i =1, 2, ..., there exists a set U;
in U such that

E,‘ [ U{ and ﬂ(Uz) = ﬁ(Et) + ; ’

we write U= |J%, U. If E= UL, E: and A(E) = «, then
E is trivially outer regular; if 4(E) < =, then
p(U) — p(E) = p(U - E) £ p(Ui (U — E)

S XU — E) = 220 @U) — AE) Se

If {E;} is an increasing sequence of inner regular sets and
E = Ui E;, we make use of the relation

2(E) = lim; p(E;).

We are to prove that, for every real number ¢ with ¢ < a(E), there
is a set £ in C such that C ¢ E and ¢ < a(C). To prove this, we
need only select a value of 7 so that ¢ < g(E,), and then, using
the inner regularity of E;, find a set C in € such that C c E;
and ¢ < 2(C). 1

Theorem D. The intersection of a sequence of inner regular
sets of finite measure is inner regular; the intersection of a
decreasing sequence of outer regular sets of finite measure is
outer regular.

Proof. If {E;} is a sequence of inner regular sets of finitc
measure, then, for every ¢ > 0 and for every i = 1,2, - .-, there
exists a set C; in C such that

C:cE: and AE) S A(C) + 5
we write C = [)i=1 Ci. IfE= (2 E;thenEDC ¢ C and

A(E) — p(C) = ((E - C) £ p(Ui (E: = C)) =
S 2LAE - C) = 2 (E) — p(C)) S e
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If {E;} is a decreasing sequence of outer regular sets of finite
measure and E = ()., E;, we make use of the relation

A(E) = lim; A(E).

We are to prove that, for every real number ¢ with ¢ > a(E),
there is a set U in U such that £ < U and ¢ > a(U). To prove
this we need only select a value of 7 so that ¢ > A(E;) and then,
using the outer regularity of E;, find a set U in U such that
E;cUand a(U) <c. |

The duality between inner and outer regularity is even more
thoroughgoing than is indicated by the similarities among the
above proofs; we proceed to prove that the two kinds of regularity
are essentially the same.

Theorem E. A necessary and sufficient condition that every
set in C be outer regular is that every bounded set in U be inner
regular.

Proof. Suppose that every set in C is outer regular, let U
be a bounded set in U, and let € be a positive number. Let C
be a set in C such that U < C; since C — U is compact and be-
longs to S, it follows from 51.D that C — U e C, and therefore
that there exists a set ¥ in U such that

C-UcV? and a(¥) 2 a(C—U)+e
Since U = C ~ (C — U) D C — V ¢ C, the relations
pU) —p(C-P)=pU-(C-P)=pUNPr) =

SV -C-U)=aF)-nC-U)<s e

imply that U is inner regular.

Suppose next that every bounded set in U is inner regular, let
Cbeasetin C, and let e be a positive number. Let U be a bounded
set in O such that C < U; since U — C is a bounded set in 0,
there exists a set D in C such that

DcU-C and pa(U-C) = 4(D) + e
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Since C = U — (U — C) c U — D 10, the relations
AU = D) — a(C) = a((U—-D) —C) =p((U—-C) —D) =
=pU—-C) —paD) £ e

imply that C is outer regular. |

Theorem F. Either the outer regularity of every set in C or
the inner regularity of every bounded set in O is a necessary and
sufficient condition for the regularity of the measure fi.

Proof. The necessity of both conditions is trivial. To prove
sufﬁuency, it1s enough (Theorem C) to prove that every bounded
set in S is regular, since every set in S is the union of an increas-
ing sequence of bounded sets in S. Let E, be a bounded set in §
and let Cy, be a set in C such that E, ¢ C,. By 5.E, the o-ring
S N C, is generated by the class of all sets of the form C N C,,
where CeC. By 51.F (applied to the compact space C,), this
o-ring is generated by the ring of all sets of the form E N C,,
where E is a finite, disjoint union of proper differences of sets of
€. According as the condition on C or on U is assumed, it follows
from Theorems A, B, and C that every set in this ring is outer
or inner regular. Since, by Theorems C and D, the class of outer
regular subsets of Cp and the class of inner regular subsets of C,
are both monotone classes, it follows from 6.B and Theorem E
that, assuming either of the two condltlons, if a subset of Cy is
in S, then it is regular, and hence, in particular, that E; is
regular. |

Theorem G. Every Baire measure v is regular;if C € C, then
v*(C) = inf {»y(Up): C < U, e Uy},
and, if U e U, then
vx(U) = sup {#(Co): U D Cp & Co}.

Proof. Since every set in Cy may be written as the intersection
of a decreasing sequence of sets of finite measure in Uy, the
regularity of v follows from Theorem F. Since, by definition of
outer measure,

v*(C) = inf {»(Ep): C C Ey £ So} = inf {(Up): C < Uy £ Uy},
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for every ¢ > 0, there exists a set Ey in Sp such that C < E; and
v(Eo) = v*(C) + % The outer regularity of E, implies the
existence of a set U, in Uy such that

Eyc Uy and »(U,) £ v(Eo) + % ;

it follows that C < U, and »(Uy) = v*(C) + e. The proof of the
assertion concerning inner measure exploits, in an entirely similar
way, the inner regularity of every Baire set E,. |

Theorem H. Let u be a Borel measure and let v be the Baire
contraction of u (defined for every Baire set E by v(E) = u(E)).
Either of the two conditions,

u(C) = v*(C) forall CinC,
w(U) = v (U) for all bounded open U in U,

is necessary and sufficient for the regularity of u. If two regular
Borel measures agree on all Baire sets, then they agree on all
Borel sets.

Proof. If, for some C in C, u(C) = »*(C), then according to
Theorem G, for every € > 0 there exists a set Uy in Uy such that

Cc U, and u(Up) = »(Up) = »*(C) + € = u(C) + ¢

this implies that C is outer regular and hence that u is regular.
The proof of the sufficiency of the condition involving v« exploits,
in an entirely similar way, the last assertion of Theorem G.

Suppose next that u is regular and let € be an arbitrary positive
number. For any C in C, there exists a bounded set U in U such
that C c U and u(U) = u(C) + ¢; similarly, for any bounded
set U in U, there exists a set Cin C such that C ¢ U and u(U) £
u(C) + e. In either case, there exist sets Cy in Cy and U, in U,
such that C < U, c G, < U, (50.D). It follows from Theorem
G that

v*(C) = v(Up) = u(Up) £ uw(U) = u(C) + ¢
and

n(U) 2 v(G) = u(Go) 2 u(C) 2 u(U) — e
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The arbitrariness of ¢ implies that

v*(C) £ u(C) and »(U) 2 u(U);

the reverse inequality is obvious in both cases. Since it has thus
been shown that the values of a regular measure on the Baire
sets uniquely determine its values on the compact sets, the last
assertion of the theorem follows from 51.F. |

We conclude this section by introducing a concept which some-
times provides a useful tool for proving regularity. If u is any
Borel measure, its Baire contraction ug, defined for all £ in S,
by wo(E) = u(E), is a Baire measure associated with u in a natural
way. If it happens that every set in C or every bounded set in U,
and therefore in either case, every set in S is po*-measurable
(i.e. if all compact sets, and therefore all Borel sets, belong to
the domain of definition of the completion of w), then we shall
say that the Borel measure u is completion regular. If uis com-
pletion regular, then to every Borel set E there correspond two
Baire sets 4 and B such that

AcEcCB and p(B—4) = 0;

it follows from Theorem H that completion regularity implies
regularity.

(1) Every Borel measure is g-finite.

(2) If the space X is compact, then the class of all regular sets is a normal
class; (cf. 6.2).

(3) If u is a Borel measure and if there exists a countable set Y such that
k(E) = u(E N Y) for every Borel set E, then pu is regular.

(4) If X is the Euclidean plane and if u is Lebesgue measure on the class of all
Borel sets, then u is a regular Borel measure in the sense of this section. If,
however, for every Borel set E| u(E) is defined to be the sum of the linear
measures of all horizontal sections of E, then u is not a Borel measure.

(5) Suppose that X is compact and x* is a point such that {x*} is not a Gs;
(cf., for instance, 50.3). If, for every E in S, u(E) = xg(x*), then p is a regular
Borel measure which is not completion regular.

(6) If p1, po, and p are Borel measures such that g = p; + po, then the regu-
larity of any two of them implies that of the third. (Hint: if CeC, UeT,
CC U, and p(U) £ u(C) + ¢, then

#1(C) + p2(U) = p(U) = m(C) + p2(C) + )
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(7) Suppose that X and Y are compact Hausdorff spaces, T is a continuous
transformation from X onto Y, and p is a Borel measure on X. If v = p7T-1,
and if D is a compact subset of Y, then D is regular with respect to v if and only
if C = T~YD) is regular with respect top. (Hint:if C C U e U, then T(X — U)
and D are disjoint compact sets in Y. If 7 is a neighborhood of D which is
disjoint from T(X — U), then C C T™I(V) C U.)

(8) If u is a regular Borel measure, then, for every o-bounded set E,

u*E) = inf{p(U): EC UeU} and ux(E) = sup {u(C): ED CeC}.

(9) If p and v are Borel measures such that u is regular and v <K y, then v
is regular.,

(10a) Let @ be the first uncountable ordinal, and let X be the set of all ordinals
less than or equal to 2. Write X = X — {Q}. If the class of all “intervals”
of the form {x: @ < x < B} together with the set {0} is taken for a base, then X
is compact.

(10b) The class of all unbounded, closed subsets of X is closed under the
formation of countable intersections.

(10c) If, for every Borel set E in X, u(E) = 1 or 0 according as E does or does
not contain an unbounded, closed subset of X, then u is a Borel measure.

(10d) The Borel measure u is not regular. (Hint: every interval containing
Q has measure 1.)

§ 53. GENERATION OF BOREL MEASURES

The purpose of this section is to show how certain (regular)
Borel measures may be obtained from more primitive set functions.

We define a content as a non negative, finite, monotone, addi-
tive, and subadditive set function on the class C of all compact
sets. In other words, a content is a set function A on C which 1s
such that (a) 0 £ A\(C) < = for all C in C, (b) if C and D are
compact sets for which C < D, then N(C) = \(D), (c) if C and
D are disjoint compact sets, then N(C U D) = \(C) + N(D), and
(d) if C and D are any two compact sets, then \(C U D) < \(C) +
ND). We observe that, since A(0) + A(0) = A(0 U 0) = A(0) <
o, a content must always vanish on the empty set.

The outline of our procedure from now on will be as follows.
In terms of a given content N we shall define a set function A
on the class of open Borel sets, and in terms of Ay we shall define
an outer measure u* on the class of all ¢—bounded sets. Then
we shall use the already established theory of u*-measurability
to obtain from the outer measure u* a measure u which will) in
fact, turn out to be a regular Borel measure.
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The inner content A4, induced by a content ), is the set func-
tion defined for every U in U by
M(U) = sup {MC): U CeC}.

Theorem A. The inner content N\x induced by a content '\
vanishes at 0, and is monotone, countably subadditive, and
countably additive.

Proof. It is obvious that \x(0) = 0. If U and » are in U,
if Uc V, and if C is a compact set contained in U, then Cc V
and therefore \(C) = M (¥). It follows that

M(U) = sup MC) € M(P).

If U and 7 are in U and if C is a compact set such that C c U
U ¥, then (50.A) there exist compact sets D and E such that
DcU, EcV,and C=DUE. Since MC) = \ND) + NE)
= M(U) 4+ N (7), it follows that

MU U Z) = supA(C€) £ M(U) + M),

i.e. that A4 is subadditive. It follows immediately, by mathe-
matical induction, that A4 is finitely subadditive. If {U,} is a
sequence of sets in U and if C is a compact set such that C c
\U:-: U;, then, by the compactness of C, there is a positive integer
n such that C ¢ Ui~ U.. It follows that

AO) = )\*(U?-l U) = Z?-l MUY = 2o M (U,
and therefore that
MU= U) = sup MC) = 32550, M (U,

i.e. that A« is countably subadditive.

Suppose next that U and 7 are two disjoint sets in U and let
C and D be compact sets such that C < U and D < /. Since
C and D are disjoint and since C U D < U U ¥, we have

AC) +\(D) =NC UD) = MU U D),
and therefore
M(U) + M(P) = sup NMC) + sup A(D) £ M(U U V).

The subadditivity of A« implies now that Ay is additive and hence,
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by mathematical induction, that A« is finitely additive. If {U;}
is a disjoint sequence of sets in U, then

MUZT) 2 MU U) = 2y (U);
since this is true for every # = 1,2, - .-, it follows that
)‘*(U:-l U:) = Z?—l )\*(U,’).

The countable additivity of Mx follows from its already proved
countable subadditivity. |

If N\ is a content and A\« is the inner content induced by A,
we define a set function u* on the hereditary o-ring of all
o-bounded sets by

p*(E) = inf {\M(U): E c U eU}.

The set function u* is called the outer measure induced by \;
the terminology is justified by the following result.

Theorem B. The outer measure p* induced by a content \
is an outer measure.

Proof. The equation u*(0) = 0 follows from the facts that
0cO0eU and M\(0) =0. If E and F are two s—bounded sets
such that £ c F, and if U is a set in U such that F c U, then
E c U and therefore u*(E) = M (U). It follows that

p*(E) = inf \(U) = p*(F).

If {E;} is a sequence of o-bounded sets, then, for every ¢ > 0
and for every i = 1,2, -- -, there exists a set U; in U such that

E;cU; and MN(U) = w*(E) + 2—€,
It follows that
”’*(U:-l E) = M(U?—l Ui) = ?-1 )\*(Ui) = i1 I‘*(Ei) + ¢

the arbitrariness of e implies the countable subadditivity of p*. ||

It might be conjectured that the procedures of Theorems A and
B actually yield extensions of N and A4 respectively, i.e., for
instance, that p* is such that u*(C) = \(C) for every compact
set C. This is not true in general; the best that can be said is
contained in the following result.
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Theorem C. If Ny is the inner content and p* is the outer
measure induced by a content \, then p*(U) = N(U) for every
U in U and u*(C°) = \(C) = u*(C) for every C in C.

(We recall that C° denotes the interior of the set C.)

Proof. If U eU, then the relation U c U ¢ U implies that
p*(U) £ M(U). If VeUand U c 7, then M\ (U) £ Me(¥) and

therefore
M (U) £ inf \(P) = u*(0).

If CeC, UeU, and C c U, then A\(C) = M\(U), and there-
fore

MC) £ inf M (U) = p*(0).
If CeC, DeC, and D < C° (c C), then \(D) = \(C), and

therefore
p*(C%) = €(C°%) = sup MD) = NMO). 1

Theorem D. If u* is the outer measure induced by a content
\, then a o—bounded set E is u*—measurable if and only if

p*U) 2 p*(UNE)+p*(UNE)
Sfor every U in U.

Proof. Let \x be the inner content induced by \, let A4 be an
arbitrary o—bounded set, and let U be a set in U such that 4 < U.
From the relations

MU) =p* )2 UNE)+u*(UNE)2

Z ¥4 NE)+u*(4dNE)
it follows that

p*(4) = inf \M(U) 2 p*(4 N E) + u*(4 N E);

the reverse inequality and the converse follow from the subaddi-
tivity of u* and the definition of u*-measurability. |

Theorem E. If u* is the outer measure induced by a con-
tent \, then the set function u, defined for every Borel set E by
w(E) = u*(E), is a regular Borel measure.

We shall call u the Borel measure induced by the content \.
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Proof. We shall prove first that every compact set C (and
therefore every Borel set) is u*-measurable; it will then follow
immediately that u is a measure on the class of all Borel sets.
In virtue of Theorem D it is sufficient to prove that

w*U) 2 w2 (U NC) 4+ p*U NC)

for all U in U. Let D be a compact subset of U N €’ and let
E be a compact subset of U N D’; we observe that both the sets
UNC and UND belong to U. Since DN E =0 and
D U E c U, it follows that

#*(U) = M(U) 2 MD U E) = \D) + \ME),
where A« 1s, of course, the inner content induced by \. Therefore
p*(U) 2 MD) + sup ME) = AD) + MU N D) =
= ND) +u*(U N D) 2 ND) + p*(U N C);
this in turn implies that
*U) Z2p*UNC) +supAD) =p*UNCO)+MUNC) =
=p*UNC)+p*UNCOC).

To prove that u(C) < =, we observe that there exists a com-
pact set F such that C < F?; it follows that

w(C) = p*(C) = w*(F%) = NMF) < .
The fact that the measure u is regular follows, finally, from the
relations
u(C) = u*(C) = inf N\(U): Cc UeU} =
=inf {u*¥(U):Cc UeU} =inf {uU):Cc UeU}. |

We conclude with a result which we shall have opportunity ta
use later.

Theorem F. Suppose that T is a homeomorphism of X
onto itself and that \ is a content. If, for every C in C,A(C) =
NT(C)), and if u and p are the Borel measures induced by \
and \ respectively, then p(E) = u(T(E)) for every Borel set E.
If, in particular, \ is invariant under T, then the same is true

o u.
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Proof. If Ay and A4 are the inner contents induced by \ and
A respectively, and if U e U, then the relations

{MC): UD CeC) = (NT(C): UD CeC) =
= {\(D):D=T(C),USCeC} =
(\D): U T7'(D) e C} =

{\(D): T(U) > D e C}

imply that Ax(U) = M\(T(U)). If u* and p* are the outer meas-
ures induced by X\ and A respectively, then a similar computation
shows that, for every o-bounded set E, g*(E) = u*(T(E)), and
hence that, for every Borel set E, A(E) = u(T(E)). The last
assertion of the theorem is an immediate consequence of the
preceding ones. |

(1) The following are examples of non negative, finite set functions defined
on the class C of all compact subsets of a locally compact Hausdorff space; some
of them are contents, while others fail to possess exactly one of the principal
defining properties (monotoneness, additivity, and subadditivity) of a content.

(1a) X* is the one-point compactification of an infinite discrete space X
for every compact set C in X* A(C) = 0 or 1 according as C is finite or infinite.

(1b) X is a discrete space consisting of a finite number of points; A(C) = 1
for every compact set C.

(lg) X is the closed interval [—1, +1]; A\(C) = 1 or 0 according as 0 e C° or
0¢ C°.

(1d) X* = {X,x*} is, as in (1a), the one-point compactification of an infinite
discrete space X; A(C) = 1 or 0 according as x* & C or x* ¢’ C.

(le) X = {0, :I:}l-: n=1,2 } If C contains infinitely many nega-

tive numbers, then A(C) = 0; otherwise A(C) = 1 or 0 according as 0 e C or
0¢ C.
(If) Let o be a Baire measure on X, and, for every C in C, write

AC) = sup {,uo(Co): CcCDO CoCCo}.

(1g) Let u be a Borel measure on X, and, for every C in C, write A(C) = u(C°).

(2) IfX and X are two contents inducing the outer measures p* and fi* respec-
tively, and if, for every C in C, X\(C) §%\(C) < u*(C), then u* = p*. (Hint:
in view of the first part of Theorem C, it is sufficient to prove that u*(U) =
sup {M(C): UD CeC} for every U in U.)

(3) Theresult of (2) may be strengthened to the following converse of Theorem
C. IfXand X are two contents, inducing the outer measures u* and i* respec-
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tively, and if, for every C in C, p*(C®) < A(C) S p*(C), then p* = p*. (Hint:
Theorem E implies that

p*(U) = sup {u*(C): UD CeC}

for every Uin U. It is to be proved that
p*(U) = sup {A(C): UD CeC}.

If € > 0 and Ue U, then there exists a set C in C such that C C U and u*(U) S
w*(C) + ¢ and there exists a set D in Csuch that CC D*C D C U)

(4) If uis the Borel measure induced by a content A, and if A\(C) > O whenever
C? # 0, then p(U) > 0O for every non empty U in U.

(5) Independently of any content X we might consider those outer measures
p* on the class of all o-bounded sets which have the property that

p*(C) = inf{u*¥(U):CC UeU} <

for every Cin C. Are Theorems D and E true for any such outer measure?

§ 54. REGULAR CONTENTS

We have remarked before on the fact that the values of a con.
tent need not coincide (on compact sets, of course) with the values
of the Borel measure it induces. There is, however, an important
class of contents which are such that the process of § 53 is actually
an extension. In this section we shall study such contents and
use our results to derive an important extension theorem which
asserts, in fact, the existence of certain Borel measures whose
uniqueness was established in 52.H.

A content \ is regular if, for every C in C,

MC) = inf {N\(D): C < D° c D eC}.

This definition of regularity for contents imitates the definition
of (outer) regularity for measures as closely as possible in view
of the restricted domain of definition of a content.

Theorem A. If u is the Borel measure induced by a regular
content \, then u(C) = \(C) for every C in C.

Proof. If C ¢ C, then, because of the regularity of \, for every
€ > O there exists a set D in C such that

CcD® and ND) =NO) + e
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It follows from 53.C that

MC) = #(C) = w(D%) = D) =MC) + ¢

the desired result follows from the arbitrariness of e. |
The following result goes in the converse direction.

Theorem B. If u is a regular Borel measure and if, for every
C in C, N(C) = u(C), then \ is a regular content and the Borel
measure induced by \ coincides with p.

Proof. It is clear that \ is a content. The regularity of u
implies that, for every C in C and for every ¢ > 0, there exists a
set U in U such that

CcU and uU) = uC) + e
If D is a set in C such that C € D° ¢ D < U, then

MD) = u(D) = u(U) = u(C) +e=MC) + &

this proves the regularity of \. If g is the Borel measure induced
by \, then, by Theorem A, 2(C) = A(C) = u(C) for every Cin C,
and therefore, indeed, g = u. |

Theorem C. If uo is a Baire measure and if, for every C in
C,
X(C) = inf{ﬂo(Uo): Cc Uo SU()},

then \ is a regular content.

Proof. It is easy to verify that \ is non negative, finite, and
monotone.

If C and D are sets in C and U, and ¥}, are sets in U, such that
Cc Uyand D c Py, then C U D < Uy, U ¥V, e Uy, and therefore

MC U D) = po(Us U 7)) £ po(Us) + 1o(Po).
It follows that
NMC U D) = inf po(Up) + inf uo(¥o) = MC) + (D),

1.e. that X\ is subadditive.
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If C and D are disjoint sets in C, then there exist disjoint sets
Uo and VoinU()SuCh that C c Uo and D c Vo. IfcuDbD CWo
e Uy, then

NC) + ND) £ po(Uy N W) + po(Fo N W) £ (W),
and therefore
MC) + ND) = inf uo(#,) = NC U D).

The fact that \ is additive follows from the fact, proved above,
that \ is subadditive.

To prove that \ is regular, let C be any compact set and let ¢
be any positive number. By the definition of \, there exists a
set U, in Uy such that

Cc Uy and po(Up) £ NC) + e
If D is a compact set such that C < D° ¢ D c U,, then
AD) = wo(Uo) = MC) + e 1

Theorem D. If uo is a Baire measure, then there exists a
unique, regular Borel measure u such that p(E) = po(E) for
every Baire set E.

Proof. 1If, for every C in C,
MC) = inf {u(Up): C < Uy e Uy},

then, by Theorem C, \ is a regular content; let u be the regular
Borel measure induced by \. By Theorem A, u(C) = \(C) for
every C in C. Since (52.G) every Baire measure is regular, we
have N(C) = p(C), and consequently u(C) = po(C) for every C
in Co. This proves the existence of u; uniqueness was explicitly
stated and proved in 52.H. ||

(1) Which of the set functions described in 53.1 are regular?

(2) If, in the notation of 53.F, \ is a regular content, then so is A.

(3) If u is a Borel measure and if, for every C in C, A(C) = sup {u(Co):
C D Co e Co}, then u is completion regular if and only if X is a regular content;
(cf. 53.1f).

(4) A content A is inner regular if, for every C in C, A(C) = sup {A(D):
C* D DeC}. The following analogs of Theorems A and B are true.
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(4a) If p is the Borel measure induced by an inner regular content A, then
u(C% = A\(C) for every Cin C.

(4b) If u is a regular Borel measure and if, for every C in C, A\(C) = u(C9),
then \ is an inner regular content and the Borel measure induced by A coincides
with u.

§ 55. CLASSES OF CONTINUOUS FUNCTIONS

If X is, as usual, a locally compact Hausdorff space, we shall
denote by £(X) or simply by £ the class of all those real valued,
continuous functions on X which vanish outside a compact set.
In other words £ is the class of all those continuous functions f
on X for which the set

N(f) = {x:/(x) # 0}

is bounded. If X is not compact and if X* is the one-point com-
pactification of X by x*, then the point x* is frequently called
the point at infinity, and consequently £ may be described as the
class of all those continuous functions which vanish in a neighbor-
hood of infinity. We shall denote by £,(X) or simply by £,
the subclass of all non negative functions in £. The first of our
results concerning these function spaces has been implicit in many
of our preceding constructions.

Theorem A. If C is any compact Baire set, then there exists
a decreasing sequence { f.} of functions in £ such that

limn fa(x) = xc(x)
Sor every x in X.

Proof. If C = [7-1 U,, where each U, is a bounded open
set, then for each positive integer 7 there exists a function g,
in & (cf. § 50) such that
1 if xeC,

&n(x) = {0 if xe U,

If fu =g1 N---N gy, then {f,} is a decreasing sequence of non
negative continuous functions such that

lims fa(x) = xc(x)
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for every x in X the fact that U, is bounded implies that f, € £,
n=12 ---. |}

If yo is a Baire measure in X, if f e £, and if {x: f(x) %0} c
C ¢ Cy, then the facts that 4o(C) < o« and that f is bounded and
Baire measurable (51.B) imply that f is integrable with respect

to uo and that
jﬁw=ﬁﬂm

These statements are true, in particular, if u 1s a Borel measure
and o is its Baire contraction.

Theorem B. If a Baire measure u is such that the measure
of every non empty Baire open set is positive, and if fe £,

then a necessary and sufficient condition that f Sfdu = 0 is that

S(x) = 0 for every x in X.

Proof. The sufficiency of the condition is trivial. To prove
necessity, suppose that f fdu = 0 and let U be a bounded open
Baire set such that {x: f(x) 20} c U. If E = {x: f(x) = 0},

then, since
0=[fauz [ fa
U-E

it follows from the fact that f is non negative that u(U — E) = 0.
Since U — E is an open Baire set, we must have U — E =0, or

UceE. 1|

Theorem C. If po is a Baire measure and ¢ > 0, then,
corresponding to every integrable simple Baire function f, there
exists an integradle simple function g,

g= Z:—l XX Ciy
such that C; is a compact Baire set,i = 1, ---, n, and

17 = glduo = .

Proof. Write f = > '.; a;xz and let ¢ be a positive number
such that | f(x) | < ¢ for every x in X (i.e. such that || S ¢
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for i =1, ---; n). The regularity of uy implies that, for each
i =1, ---, n, there exists a compact Baire set C; such that

C:icE: and w(E) S pol(C) + n—‘c
It follows that if g = D 7.; auxc,, then

1s = gl = tas | s luo(Bs = Cy s e

Theorem D. If po is a Baire measure, if ¢ > 0, and if
g = Dote1 aiXc, 15 @ simple function such that C; is a compact
Baire set, i = 1, <« n, then there exists a function h in £ such
that

Jle-rldns e

Proof. Since {Cy, - -+, C.} is a finite, disjoint class of compact
sets, there exists a finite, disjoint class {Uj, - -+, U,} of bounded
open Baire sets such that C; c U;, i = 1, - - -, n. Because of the
regularity of uo, there is no loss of generality in assuming that

po(U) S uo(C) +—, i=1,---,n,
nc

where ¢ is a positive number such that | g(x) | < ¢ for every «
in X. For each i =1, ..., n, there exists a function 4; in §
such that 4;(x) =1 for x in C; and A;(x) =0 for x in X — U;;
we write & = D imya@;hi. Since ;e £y, i=1,---, n it is clear
that 4 € £; the disjointness of the U; implies that | 4(x) | < ¢ for
all x in X. We have

flg — h|du = Z?-lj;__c!hldmé 2iicmUi—C)ze 1

(1) If u is a regular Borel measure, then the class of all finite linear combina-
tions of characteristic functions of compact sets is dense in £,(u), 1 < p < .

(2) If pis a regular Borel measure, then £ is dense in £,(u), | £ p < 0.

(3) If u is a regular Borel measure, E is a Borel set cf finite measure, and f
is a Borel measurable function on E, then, for every € > 0. there exists a compact
set C in E such that u(E — C) = € and such that f is continuous on C. (Hint:
if f is a simple function, the result may be proved by the tcchnique used in the
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proof of Theorem C. In the general case, there exists a sequence { fa} of simple
functions converging to f; by Egoroff’s theorem and the regularity of u, there

exists a compact set Co in E such that u(E) £ u(Co) + —; and such that {f,}
converges to f uniformly on Co. Let Cn be a compact subset of E such that
u(E) S u(Ch) + 5"%—1 and such that f, is continuous on Cy; the set

C= n:-o Cﬂ

satisfies the required conditions.) This result is known as Lusin’s theorem,

§ 56. LINEAR FUNCTIONALS

A linear functional on £ is a real valued function A of the func-
tions in £ such that

Alof + Bg) = aA(f) + BA(g)

for every pair, f and g, of functions in £ and every pair, a and B,
of real numbers. A linear functional A on £ is positive if A(f) = 0
for every fin £,. We observe that a positive linear functional A
is monotone in the sense that if fe &£, geg, and f = g, then
A(f) = A(g). Itis easy to verify that if yy is a Baire measure in

X and if A(f) = f Jfduo for every f in £, then A is a positive linear

functional; the main purpose of this section is to show that every
positive linear functional may be obtained in this way.

We shall find it convenient to employ a somewhat unusual but
very suggestive notation. If E is any subset of X and f is any
real valued function on X, then we shall write E c f [or E D f]
if xe(x) < f(x) [or xg(x) = f(x)] for every x in X.

Theorem A. If A is a positive linear functional on £ and if,
Sor every C in C,
MC) = inf {A(f):Ccfee,l,
then \ is a regular content. If p is the Borel measure induced
by \, then
wU) = A(S)

Jor every bounded open set U and for every f in £, for which
Ucf
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Proof. The fact that A is positive implies that \(C) = 0 for
every C in C. To prove that \ is finite, let C be any compact
set and let U be any bounded open set containing C. Since there
exists a function fin £ such that f(x) = 1 for ¥ in C and f(x) = 0
for x in X — U, it follows that C c f € £, and therefore

MC) 2 A(f) < .

If C and D are compact sets, C D D, and if C c f e £,, then
D c f, and, therefore, N\(D) = A(f). It follows that \(D) =
inf A(f) = N\(C), i.e. that \ is monotone.

If C and D are compact sets,and if Cc fe£,and D Cge £,

then
CUDcf+gee,,

and therefore N\(C U D) = A(f + g) = A(f) + A(g). It follows
that

NMC U D) = inf A(f) + inf A(g) = N(C) + ND),

i.e. that \ is subadditive.

If C and D are disjoint compact sets, then there exist disjoint
bounded open sets U and 7 such that C < U and D c V. Let
S and g be functions in £ such that f(x) = 1 for ¥ in C, f(x) = 0
forxin X — U, g(x) = 1lforxin D,and g(x) = Oforxin X — 7.
IfCUDc ke gy, then

NC) + ND) = A(K) + A(hg) = AA(f + 2)) = A(A).
It follows that
MC) + \(D) = infA(A) = NMC U D);

the additivity of X now follows from its subadditivity.

We have thus proved that \ is a content; it remains to prove
that \ is regular. For every C in C and for every e > 0, there
exists a function f in £, such that

Ccf and A(f) £\ C) +§-
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If v is a real number, 0 < vy < 1, and if D = {x: f(x) = v}, then

Ccix:f(x) 21} c{x:f(x) >y} cD°c DeC.
1
Since D - f € £4, 1t follows that
Y

D) = (x@ +5)-

=

A(f) =

=

Since ¥ may be chosen so that
1 €
@+ a0+
% 2

it follows that N(D) < A(C) + ¢; the arbitrariness of e implies
that \ is regular.

The last assertion of the theorem is an easy consequence of
the regularity of u. Indeed, if C is a compact set contained in U,
then C c f and therefore

#(C) = NMC) = A(f);
it follows that u(U) = sup u(C) = A(S). |

Theorem B. If A is a positive linear functional on &£, if,
Sfor every C in C,

MC) =inf{A(f):Ccfee,],

and if u is the Borel measure induced by the content \, then

[ran = 2
Sfor every fin £.
Proof. Since both f fdp and A(f) depend linearly on f, it is

sufficient to prove the inequality for functions f such that
0= f(x) £1forallxin X.
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Let # be a fixed positive integer and write, for 1 = 1, ---, n,

0 if f(x)<i;l,
f(")"l;l i—1 i
fi(x) = —1—'=nf(x)—(i—1) if —— =f(x) -,
1 n n
n .
1 if L < fx).
L n

Since, fori =1, ---, n,

Si=(nf—GG-DIUVO)NT =(»f—(G-1]N1)UO,
the functions f; all belong to £,. Since for any x for which
1 .

A S flx) < J—, we have
n n
1 if 1sisj—1,

f"(")z{o if j+l1<ign

1
it follows that f(x) = — >, fi(x) for every x in X.
n

If, for i=0,1, ---, n, U; = {x:j(x) >—1], then U; is a
n

bounded open set such that, fori =1, ---, n, U; C f;, and hence,
by Theorem A, u(U;) £ A(f;). Since UyD U, D---D U, =0,
we have

1 1
A(f) = " 2 A 2 "1‘ 2 uUy) =

i—1

- T (G- )uw -
= S WU ~ WUl =

41
= L
n

1
w(U; = Usp) — ;”(Ul) =
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2t [ fdu— wUy =

U= U1 n

1 1
= [[ fdu =~ w(Us) 2 [fau — ~ (0.
124} n n
The arbitrariness of # and the finiteness of u(U,) imply the desired
result. |

Theorem C. If A is a positive linear functional on &, if,
Sfor every C in C,

NC) = inf{A(f): Ccfee,],

and if u is the Borel measure induced by the content \, then,
corresponding to every compact set C and every positive number
€, there exists a function fo in £ such that C C fo, fo £ 1, and

A(o) < [fodu +

Proof. l.et gy be a function in £ such that
Ccgy and A(g) = NC) + e
If fo = go N 1, then it follows that
Ao S Ago) S W(C) + ¢ S [fodu+ e |

Theorem D. If A is a positive linear functional on £, then
there exists a Borel measure u such that, for every f in £,

A() = [fan.

Proof. Write A(C) = inf {A(f): C = f e £,} for every Cin C,
let u be the Borel measure induced by the content A\, and let f
be any fixed function in £.

Let C be a compact set such that {x: f(x) # 0} c C, and let €
be a positive number. According to Theorem C, there exists a

function fp in £ such that C  fo, fo = 1, and A(f,) = f fodp + e
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We observe that since C c fo, it follows that ffy =f If ¢
is a positive number such that | f(x) | < ¢ for all x in X, then the
function (f + ¢)fo belongs to £, and hence, by Theorem B,

ACS) + cA(fo) = A+ Of) = f (f + Vfodu =
=ffdﬂ + ¢ | fodp.

It follows that
AU 2 [fiu+ ¢ | 1w = 5| 2 [ = e

the arbitrariness of ¢ implies that A(f) = f fdu, 1.e. that Theorem

B is true for all fin £. Applying this inequality to —f yields its
own reverse. |

Theorem E. If u is a regular Borel measure, if, for every
fin & A(S) =ffdp, and if, for every C in C,

MC) =inf{A(f):Ccfes,},

then u(C) = N(C) for every C in C. Hence, in particular, the
representation of a positive linear functional as an integral with
respect to a regular Borel measure is unique.

Proof. It is clear that u(C) S NC). If CeC and ¢ > 0,

then, by the regularity of u, there exists a bounded open set U
containing C such that u(U) < u(C) + e. Let f be a function
in § such that f(x) = 1 for x in C and f(x) = 0 for ¥ in X — U,
then C c fe £, and

NC) S AU = [du S u(V) S W(O) + «

The arbitrariness of e implies the desired result. |}

(1) If xpis a point of X and A(f) = f(xo) for every fin &£, and if u(E) = xz(x0)
for every Borel set E, then A(f) = f Sdu.

(2) If wo is a Baire measure and A(f) =ffdpo for every fin £, and if p is a
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Borel measure such that A(f) =ffdu, then u(E) = po(E) for every Baire set E,
(3) If po is a Baire measure and A(f) =ffdpo for every f in &, write

MN(U) =sup {A(f): UD fe g}
for every U in U, and
w*(E) = inf {\e(U): EC UeTU}

for every o-bounded set E; then u*(E) = uo(E) for every Baire set E.

(4) Let X be the one-point compactification, by e, of the countable discrete
space of positive integers. A functionfin &£is, in this case, a convergent sequence
{f(n)} of real numbers with f(0) = lim, f(n); the most general positive linear
functional A is defined by

A(f) = El§n_s,nf(”)An,

where 2, A, is a convergent series of positive numbers.

(5) A linear functional A on £ is bounded if there exists a constant k such that
| A(f) | < ksup {| f(x) |: x € X} for every fin £. Every bounded (but not neces-
sarily positive) linear functional is the difference of two bounded positive linear
functionals. The proof of this assertion is not trivial; it may be achieved by
imitating the derivation of the Jordan decomposition of a signed measure.

(6) If X is compact, then every positive linear functional on £ is bounded.



Chapter X1

HAAR MEASURE

§ 57. FULL SUBGROUPS

Before beginning our investigation of measure theory in
topological groups, we shall devote this brief section to the proof
of two topological results which have important measure theoretic
applications. The results concern full subgroups; a subgroup Z
of a topological group X is full if it has a non empty interior.
We shall show that a full subgroup Z of a topological group X
embraces the entire topological character of X—everything in X
that goes beyond Z is described by the left coset structure of Z
which is topologically discrete. We shall show also that a locally
compact topological group always has sufficiently small full sub-
groups—i.e. full subgroups in which none of the measure theoretic
pathology of the infinite can occur.

Theorem A. If Z is a full subgroup of a topological group
X, then every union of left cosets of Z is both open and closed
in X.

Proof. Since the complement of any union of left cosets is
itself such a union and since a set whose complement is open
is closed, it is sufficient to prove that every such union is open.
Since a union of open sets is open, it is sufficient to prove that
each left coset of Z is open, and for this, in turn, it is sufficient to
prove that Z is open.

Since Z° 5 0, there is an element 2z in Z% If 2 is any element

of Z, then z2,™! € Z and therefore 2272 = Z. It follows that
250
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2% 1Z° = Z° and hence that
2 = (2207 )z & Z°.

Since z is an arbitrary element of Z, we have thereby proved that
Z c 2% i.e. that Z is open. |

Theorem B. If E is any Borel set in a locally compact
topological group X, then there exists a o—compact full subgroup
Z of X such that E C Z.

Proof. It is sufficient to prove (cf. 51.A) that if {C,} is a
sequence of compact sets in X, then there exists a e—compact full
subgroup Z of X such that C, c Z forn =1,2, ---.

Let D be a compact set which contains a neighborhood of e.
We write Dy = D and, forn =0,1,2, ---,

Dn+1 = D”—IDQ U Cn+1.

If Z = Ur-0 D, then Z is o—compact, has a non empty interior,
and contains each Cn; we shall complete the proof by showing
that Z7'Z c Z.

We show first that if, for any n =0, 1, 2, -+, ¢ € D,, then
D, € D, ;. Indeed, if ¢ € D,, then e e D, ; it follows that
if x € D,, then

X € (D,."l)x [ Dn_an c Dn+1.
Since e € Dy, it follows by mathematical induction that D, € D, 44
forn=0,1,2,---.
If x and y are any two elements of Z, then, because of the result

of the preceding paragraph, both x and y belong to D, for some
positive integer #, and therefore

x—_}’ € Dn_an C D”_'_l c Z. .

§ 58. EXISTENCE

A Haar measure is a Borel measure p in a locally compact
topological group X, such that p(U) > O for every non empty
Borel open set U, and u(xE) = u(E) for every Borel set E. The
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purpose of this section is to prove, for every locally compact
topological group, the existence of at least one Haar measure.
The second defining property of a Haar measure may be called
left invariance (or invariance under left translations); we observe
that the first property is equivalent to the assertion that u is not
identically zero. Indeed, if u(U) = O for some non empty Borel
open set U, and if C is any compact set, then the class {xU: x € C}

is an open covering of C. Since C is compact, there exists a finite
subset {x;, ---, ¥} of C such that C c |J7-; »;U, and the left
invariance of u implies that u(C) £ Y i u(x;U) = nu(U) = 0.
Since the vanishing of u on the class C of all compact sets implies
its vanishing on the class S of all Borel sets, we obtain the desired
result: a Haar measure is a left invariant Borel measure which is
not identically zero.

Before exhibiting the construction of Haar measures, we remark
on the asymmetry of their definition. Left translations and right
translations play a perfectly symmetrical role in groups; there is
something unfair about our emphasis on left invariance. The
concept we defined should really be called “left Haar measure”;
an analogous definition of “right Haar measure” should accom-
pany it, and the relations between the two should be thoroughly
investigated. Indeed in the sequel we shall occasionally make use
of this modified (and thereby more precise) terminology. In most
contexts, however, and specifically in connection with the problem
of the existence of Haar measures, the perfect left-right symmetry
justifies an asymmetric treatment; since the mapping which
sends each x in X into x ! interchanges left and right and preserves
all other topological and group theoretic properties, every “left
theorem” automatically implies and is implied by its correspond-
ing “right theorem.” It is, in particular, easy to verify that if u
is a left Haar measure, and if the set function » is defined, for every
Borel set E, by »(E) = u(E™), then » is a right Haar measure,
and conversely.

If E is any bounded set and F is any set with a non empty
interior, we define the “ratio” E:F as the least non negative
integer # with the property that E may be covered by # left
translations of F, i.e. that there exists a set {x;, -+, x,} of 7
elements in X such that E ¢ Ji.; x;F. It is easy to verify
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that (since E is bounded and F? is not empty) E:F is always
finite, and that, if 4 has the properties of both E and F, i.e. if 4
is a bounded set with a non empty interior, then

E:F £ (E:A)(A4:F).

Our construction of Haar measure is motivated by the follow-
ing considerations. In order to construct a Borel measure in a
locally compact Hausdorff space it is sufficient, in view of the
results of the preceding chapter, to construct a content X\, i.e.
a set function with certain additivity properties on C. If Cis a
compact set and U is a non empty open set, then the ratio C:U
serves as a comparison between the sizes of C and U. If we form
the limit, in a certain sense, of the product of this ratio by a
suitable factor depending on the size of U, as U becomes smaller
and smaller, the resulting number should serve as the value of
N at C.

The outline in the preceding paragraph is not quite accurate.
In order to illustrate the inaccuracy and make our procedure
more intuitive, we mention an example. Suppose that X is the
Euclidean plane, u is Lebesgue measure, and C is an arbitrary
compact set. If U, is the interior of a circle of radius », and
if we write, for every r >0, n(r) = C:U,, then, clearly,
n(r)mr? = u(C). It is known that lim,_, ¢ n(r)m? exists and is

equal not to u(C) but to ©(C); in other words, starting

with the usual notion of measure, which assigns the value 72 to
U,, our procedure yields a different measure which is a constant
multiple of the original one. For this reason, in an attempt to
eliminate such a factor of proportionality, we shall replace the
ratio C: U by the ratio of two ratios, i.e. by (C:U)/(A4:U), where
A is a fixed compact set with a non empty interior.

Theorem A. For each fixed, non empty open set U and
compact set 4 with a non empty interior, the set function Ny,
defined for all compact sets C by

c:U

W€ =~ 5
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is non negative, finite, monotone, subadditive, and left invariant;
it is additive in the restricted sense that if C and D are compact
sets for which CU™ N DU = 0, then

M (C U D) = M(C) + (D).

Proof. The verification of all parts of this theorem, except
possibly the last, consists of a straightforward examination of the
definition of ratios such as C:U. To prove the last assertion, let
xU be a left translation of U and observe that if C N xU 5 0,
then x e CU™ and if D N xU 5 0, then x e DU, It follows
that no left translation of U can have a non empty intersection
with both C and D and hence that Ay has the stated additivity

property. |

Theorem B. In every locally compact topological group X
there exists at least one regular Haar measure.

Proof. In view of 53.E and 53.F it is sufficient to construct
a left invariant content which is not identically zero; 53.C implies
that the induced measure is not identically zero and hence is a
regular Haar measure.

Let A4 be a fixed compact set with a non empty interior and let
N be the class of all neighborhoods of the identity. For each
U in N, we construct the set function Ay, defined for all compact

c:U . .
sets C by \y(C) = 40 since C:U £ (C: A\ (A4:U), it follows

that 0 < A\y(C) < C: 4 for every C in C. Theorem A shows that
each Ay is almost a content; it fails to be a content only because
it is not necessarily additive. We shall make use of the modern
form of Cantor’s diagonal process, i.e. of Tychonoff’s theorem on
the compactness of product spaces, to pick out a limit of the Ay’s
which has all their properties and is in addition additive.

If to each set C in C we make correspond the closed interval
[0,C: 4], and if we denote by ® the Cartesian product (in the
topological sense) of all these intervals, then ® is a compact
Hausdorff space whose points are real valued functions ¢ defined
on C, such that, for each C in C, 0 £ ¢(C) < C:4. For each
U in N the function Ay 1s a point in this space.
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For each U in N we denote by A(U) the set of all those func-
tions Ay for which 7 c Uj i.e.

AWU) = {\: UD 7V eN}.

If{U,, - - -, U,} is any finite class of neighborhoods of the identity,
1.e. any finite subclass of N, then [);., U; is also a neighborhood
of the identity and, moreover,

?-IU‘B'CUJ'! j=l’ Ty, M.

It follows that
AN U) € Ni- AU,

and hence, since A(U) always contains Ay and is therefore non
empty, that the class of all sets of the form A(U), U ¢ N, has the
finite intersection property. The compactness of & implies that
there is a point \ in the intersection of the closures of all A(U);

re N {K?Uj:UsN}.

We shall prove that A is the desired content.

It is clear that 0 £ MC) < C: 4 < = for every C in C. To
prove that N is monotone, we remark that if, for each fixed C
in C, £c(¢) = ¢(C), then % is a continuous function on ®, and
hence, for any two compact sets C and D, the set

A= {4:¢4(C) £ (D)} c®

is closed. If Cc D and U e N, then Ay e A and consequently

A(U) c A. The fact that A is closed implies that A e A(U) c 4,
i.e. that \ is monotone.

The proof of the subadditivity of N\ is entirely similar to the
above continuity argument; we omit it and turn instead to the
proof that \ is additive. If C and D are compact sets such that
C N D = 0, then there exists a neighborhood U of e such that
CU'NDU'=0. If VeNand ¥ <« U, then CV* N DV !
= 0 and hence (Theorem A)

Mw(C U D) = W (C) + W(D).

This means that, whenever 7 < U, Ay belongs to the closed set
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A = {¢: $(C U D) = ¢(C) + ¢(D)}, and hence that A(U) c A.

It follows that A e A(U) C A, i.e. that X is additive.

Another application of the continuity argument shows that
MA) = 1 (since A\y(4) = 1 for every U in N), and hence that the
set function N (which is already known to be a content) is not
identically zero. The fact that \ is left invariant follows, again

by continuity, from the left invariance of each A\y.

(1) The existence of a right Haar measure follows from the existence of a left
Haar measure by consideration of the group X dual to X. The group X has,
by definition, the same elements and the same topology as X; the product
(in X) of two elements x and y (in that order) is, however, defined to be the
product (in X) of y and x (in that order).

(2) Haar measure is obviously not unique, since, for any Haar measure p
and any positive number ¢, the product cu is also a Haar measure.

(3) If, for every U in N, Ay is the set function described in Theorem A, then,

for every compact set C with C°0, 0 < L < Av(C). It follows tnat

4:C
A(C) > 0 whenever C® = 0.
(4) The following is a well known example of a group in which the left and
right Haar measures are essentially different. Let X be the set of all matrices

of the form (g ';;) ,where 0 < ¥ < 0 and —w < y < o0 it is easy to verify

that, with respect to ordinary matrix multiplication, X is a group. TIf X is
topologized in the obvious way as a subset (half plane) of the Euclidean plane,
then X becomes a locally compact topological group. If we write, for every
Borel set E in X,

w(E) = f fE %dxdy and »(E) = ffE %dxd_y

(where the integrals are with respect to Lebesgue measure in the half plane),
then u and » are, respe-tively, left and right Haar measures in X. Since u(E™!)
= y(E), this example shows also that there may exist measurable sets E for which
#(E) < o and u(E~Y) = o,

(5) If C and D are two compact sets such that u(C) = u(D) = 0, does it
follow that u(CD) = 0?

(6) If u is a Haar measure in X, then a necessary and sufficient condition
that X be discrete is that u({x}) 5 O for at least one x in X.

(7) Every locally compact topological group with Haar measure satisfies the
condition of 31.10; (cf. § 57).

(8) If a Haar measure u in X is finite, then X is compact.

(9) If uis a Haar measure in X, then the following four assertions are mutually
equivalent: (a) X is o~compact; (b) u is totaily o-finite; (c) every disjoint class
of non empty open Borel sets is countable; and (d) for every non empty open
Borel set U, there exists a sequence {x.} of elements in X such that

X = U:_ 1 xnU.



{Skc. 59) HAAR MEASURE 257

§ 59. MEASURABLE GROUPS

A topological group is, by definition, a group X with a topology
satisfying a suitable separation axiom and such that the trans-
formation (from X X X onto X) which takes (x,y) into x7y
is continuous. For our present purposes it is convenient to replace
this definition by an equivalent one which requires that the
transformation § (from X X X onto itself), defined by S(x,y) =
(%,xy) be a homeomorphism. If, indeed, X is a topological group
in the usual sense, then it follows that § is continuous; since §
is clearly one to one and S'(x,v) = (x,x7'y), it follows similarly
that §~1 is continuous, and hence that § is a homeomorphism.
If, conversely, it is known that § is a homeomorphism, then §™!
1s continuous and, therefore, so is the transformation §~! followed
by projection on the second coordinate. (In case X is the real line,
the transformation § is easy to visualize; its effect is that of a
shearing which moves every point in the plane vertically by an
amount equal to its distance from the y—axis.)

Motivated by the preceding paragraph and the fact that every
locally compact topological group has a Haar measure, we define
the following measure theoretic analog of the concept of a topo-
logical group. A measurable group is a o-finite measure space
(X,S,u) such that (a) u is not identically zero, (b) X is a group,
(c) the o-ring S and the measure u are invariant under left trans-
lations, and (d) the transformation § of X X X onto itself,
defined by S(x,y) = (x,xy), is measurability preserving. (To say
that S is invariant under left translations means, of course, that
xE ¢S for every x in X and every E in S; by a measurable subset
of X X X we mean, as always, a set in the o-ring S X S.)

If X is a locally compact group, S is the class of all Baire sets
in X, and u is a Haar measure, then the fact that § is a homeo-
morphism (and therefore Baire measurability preserving), to-
gether with the fact (51.E) that the class of all Baire sets in X X X
coincides with 8 X S, implies that (X,S,u) is a measurable group.
The main purpose of the following discussion of measurable groups
is to see how much one can say about a locally compact topological
group by exploiting its measure theoretic structure only.
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If X is any measurable space (and hence, in particular, if X
is any measurable group), then the one to one transformation
R of X X X onto itself, defined by R(x,y) = (y,x), is measura-
bility preserving—the reason for this is the immediately verifiable
fact that if E is a measurable rectangle, then so also are R(E)
and R™Y(E)(= R(E)). Since the product of measurability preserv-
ing transformations is measurability preserving, this remark gives
us a large stock of measurability preserving transformations in a
measurable group—namely all transformations which may be
obtained by multiplying powers of § and R. We shall in particu-
lar frequently use, in addition to the shearing transformation §,
its reflected analog T = R™'SR; we observe that T(x,y) = (yx,y)-

Throughout the remainder of this section we shall assume that

p and v are two measures (possibly but not necessarily identi-
cal) such that (X,S,u) and (X,S,v) are measurable groups, and
R, §, and T are the measurability preserving transformations
described in the preceding paragraphs.

Theorem A. If E is any subset of X X X, then

(S(E)): = xE, and (T(E)) = yE¥

Sfor every x and y in X.
Proof. The result for § follows from the relation

xsE) (%,y) = xe(xx""y),
together with the facts that y e (S(E)), if and only if xs(&)(x,)
1, and x~'y e E, if and only if xg(x,x~2y) = 1. The proof for
is similar. |

i
14

Theorem B. The transformations S and T are measure
preserving transformations of the measure space (X X X,
S X S, u X v) onto itself.

Proof. If E is a measurable subset of X X X, then, by
Fubini’s theorem and Theorem A,

(6 X (SE) = [(SENIute) = [o(xE)dute) =

- f v(Eo)du(x) = (u X »)(E);
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this establishes the measure preserving character of §. The result
for T follows similarly by considering the sections (T(E))*. |

Theorem C. If Q = SRS, then

(Q(4 X B)), = x4 N B,
Ay i yeB,
0 i yeB.

Proof. We observe that Q(x,y) = (xy,y ™) and that Q™! = Q.
The first conclusion follows from the relation

and

QX By = |

xeaxd (* y) = xaxs(x 79,971 = x2a(¥)xs(y 7Y,

together with the facts that y ¢ (Q(A4 X B)), if and only if
xeuxe(*,y) = landy exd N B~ if and only if x.4(3)xa(y ™)
= 1. The second conclusion follows from the relation

XQ(AXB)(xy.y—l) = XAXB(x.y_I)y) = xAv(x)XB(y),

1

together with the facts that x e (Q(4 X B)) if and only if
xeuxs (x,y™") =1, and that x e 4y and y ¢ B if and only if
xa(®)xs(y) = 1. |

Theorem D. If A is a measurable subset of X [of positive
measure], and y € X, then Ay is a measurable set [of positive
measure] and A7 is a measurable set [of positive measure].
If f is a measurable function, A is a measurable set of positive
measure, and, for every x in X, g(x) = f(x™")/u(Ax), then g is
measurable.

Proof. The measurability of Ay follows by selecting any
measurable set B containing y and observing that, according to
Theorem C, Ay is a section of the measurable set Q(A4 X B)
(where Q = §7'RS). For the remainder of the proof we shall
make use of the fact that Q is a measure preserving transforma-
tion of (X X X, S X S, p X u) onto itself. It follows that if
u(4) > 0, then, by Theorem C,

0<@MW=@XM@MX&%ﬂMf%ﬂAﬂ@M,
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and hence, in particular, that x™'4 N A4~! is a measurable set
of positive measure for at least one value of x. We have proved,
in other words, that if A4 is a measurable set of positive measure,
then there exists a measurable set B of positive measure such
that B € 47'. (This implies, in particular, that as soon as we
will have proved that 47! is measurable, the result concerning
the positiveness of u(A4™!) will follow automatically.) Since
B c A7 implies that y !B c y !4}, and since u(y™'B) =
u(B), another application of our result yields the existence of a
measurable set C of positive measure such that C ¢ (y'B)~!
(y'47")"' = Ay. This settles all our assertions about Ay.
To prove the measurability of 4~! we observe that it follows from
Theorem C and what we have just proved that, if u(4) > 0, then

{y:u((Q4 X A))¥) >0} = 47

This proves that if u(4) > 0, then 47" is measurable;if u(A4) = 0,
we may find a measurable set B of positive measure, disjoint from
A, and deduce the measurability of 4! from the relation
A71=(A4UB)™ - B,

What we have already proved implies that if Jx) = f(x™),
then £ is measurable. If 4 and B are measurable sets, if fo(y) =
w((Q(A4 X B))), and if fo(¥) = fo(y™"), then both fo and f, are

measurable, and we have, by Theorem C,

fo(3) = uldy)xs(y)-
We have proved, in other words, that if A(y) = u(Ay), then 4

. 1
s measurable on everv measurable set. and it follows that — has
h
the same property. ||

Theorem E. If A4 and B are measurable sets of positive
measure, then there exist measurable sets C, and C, of positive
measure and elements xy, y1, %z, and ys, such that

xlcl c d, lel (@ B, szz C A, C2y2 c B.

Proof. Since u(B) > 0 implies that p(B~') > 0, it follows
that (u X w)(4 X B™) = u(Au(B™') > 0. Theorem C implies
that x4 N B is measurable for every x in X and of positive
measure for at least one x in X. If x; is such that u(x;'4 N B)
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> 0, and if y; = ¢, then, for C; = x;,7'4 N B, we have x,C, c A
and y,C, C B.

Applying this result to 47! and B™! we may find Gy, %0, ¥o
so that x,Co € 47! and y,C, < B!, and we may write C; = Cp ™,
X2 =x0"Hy2=5" |

Theorem F. If A and B are measurable sets and if f(x) =
w(x~14 N B), then [ is a measurable function and

[faun = wouB.

If g(x) = u(xAAB), and if € < u(A) + u(B), then the set
{x: g(x) < €} is measurable.

The first half of this result is sometimes known as the average
theorem.

Proof. The first assertion follows from the fact that if, as
before, Q = §T'RS, then Q is a measure preserving transforma-
tion of (X X X, S X S, u X u) onto itself and

S(x) = u((Q(4 X B™)a).

If f(x) = f(x~1), then it follows that fis measurable. The second
assertion is a consequence of this and the relation

{x:g(0) < e} = {x: /() > $w() + w(B) — 9}. 1

(1) Is the Cartesian product of two measurable groups a measurable group?

(2) If u is a Haar measure in a compact group X of cardinal number greater
than that of the continuum, then (X,Su) is not a measurable group. (Hint:
let D={(xy:x=3} =S(X X {e}). If Disin S X S, then there exists a
countable class R of rectangles such that De S(R). Let E be the [countable]
class of sides of rectangles belonging to R. Since D & S(E) X S(E), it follows
that every section of D belongs to S(E). Since, however, by 5.9¢c, S(E) has
cardinal number not greater than that of the continuum, this contradicts the
assumption on the cardinal number of X.)

(3) If u is a Haar measure on a locally compact group X, then, for every
Baire set E and every x in X, the vanishing of any one of the numbers,

w(E), w(xE), u(Ex), and u(E™Y),

implies the vanishing of all others.

(4) If (X,S,n) is a measurable group such that u is totally finite, and if 4
is any measurable set such that u(x4 — 4) = O for every x in X, then either
u(d) =0 or p(X — 4) = 0. (Hint: apply the average theorem to A4 and
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X — A.) DProperly formulated, this result remains valid even if u is not neces-
sarily finite; in the language of ergodic theory it asserts that a measurable group,
considered as a group of measure preserving transformations on itself, is metri-
cally transitive.

(5) If p is a Haar measure on a compact group X, then, for every Baire set
E and every x in X,

w(E) = p(xE) = u(Ex) = w(E™Y).

§ 60. UNIQUENESS

Our purpose in this section is to prove that the measure in a
measurable group is essentially unique.

Theorem A. [f p and v are two measures such that (X,S,u)
and (X,Sw) are measurable groups, and if E in S is such that
0 < v(E) < oo, then, for every non negative measurable function

for oy
y—-l
Jreau = wik) [ .

The important part of this result, as far as it concerns the
uniqueness proof, is its qualitative aspect, which asserts that
every u—integral may be expressed in terms of a »—integral.

Proof. If g(y) = f(y~")/v(Ey), then our results in the preced-
ing section imply that g is a non negative measurable function
along with f. If, as before, we write

S(x,)’) = (x,x}’) and T(x,}') = (}’x,)’),

then in the measure space (X X X, S X S, u X ») both the trans-
formations § and T are measure preserving and, therefore, so is
the transformation $™'T. Since §7'T(x,y) = (yx,x7"), it fol-
lows from Fubini’s theorem that

WE) [e(n)an(y) = [xa@)dutx) [g(r)an(z) =
~ [xe (gl X N (x,) =
= [ xeomgtedv(y)aut) =

= [stx(Ex (o).
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Since g(x")v(Ex~') = f(x), the desired result follows from a
comparison of the extreme terms of this chain of equalities. ||

Theorem B. If u and v are two measures such that (X,S,u)
and (X,S,v) are measurable groups, and if E in S is such that
0 < »(E) < =, then, for every F in S, u(E)w(F) = v(E)u(F).

We remark that this result is indeed a uniqueness theorem;
it asserts that, for every F in S, u(F) = cv(F), where ¢ is the non

, i.e. that u and » coincide to within

. . ”
negative finite constant
14

a multiplicative constant.

Proof. Let f be the characteristic function of F. Since
Theorem A is true, in particular, if the two measures u and »
are both equal to », we have

[remi) = v [£2)

v(Ey)
Multiplying by u(E) and applying Theorem A, we obtain

W(E) [Fe)ds(x) = () [F)dute).

dv(y).

Theorem C. If u and v are regular Haar measures on a
locally compact topological group X, then there exists a positive
finite constant ¢ such that u(E) = cv(E) for every Borel set E.

Proof. If S, is the class of all Baire sets in X, then (X,So,u)
and (X,So,v) are measurable groups and hence, by Theorem B,
w(E) = cv(E) for every Baire set E, with a non negative finite
constant c; the fact that ¢ is positive may be inferred by choosing
E to be any bounded open Baire set. Any two regular Borel
measures (such as u and ¢v) which coincide on Baire sets coincide
also on all Borel sets; (cf. 52.H). |

(1) The Haar measure of the multiplicative group of all non zero real numbers
is absolutely continuous with respect to Lebesgue measure; what is its Radon—
Nikodym derivative?

(2) If X and Y are two locally compact groups with Haar measures u and »
respectively, and if A is a Haar measure in X X Y, then, on the class of all Baire
sets in X X Y, A is a constant multiple of u X ».

(3) The metric transitivity established in 59.4 may be used to prove the
uniqueness theorem for measurable groups with a finite measure. Suppose
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first that u and » are left invariant measures such that y << u; then there exists a
non negative integrable function f such that

WE) = [ fs)du(x)
E
for every measurable set E. It follows that
= = -1 (.
v(yE) f Saut) = [ o )dut,

and hence, since v is left invariant, that f(x) = f(y~'x) [p]. If N, =
{x: f(x) < ¢}, then

w(yNe — No) = p({x f(y7%) <4} = [x: f(x) <1#}) =0,

and hence, for each real number ¢#, either u(N;) = 0 or u(Ny) = 0. Since this
implies that f is a constant a.e. [u], it follows that v = cu. To treat the general,
not necessarily absolutely continuous, case, replace u by p + ». Just as in 59.4,
these considerations may be extended to apply to not necessarily finite cases
also.

(4) If (X,S,u) is a measurable group and if E and F are measurable sets, then
there exist two sequences {¥,} and { y,} of elements of X and a sequence {A4.}
of measurable sets such that (a) the sequences {¥,4n} and { y..4.} are disjoint
sequences of subsets of E and F respectively, and (b) at least one of the two
measurable sets,

Eo = E - U:-],xnlfn and FO = F - U:-l)’n/{ﬂ)

has measure zero. (Hint: if either E or F has measure zero, the assertion is
trivial. If both E and F have positive measure, apply 59.E to find x3, y1, A1
so that u(A4) > 0, ;4 C E, y;4; C F. If either E — x14y or F — 314, has
measure zero, the assertion is true; if not, then 59.E may be applied again, and
the argument may be repeated by countable but possibly transfinite induction.)

Since this result is valid for all left invariant measures, it may be used to
give still another proof of the uniqueness theorem. It may be shown that if
u and v are both left invariant measures, then the correspondence which, for
every measurable set E, assigns u(E) to v(E), is an unambiguously defined, one
to one correspondence between the set of all values of u and the set of all values
of ». A more detailed, but not particularly difficult, examination of this corre-
spondence yields the uniqueness theorem.

(5) Let u be a regular Haar measure on a locally compact group X. Since,
for each x in X, the set function uz, defined for every Borel set E by u(E) =
u(Ex), is also a regular Haar measure, it follows from the uniqueness theorem
that u(Ex) = A(x)u(E), where 0 < A(x) < oo,

(5a) A(xy) = A(x)A(y); Ale) = 1.

(5b) If x is in the center of X, then A(x) = 1.

(5¢) If x is a commutator, and hence, more generally, if x is in the commutator
subgroup of X, then A(x) = 1.

(5d) The function A is continuous. (Hint: let C be a compact set of positive
measure and let ¢ be any positive number. By regularity, there exists a bounded
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open set U such that C C U and u(U) < (1 + €u(C). If 7 is a neighborhood
of e such that ¥ = V~!and C¥ C U, and if x € 7, then

AGu(C) = u(Cx) = p(U) = (1 + eu(C)

and
‘g(% ~ W(Cx) S WD) S (1 + Ou(O),
sothatliegA(x) Sl+4e)

(5e¢) The results (5a) and (5d) yield another proof of the identity of left and
right invariant measures on a compact group X, since they imply that A(X)
is a compact subgroup of the multiplicative group of positive real numbers.

(5f) For every Borel set E, u(E~!) = L A_(l;ts du(x). (Hint: by the unique-

. . 1
ness theorem for right invariant measures, u(E~!) = ¢ f A0 du(x) for some
E

positive finite constant ¢. This implies that f S Vdu(x) = ¢- ‘%du(x)
for every integrable function f. Replacing f(x) by f(¥~1), writing g(x~1) =
f(x~1)/A(x), and applying the last written equation to g in place of f, yields

the result that
1
= Jeeaut) = ¢ feteduer
(5g) If T'(x) is the right handed analog of A(x), i.e. if, for a right invariant
measure », I' is defined by »(xE) = I'(xv(E), then I'(x) = K(—;:)

(6) A relatively invariant measure on a locally compact group X is a Baire
measure v, not identically zero, such that for each fixed » in X the measure v,,
defined by v.(E) = »(xE), is a constant non zero multiple of ». A necessary

and sufficient condition that » be relatively invariant is that »(E) = f (¥)du(5),
E

where u is Haar measure and ¢ is a continuous representation of X in the multi-
plicative group of positive real numbers. (Hint: if ¢ is non negative, continuous,

and such that ¢(xy) = ¢(x)¢(y), and if v(E) =L¢(y)du(_y), then
v(xE) =sz $(2)dn(y) = fE é(xy)du(y) =

= fE S(*)6(»)du(y) = P)(E).

If, conversely, »(xE) = ¢(x)v(E), then it follows (cf. (5)) that ¢(xy) = d(x)p(y)
and ¢ is continuous. Consequently F(E) =f ¢(yVdv(y) may be formed,
®

and by the uniqueness theorem g = p.)

(7) If p is a o-finite, left invariant measure on the class Sg of Baire sets in a
locally compact group X, then u is a constant multiple of the Baire contraction
of Haar measure, and hence, in particular, u is finite on compact sets. (Hint:
if p is not identically zero, then (X,So,u) is a measurable group.)



Chapter XII

MEASURE AND TOPOLOGY IN GROUPS

§ 61. TOPOLOGY IN TERMS OF MEASURE

In the preceding chapter we showed that in every locally com-
pact group it is possible to introduce a left invariant Baire measure
(or a left invariant, regular Borel measure) in an essentially
unique manner. In this chapter we shall show that there are
very close connections between the measure theoretic and the
topological structures of such a group. In particular, in this
section we shall establish some of the many results whose total
effect is the assertion that not only is the measure determined by
the topology, but that, conversely, all topological concepts may
be described in measure theoretic terms. Throughout this sec-
tion we shall assume that

X is a locally compact topological group, u is a regular Haar
measure on X, and p(E,F) = u(E A F) for any two Borel sets
E and F.

Theorem A. If E is a Borel set of finite measure and if
Sf(x) = p(xE,E), for every x in X, then f is continuous.

Proof. If e > 0, then, because of the regularity of u, there

. € .
exists a compact set C such that p(E,C) < 3 and there exists an

open Borel set U containing C such that p(U,C) < 2 Let 7 be

a neighborhood of esuch that 7 = V'and VCc U. Ify 'x eV,
266
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then x~'y ¢ 7 and therefore
p(xCyC) = p(xC — yC) + u(yC — xC) =
— W(y™C = C) + wlx~yC - ©) <

< 2u(PC - C) £ 2u(U - ©) <§.

It follows that
| p(xE,E) — p(yE,E) | <
< p(xE,yE) £ p(xExC) + p(xC,yC) + p(yCyE) < e. |

Theorem A implies that for every Borel set E of finite measure,
and for every positive number ¢, the set {x: p(xE,E) < €} is

open. Our next result shows that there are enough open sets of
this kind.

Theorem B. If U is any neighborhood of e, then there exist
a Baire set E of positive, finite measure and a positive number
e such that {x: p(xE,E) < e c U.

Proof. Let 7 be a neighborhood of ¢ such that /! c U
and let E be a Baire set of positive, finite measure such that
E c V. If eissuch that 0 < ¢ < 2u(E), then

{x:p(xE,E) < ¢ c{x:xENE#0} = EE'c/V'lcU. |

Theorems A and B together imply that the class of all sets of
the form {x: p(xE,E) < €} is a base at ¢, and hence that it is
indeed possible to describe all topological concepts in measure
theoretic terms. To illustrate in detail how such descriptions are
made, we proceed to give a measure theoretic characterization

of boundedness.

Theorem C. A necessary and sufficient condition that a set
A be bounded is that there exist a Baire set E of positive, finite
measure and a number ¢,0 S € < 2u(E), such that

A c {x: p(xE,E) S €.

Proof. In order to prove the sufficiency of the condition, we
shall show that if E is a Baire set of positive, finite measure, and
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if 0 < e < 2u(E), then the set {x: p(xE,E) < ¢} is bounded.
Let & be a positive number such that 46 < 2u(E) — ¢, and let
C be a compact subset of E such that u(E) — & < u(C). It fol-
lows that

p(xC,C) = p(xCxE) + p(xE,E) + p(E,C) < 25 + p(xE,E)

and hence that
{x: p(xE,E) £ ¢} < {x:p(xC,C) S e+ 28}.
Since € + 28 < 2u(C), it follows that
{x: 0(xE,E) < ¢} c {x: u(xC N C) 5 0} c CC.

To prove the necessity of the condition, let C be a compact set
such that 4 € C and let D be a compact set of positive measure.
Suppose that the Baire set E of positive, finite measure is selected
so that ES C'D U D. Since D c E, and since, for x in C,
D c xC'D c xE, it follows that, for x in C, D cxE N E.
This implies that

AcCc{x:DcxENE}c{x:p(xEE) < ¢},
where € = 2(u(E) — u(D)). |

(1) The analogs of Theorems A, B, and C with u(xE N F) in place of p(xE,E)
are true, where E and F are Baire sets of positive finite measure.

(2) If, for a fixed Borel set E of finite measure, f(x) = xE, then f is a con-
tinuous function from X to the metric space of measurable sets of finite measure.

(3) If E is any Borel set of positive measure, then there exists a neighborhood
U of e such that U C EE™L.

(4) X is separable if and only if the metric space of measurable sets of finite
measure is separable.

(5) If E is any bounded Borel set, and if, for every x in X and every bounded
neighborhood U of ¢,

_ME N Usx)
Su(x) = U

then fu converges in the mean (and therefore in measure) to xg as U — e.
In other words, for every positive number € there exists a bounded neighborhood
V of e such that if U C 7, thenflfu — X |de < €. This result may be called
the density theorem for topological groups. (Hint: let » be a neighborhood of
#such thatif y ¢ 7, then p(yE,E) < ; . If U € P andif Fis any Borel set, then
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§> ;%U—) L L | xe(y%) — x£(*) |dp(x)du(y) 2

= ]f du(x)f %) —== X£z~1(3)dp(y) fxg(x)dp(x)f dl‘(((.}‘))

=] L fu(x) — xe(x))du(x) |.

w(4) _ p(dx)
[Recall that”(B) = (B
The desired conclusion follows upon applying this result first to

= {x: fu(x) — xe(x) > 0}

and then to F = {x: fu(x) — xe(x) < 0}.)

(6) If v is any finite signed measure on the class of all Baire sets in X, then
(cf. 17.3) there exists a Baire set N, such that ¥(E) = »(E N N,) for every
Baire set E. If\ and v are any two such finite signed measures, their convolution
A * y is defined, for every Baire set E, by

for any Borel sets 4 and B and every x in X cf. 60.5.]

ANB = x66)dA X 1))

If X and » are the indefinite integrals (with respect to Haar measure u) of the
integrable functions f and g respectively, then X * v is the indefinite integral of
h, where

h(9) = 126 9)dux).
(7) If X and » are finite signed measures (cf. (6)), then
Qx)(E) = [ v EYNG).
If the group X is abelian, then A« » = p# .

(8) If X and v are finite measures on the class of all Baire sets of a locally

compact, o—-compact, abelian group X, thenf)\(xE)dV(x) =fv(xE “Hd\(x).
(Hint: f 5(E) = y(E™Y), then

f AEE)dv(x) = f MeE)d5(x) and  [v(xE-D)d\(x) = f B(x1E)N(x);

the desired result follows from the relation A * 7 = 5 % \.)
(9) If f and g are two bounded, continuous, monotone functions on the real
line, then (cf. 25.4)

[rdg + [[ s = 1®026) - fa)ga),
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i.e. the usual equation for integration by parts is valid. (Hint: let A and » be
the measures induced by f and g respectively, and apply (8) with E =
{#: —o0 < % <0}.)

§ 62. WEIL TOPOLOGY

We have seen that every locally compact group in which measur-
ability is interpreted in the sense of Baire is a measurable group,
and that, moreover, the topology of the group is uniquely deter-
mined by its measure theoretic structure. In this section we shall
treat the converse problem: is it possible to introduce a natural
topology in a measurable group so that it becomes a locally com-
pact topological group? We shall see that the answer is essentially
affirmative; we proceed to the precise description of the details.

Throughout this section we shall work with a fixed measurable
group (X,S,u); as usual, we shall write p(E,F) = w(EAF) for
any two measurable sets E and F. We shall denote by A the
class of all sets of the form EE~!, where E is a measurable set of
positive, finite measure, and by N the class of all sets of the form
{x: p(xE,E) < ¢}, where E is a measurable set of positive, finite
measure and e is a real number such that 0 < e < 2u(E).

Theorem A. If N = {x: p(xE,E) < €} ¢ N, then every
measurable set F of positive measure contains a measurable
subset G of positive, finite measure such that GG < N.

Proof. It is sufficient to treat the case in which F has finite
measure. If T(x,y) = (yx,y), then T(E X F) is a measurable
set of finite measure in X X X and hence there exists a set 4
in X X X such that A4 is a finite union of measurable rectangles
and

gp(m > p(T(E X F),4) =

- f f | Xreexm ®y) — xa(®y) [du(x)duiy) 2

> f f | xe(r=1%) — xa(x,y) [du(x)du(y).
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If we write C = [y:f| xe(y7'%) — xa(x,y) |du(x) = l , then
it follows that u(F N C) < 3u(F) and hence that
p(F — C) z u(F) > 0.

If ye F — C, then
€
POEA) = [1xa(r7%) = xaly) lduts) < 5.

Since A is a finite union of measurable rectangles, there are only
a finite number of distinct sets of the form A4%; we denote them
by A, ---, An. What we have proved may now be expressed
by the relaticn

F—-CcU: {y= p(yE,4;) < g}

Since % < u(E) = u(yE) it follows from 59.F that each of the

€
2

sets { y: o(yEA;) < ;} is measurable, and therefore, since

w(F — C) > 0, that at least one of them intersects F — C in a
set of positive measure. We select an index 7 such that if

Go= (F =) N {yiptrEd) <3,

then u(Gp) > 0. Itis clear that Gy is a measurable set of positive,
finite measure and that Go c F. If y, e Go™! and y; € Go?, then

p(11y27'E,E) = p(y:'E,nT'E) =
< 0(32E ) + p(nTIEA) < ¢

so that Go~™'!Go ¢ N. We have proved, in other words, the
existence of a set G satisfying all the requirements of the theorem
except that instead of GG ¢ N we have G,7!G, ¢ N. If we
apply this result to F~ in place of F, and if we denote the set so
obtained by G~1, then the set G satisfies all the requirements
without exception. ||

Theorem A asserts in particular that every set in N contains a
set in A. We shall also need the following result which goes in
the opposite direction.
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Theorem B. If 4 = EE! ¢ Aand 0 < ¢ < 2u(E), and if
N = {x: p(xE,E) < ¢},
then NeNand N C A.

Proof. It is trivial that N e N; to see that N < A4, observe
that Nc {x:xE N E# 0} = EE% |

Theorem C. If N = {x: p(xE,E) < ¢} eN, then N is a
measurable set of positive measure. If uw(E™') < o, then

p(N) < oo.
Proof. Since N = {x: u(xE N E) > u(E) — ;}, the measur-

ability of N follows from 59.F. To prove that u(N) > 0, we
apply Theorem A. If G is a measurable set of positive measure
such that GG™' c N, then, in particular, Gy~ < N for any y
in G. The last assertion of the theorem follows from the relations

(u(E) - 5‘) w(N) £ fv w(xE N E)du(x) <

< f w(*xE N E)du(x) = w(E)W(E™). |

Theorem D. If A and B are any two sets of A, then there
exists a set C in A such that C A N B.

Proof. Let E and F be measurable sets of positive, finite
measure such that 4 = EE™! and B = FF~!. By 59.E there
exists a measurable set G of positive, finite measure and there
exist two elements x and y in X such that

GxcE and GycF.
If C = GG, then C € A and
C=Gx)(Gx)cd4 and C= (Gy)(Gy)'cB. |

Before introducing the promised topology in X, we need to
define one more concept. We recall that our definition of a
measurable group was motivated by the continuity properties of
topological groups and ignored entirely the separation axiom
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which is an essential part of the definition of a topological group.
One way of phrasing the relevant separation axiom is this: if an
element x of the group is different from ¢, then there exists a
neighborhood U of ¢ such that x ¢’ U. Guided by these con-
siderations and 61.A and 61.B, we shall say that a measurable
group X is separated if whenever an element x of the group is
different from e, then there exists a measurable set E of positive,
finite measure such that p(xE,E) > 0.

Theorem E. If X is separated, and if the class N is taken
Sor a base at e, then, with respect to the induced topology, X
is a topological group.

We shall refer to this topology of the measurable group X as
the Weil topology.

Proof. We shall verify that N satisfies the conditions (a),
(b), (c), (d), and (e) of §0.

Suppose that xp is an element of X, xo # ¢, and that E is a
measurable set of positive, finite measure such that p(xE,E) > 0.
If € is a positive number such that 0 < e < p(%FE,E), then
€ <2u(E). It follows that if N = {x:p(xE,E) < ¢}, then
N e N, and, clearly, x, €’ N.

If N and M are in N, then by Theorem A, there exist sets A4
and B in A such that # € N and B ¢ M. By Theorem D, there
exists a set C in A such that C < 4 N B; by an application of
Theorem B, we obtain a set K in N such that

KcCcANBcNNM.
IfN= {x: p(xE\E) < e}, we write M = {x: p(xE,E) < 56,}

If xo and y, are any two elements of M, then
p(xoyo 'E,E) £ p(y0'E,E) + p(%e'E,E) =
= P(_’)’oE,E) + p(on,E) < )

and therefore MM ! c N.
If N e N and x € X, then by Theorem A, there exists a measur-
able set E of positive, finite measure such that EE™' c N.
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Applying Theorem B to the set (xE)(xE)™! in A, we may find a
set M in N such that

M c (xE)(xE)™ = xEE7'x™ < xNx™.

If, finally, N = {x:p(xE,E) < ¢} ¢ N and if % eN, then
p(x0E,E) < e. Since ¢ < 2u(E), it follows that ¢ — p(%E,E) <
2u(xoE) and hence that if

M = {x: p(xxoExoE) < € — p(%E,E)},
then M e N. Since
Nxy™! = {xxo™ : p(xE,E) < €} = {x: p(xxoE,E) < ¢},
we have, for every x in M,
p(xx0E,E) £ p(xxoExoE) + p(xoEE) <
< (e — p(xoE,E)) + p(%0E,E) = e.
This implies that x € Nxo ™" and hence that Mx, C N. 1|

Theorem F. If X is a separated, measurable group, then X
is locally bounded with respect to its Weil topology. If a
measurable set E has a non empty interior, then u(E) > 0;
if @ measurable set E is bounded, then uw(E) < .

Proof. Let N, be an arbitrary set of finite measure in N
(see Theorem C), and let M, be a set in N such that MyM,™? < Nj.
We shall prove that M, is bounded. If M, is not bounded, then
there exists a set N in N and a sequence {x,} of elements in M,
such that

xnp1 € Uiar N, n=1,2,-.-.

By Theorem A, there exists a measurable set E of positive, finite
measure such that E © M;™! and EE~! ¢ N. Since the condi-
tion on {x,} implies that the sequence {x.E} is disjoint, and
since x.E ¢ MM, < N,, it follows that u(Ny) = . Since
this contradicts Theorem C, we have proved the first assertion
of the theorem.

The fact that a measurable set with a non empty interior has
positive measure follows from Theorem C; the last assertion is
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a consequence of Theorem C and the fact that, by definition, a
bounded set may be covered by a finite number of left transla-
tions of any set in N. |

Theorem F is in a certain sense the best possible result in this
direction. If, however, we make use of the fact that every
locally bounded group may be viewed as a dense subgroup of a
locally compact group, then we may reformulate our results in
a somewhat more useful way. We do this in Theorem H; first
we prove an auxiliary result concerning arbitrary (i.e. not neces-
sarily right or left invariant) Baire measures in locally compact
groups.

Theorem G. If uis any Baire measure in a locally compact
topological group X, and if Y is the set of all those elements y for
which w(yE) = u(E) for all Baire sets E, then Y is a closed
subgroup of X.

Proof. The fact that Y is a subgroup of X is trivial. To prove
that Y is closed, let y, be any fixed element of Y and let C be
any compact Baire set. If U is any open Baire set such that
yC c U, then there exists a neighborhood 7 of e such that
VyoC < U. Since Vy, is a neighborhood of y,, it follows that
there exists an element y in Y such that y € 7y, Since yC c
VyoC c U, it follows that

#(C) = u(yC) = u(U),

and hence, by the regularity of u, that u(C) £ u(y,C). Applying
this conclusion to y,~! and y,C in place of y, and C we obtain the
reverse inequality, and hence the identity, u(C) = u(y,C) for all
C. It follows that u(E) = p(yoE) for every Baire set E and hence
thatyoe Y. |

By a thick subgroup of a measurable group we mean a sub-
group which is a thick set; (cf. § 17).

Theorem H. If (X,S,u) is a separated, measurable group,
then there exists a locally compact topological group X with a
Haar measure f on the class S of all Baire sets, such that X is a
thick subgroup of X, S D8 N X, and n(E) = A(E) whenever
EeSand E=ENX.
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Proof. Let X be the completion of X in its Weil topology;
i.e. X is a locally compact group containing X as a dense subgroup.
Consider the class of all those subsets £ of X for which £ N X ¢ S.
It is clear that this class is a ¢-ring; in order to show that this
o—-ring contains all Baire sets, we shall show that it contains a base
for the topology of X.

Suppose that # is any point of X and U is any neighborhood
of ¢ in X; let 7 be a neighborhood of & such that P~ c U.
Since # N X is an open set in X, there exists a measurable open set
W in X such that 7 ¢ 7 N X; since the topology of X is (by
the definition of X) the relative topology it inherits from X, there
exists an open set /# in X such that 7/ = # N X. Since we may
replace /# by ' N P, there is no loss of generality in assuming
that # < P. Since X is dense in X, there exists a point x in X
such that x € £ 1; it follows that

RexW c i W c PP < 0.
If we define 2 by writing a(E) = u(£ N X) for every £ in §,

then it is easy to verify that £ is a Baire measure in X. It follows
from Theorem G, and the fact that a(xE) = A(E) whenever
x e X and £ €8, that g is left invariant. The uniqueness theorem
implies therefore that 2 coincides on § with a Haar measure in X.

It follows that if £¢8 and £ N X = 0, then a(£) = u(£ N X)
= 0, i.e. that X is thick in X. J

(1) Let X be any locally compact topological group with a Haar measure
on the class S of all Bairesets. If X = X X X,ifSis the class of all sets of the
form E X X, where E¢ S, and if G(E X X) = u(E), then (X,S,5) is a measur-
able group which is not separated. To what extent is this example typical of
non separated measurable groups in general?

(2) If X is a separated measurable group, then a set E is bounded with respect
to the Weil topology of X if and only if there exists a measurable set A of posi-
tive, finite measure such that EA is contained in a measurable set of finite
measure.

(3) Is Theorem G true for Borel measures?

(4) Is the subgroup Y described in Theorem G necessarily invariant?

(5) Under the hypotheses of Theorem G, write f(x) = u(xE) for every ¥ in
X and every Baire set E. Isf a continuous function?

(6) The purpose of the following considerations is to give a non trivial example
of a thick subgroup. Let X be the real line and consider the locally compact
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topological group X X X. A subset B of X is linearly independent if the
conditions Y P.irix; =0, ;e B, i =1, ..., n, with rational numbers r;,
imply that ry =+--=r, = 0.

(6a) If E is a Borel set of positive measure in X X X and if B is a linearly
independent set in X, of cardinal number smaller than that of the continuum,
then there exists a point (x,y) in E such that B U {x} is a linearly independent
set. (Hint: there exists a value of y such that Ev¥ has positive measure and
therefore has the cardinal number of the continuum.)

(6b) There exists a set C of points in X X X such that (i) C N E » 0 for
every Borel set E of positive measure in X X X, (ii) the set B of first coordinates
of points of C is linearly independent, and (iii) C intersects every vertical line
in at most one point. (Hint: well order the class of all Borel sets of positive
measure in X X X and construct C, using (6a), by transfinite induction.)

(6c) A Hamel basis is a linearly independent set B in X with the property
that for every x in X there exists a finite subset {x1, - -+, ¥»} of B and a corre-
sponding finite set {ry, -, ra} of rational numbers such that x = > ¢, rix,.
The expression of ¥ as a rational linear combination of elements of B is unique.
Every linearly independent set is contained in a Hamel basis. (Hint: use
transfinite induction or Zorn’s lemma.)

(6d) By (6b) and (6¢c) there exists a set C of points in X X X having the
properties (i), (ii), and (ii1) described in (6b) and such that the set B of first
coordinates of points of Cis a Hamel basis. If x = 3 7. ri¥;, where r; is rational
and (x;,v) € C, i = 1, -+, m, write f(x) = 20 1riyi. U Z = {(xy):y = f(x)}
(i.e. if 2 is the graph of f), then Z is a thick subgroup of X X X.

§ 63. QUOTIENT GROUPS
Throughout this section we shall assume that

X is a locally compact topological group and u is a Haar
measure in X; Y is a compact, invariant subgroup of X,
v is a Haar measure in Y such that »(Y) = 1, and = is the pro-
jection from X onto the quotient group X = X/Y.

While most of the important results of this section are valid for
closed (but not necessarily compact) subgroups Y, we restrict our
attention to the compact case because this will be sufficient for
our purposes and because the proofs in this case are slightly
simpler.

Theorem A. If a compact set C is a union of cosets of Y
and if U is an open set containing C, then there exists an open
set P in X such that

Ccr V(M) cU.
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Proof. There is no loss of generality in assuming that U is
bounded. If we write X, = UY, then it follows that X, is com-
pact. We assert that Xj is, just as UY, a union of cosets of Y.
To prove this, suppose that x; € Xy and 7(x;) = m(x3) (so that
x1 %y e Y); we are to prove that x; € Xy. If 7 is any neighbor-
hood of x3, then Px;7x; is a neighborhood of x; and therefore

UY N Vxy,7'% = 0. Since x, 'x; £ Y, it follows that
UY NV = UYx % O Vo lx1x, xg =
= (UY n sz_lxl)xl_lxz # 0;

since ¥ is arbitrary, this implies that x; e X.

The fact that C is a union of cosets of Y implies that (X, — U)
N 7(C) = n((Xo — U) N C) = 0. Since the sets #(Xy, — U) and
7(C) are compact, and since w(U) is an open set containing 7{(C),
there exists an open set ¥ in X such that

Q) c P crU)cn(X,) and P N (X, — U)=0.
If xex™1(P), so that n(x) e P, then =x(x) ¢ n(Xo — U) and

therefore x ¢/ Xy — U. Since, however, x € Xj, i1t follows that
x € U and therefore that C c ==Y (/) c U. |

Theorem B. If C is a compact subset of X, then w—(C)
is a compact subset of X; if E is a Baire set [or a Borel set] in
X, then =Y(E) is a Baire set [or a Borel set] in X.

Proof. Suppose that K is an open covering of #2(C). Since,
for each £ in C, »~1({#}) is a coset of Y, and therefore compact,
it follows that K contains a finite subclass K(#) such that
»1({#}) c U(#) = U K(#). By Theorem A there is an open
set P(#) in X such that

w7 1({#}) € V(#) = = (P (#) < UH).

Since C is compact, there exists a finite subset {#, - -+, #,} of €

such that € < U7, Z(#:); it follows that
7€) c Ui V(&%) < Ui U K#),

and hence that #~1(C) is compact.
The assertion concerning Baire sets and Borel sets follows from
the preceding paragraph and the additional facts that the inverse
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image (under 7) of a Gs is a Gj, and that the class of all those sets
in X whose inverse image lies in a prescribed ¢-ring is a o-ring. |

Theorem B implies that if measurability in both X and X is
interpreted in the sense of Baire, or else in the sense of Borel,
then the transformation = is measurable. In other words, =—!
maps measurable sets satisfactorily; how does it map their meas-
ures?

Theorem C. If f = ur ™), then f is a Haar measure in X.

Proof. The fact that g is finite on compact sets and positive
on non empty open Borel sets follows from the fact that the
inverse image (under =) of a compact set or a non empty open set
is a compact set or a non empty open set, respectively. It remains
only to prove that £ is left invariant.

If £ is a Borel set in X and % £ X, let xo be an element of X
such that w(xo) = £0. If # e xow~2(£), then (since = is a homo-
morphism) = (x) € #E, so that

xom " U(E) c w7 1(4,E).

If, conversely, x € # "1 (%E), then x(x) € ££ and therefore 7 (xo %)
= %,"'n(x) e E. Thisimplies that x,~'x e 7~!(£) and hence that
x e xgr—2(E). Since we have thus proved that

7 1(%E) C xer~(E),

it follows tha¢
B(HE) = pr (BE) = ulxor~(E)) = ur~Y(E) = p(£). 11
Theorem D. If f e £,(X) and if

glx) = fY Fe)dv(3),

then g € £,.(X) and there exists a (uniquely determined) func-
tion § in £,(X) such that g = g

Proof. If f.(y) = f(xy), then the continuity of f implies the
continuity, and hence integrability, of f, on Y. Since f is uni-
formly continuous, to every positive number ¢ there corresponds a
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neighborhood U of ¢ such that if x1x2 ™ & U, then | f(x;1) — f(x2) |
<e Ifxixg™ eU, then

(xl_y)(xz_y) -1 = xlxg‘l eU
and therefore

um%wmngﬁmuwvm»wm<g

so that g is continuous. Since g is clearly non negative and since
{x: g(x) = 0} < {x:f(x) = 0}-Y, it follows that g ¢ £, (X).

If 7(x;) = w(xz), then x,7'x;, ¢ Y and it follows from the left
invariance of » that

g(x1) =j;f(xl}’)dl’(}’) =Lf(x1(x1"xzy))dv(y) = g(x2).

Consequently writing #(£) = g(x), whenever £ = n(x), unam-
biguously defines a function § on X; clearly g = gr. Since
(39.A), for every open subset M of the real line,

{#: 2(8) e M} = x({x: g(x) e M}),

the continuity of ¢ follows from the openness of =. Since = maps
the bounded set {x: g(x) = 0} on a bounded subset of X, it
follows that ¢ ¢ £,(X); the uniqueness of 2 is a consequence of
the fact that = maps X onto X. |1

Theorem E. If C is a compact Baire set in X and if
g(x) = v(x7XC NY), then there exists a (uniquely determined)
Baire measurable and integrable function § on X ssch that

g = gn. If Cis a union of cosets of Y, then f gdp = p(C).

Proof. Let {f.} be a decreasing sequence of functions in
£4(X) such that lim, f.(x) = xc(x) for every x in X. If

&@=Lﬁ@%@%n=hk~u

then {g.} is a decreasing sequence of functions in £,(X) (cf.
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Theorem D), and hence (by, for instance, the bounded con-
vergence theorem)

lim, ga(x) = f xc(xy)dv(y) = fy Xee(Y)dv(y) =

= y(="ICN'Y) = g()

for every x in X.

By Theorem D, for each positive integer # there is a function
2. in £,(X) such that g, = g.v. Since the sequence {£.} is
decreasing, we may write #(£) = lim, §.(£); clearly g = ¢m.

Since (39.C)
[edn = [gdu = [+x71¢ 0 V)dute),

and since {x: »(x"1C N Y) % 0} < {x:x7'C N Y = 0} = CY, the
integrability of g follows from the finiteness of ».

If, finally, C is a union of cosets of Y, then
Y if xeC,

—1 = b4

meny {0 if x¢C,

and therefore

2 = [edn = [+71C N )dut) = w©). 1

Theorem F. If, for each Baire set E in X,
ge(x) =v(x'ENY),

then there exists a (uniquely determined) Baire measurable
Sunction g on X such that gg = .

Proof. We observe first that (by the definition of topology in
Y) the set x7'E N Y is always a Baire set in Y and, consequently,
that gg(x) is always defined.

If we denote by E the class of all those sets E for which the
desired conclusion is valid, then, by Theorem E, it follows that
every compact Baire set belongs to E. Since the elementary
properties of the (finite) measure » imply that E is closed under
the formation of proper differences, finite disjoint unions, and



282 MEASURE AND TOPOLOGY IN GROUPS [Skc. 64]

monotone unions and intersections, it follows that E contains all
Baire sets. |

Theorem G. If, for each Baire set E in X, §g is the unique
Baire measurable function on X for which

Ee(r(x)) =v(x'ENY) = ge(x)

Sfor every x in X, then

[tsan = u®)

for every Baire set E.

Proof. Write M(E) = f grdp = f v(x7'E N Y)du(x) for every

Baireset Ein X. Since \(C) is finite for every compact Baire set C
(Theorem E) and since \ is clearly non negative, we see that Nis a
Baire measure in X. If xy € X, then

Mo = [ger()du(x) = f V(% N Y)du(x) =
= | v((xo~ %) 1E N Y)du(x) =ng(x0_lx)du(x) =

- f ge(®)du(x) = M(E),

so that \ is left invariant. It follows from the uniqueness theorem
that N\(E) = cu(E) for a suitable constant ¢. Since, by Theorem E,
MC) = u(C) whenever C is a compact Baire set which is a union of
cosets of Y, and since there exist such sets with u(C) > 0, it follows
thatec = 1. |

§ 64. THE REGULARITY OF HAAR MEASURE

The purpose of this section is to prove that every Haar measure
is regular. Throughout this section, up to the statement of the
final, general result, we shall assume that
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X is a locally compact and o-compact topological group,
and p is a left invariant Baire measure in X which is not
identically zero (and which, therefore, is positive on all non
empty open Baire sets).

It is convenient to introduce an auxiliary concept; by an invariant
o-ring we shall mean a g-ring T of Baire sets such that if £ T
and x € X, then xE ¢ T. Since the class of all Baire sets is an
invariant ¢-ring, and since the intersection of any collection of
invariant o—rings is itself an invariant o-ring, we may define the
invariant ¢-ring generated by any class E of Baire sets as the
intersection of all invariant o—rings containing E.

Theorem A. If E is a class of Baire sets and T is the
tnvariant o-ring generated by E, then T coincides with the
o-ring To generated by the class {xE: x ¢ X, E ¢ E}.

Proof. Since xE ¢ T for every x in X and every E in E, it
follows that T, c T; it is sufficient therefore to prove that Ty
is invariant. Let xo be any fixed element of X. The class of all
those Baire sets F for which xoF €T, is a o-ring; since, for every
x in X and every E in E, x(xE) = (xox)E e T,, it follows that
this o-ring contains To. We have proved, in other words, that if
F £ Ty, then xoF e To. |}

Theorem B. If E is a countable class of Baire sets of finite
measure and T is the invariant o—ring generated by E, then the
metric space 3 of all sets of finite measure in T (with the metric
p defined by p(E,F) = u(E A F)) is separable.

Proof. Since every subspace of a separable metric space is
separable, it is sufficient to prove that there exists a o-ring T
of Baire sets such that T < T, and such that T, has a countable
set of generators of finite measure; (cf. 40.B). Since X is a Baire
set, it follows that X X E is a Baire set in X X X for each E
in E. If we write, as before, S(x,y) = (x,xy), then S(X X E) is
also a Baire set in X X X for each E in E. Consequently there
exists, for each E in E, a countable class Rg of rectangles of finite
measure such that S(X X E) e S(Rg). If we denote by T, the
o-ring generated by the class of all sides of all rectangles in all
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Rg, E ¢ E, then clearly
S (X X E) € To X To

for every E in E. Since every section of a set in Ty X T, belongs
to Ty, it follows that, for every x in X and every E in E,

xE = x(X X E), = (S(X X E)); €Ty,
and hence (by Theorem A) that T < T,. |

Theorem C. If T is an invariant o-ring, if f is a function
in & which is measurable (T), and if y in X is such that
p(yE,E) = O for every E in T, then f(y~'x) = f(x) for every
xin X.

Proof. If E is any set of finite measure in T, then

0 = s(YEB) = [[ () = xa() ldut) =
=f| xe(y~'x) — xe(x) |du(x).
It follows that

f | 8(y~1%) — g(x) |du(x) = 0

for every integrable simple function g which is measurable (T),
and hence, by approximation, that f | f(y~ %) — f(x) |du(x) = 0.

Since the integrand of the last written integral belongs to £,
the desired conclusion follows from 55.B. |

Theorem D. If T is an invariant o-ring generated by its
sets of finite measure and containing at least one bounded set of
positive measure, if E is a class of sets dense in the metric space
of sets of finite measure in T, and if

Y = {y:p(_}’E,E) =0, E CE})
then Y is a compact, invariant subgroup of X.

Proof. IfY, = {y:p(yE,E) = 0,E ¢ T}, thenclearly Y, C Y.
On the other hand if E, is a set of finite measure in T and e is a
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positive number, then there exists a set £ in E such that

p(Eo,E) < % . It follows that if y e Y, then

0 = p(yEo,Eo) = p(yEo,yE) + p(yE,E) + p(E,Ep) < e

Since e is arbitrary, this implies that y € Y, and hence that
Y = Yo.
If y; and y; are in Y and E is in T, then

0 = p(317"92E,E) = p(y17"92E,3:E) + p(y:E,E).

Since y,E €T and p(3, 7 y2E,y:E) = p(y2Ey152:E), it follows
that ¥, 7'y, e Y, so that Y is indeed a subgroup of X. If y e Y,
xeX, and EeT, then xEeT and therefore p(x~'yxE,E) =
p(yxExE) = 0, so that Y is invariant.

If E, is a bounded set of positive measure in T, then the fact
that p(yEo,Ey) = O for every y in Y implies that yE, N E, = 0.
It follows that y € EoEo~! and hence that Y is contained in the
bounded set EoE,~!. To prove, finally, that Y is closed (and
therefore compact) we observe that

Y = Ne.ely:p(yEE) = 0};
the desired result follows from 61.A. |

Theorem E. If E is any Baire set in X, then there exists a
compact, invariant Baire subgroup Y of X such that E is a
union of cosets of Y.

Proof. Let {C.} be a sequence of compact Baire sets, of which
at least one has positive measure, such that E ¢ S({C;}). For
each 7, let {f;;} be a decreasing sequence of functions in £,(X)
such that lim; f;;(x) = x¢,(x) for every ¥ in X. For each positive
rational number 7, the set {x: fi;(x) = r} is a compact Baire set;
let T be the invariant o-ring generated by the class of all sets of
this form. It follows from Theorem B that the metric space of
all sets of finite measure in T is separable; let { £,} be a sequence
which is dense in this metric space. If

Y= n:-l {)" P(YEnE,) = 0}’
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then it follows from Theorem D that Y is a compact invariant
subgroup of X and it follows from 61.A that Y is a Baire set.

Since each f;; 1s measurable (T), Theorem C implies that
fi;(y %) = fij(x) for every y in Y and every x in X. It follows
that x¢(y7'%) = x¢(x), 1.e. that yC; = C;, for every y in Y
and every 1 = 1,2, ---. Since, for each y in Y, the class of all
those sets F for which yF = F'is a o-ring, it follows that yE = E
for every y in Y. Hence E = YE = |J,.z Yx; that is, E is a
union of cosets of the invariant subgroup Y. |

Theorem F. If {e} is a Baire set, then X is separable.

Proof. Let { U.} be a sequence of bounded open sets such that
{e} = M1 U.; we have seen before that there is no loss of
generality in assuming that

Uopnc U, n=1,2---.

There exists a sequence {C;} of compact sets such that X =
U:~1 Ci; since each C; is compact there exists, for each ¢ and 7,
a finite subset {x,;\} of C; such that C; c |J; ;" U.. We shall
prove that the countable class {x;; U,} is a base.

We prove first that if U is any neighborhood of e, then there
exists a positive integer 7 such that e e U,  U. Indeed since

fe} =NaUn=N.T. and eeU,

it follows that _ _
N (U —=U)=(N-U,) —U =0.

Since { U, — U} is a decreasing sequence of compact sets with an
empty intersection, it follows that U, — U(c U, — U) is empty
for at least one value of 7.

Suppose now that x is any element of X and # is any neighbor-
hood of x. Since x™'/ is a neighborhood of ¢, there exists a
neighborhood U of ¢ such that U™'U c 7'/, and, by the
preceding paragraph, there is a positive integer # such that
eeU, c U. Since x e U1 C;, there is a value of i such that
x € C; and therefore there is a value of j such that x e x;;"U,.
Since the last written relation implies that x;;™ ¢ xU, ™, we have

xex; MU, cxU, WU, cxUWWcxV="0. |
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Theorems E and F together yield the following startling and
useful result.

Theorem G. If E is any Baire set in X, then there exists a
compact, invariant subgroup Y of X such that E is a union of
cosets of Y, and such that the quotient group X/Y is separable.

Proof. By Theorem E, there exists a compact, invariant Baire
subgroup Y such that E is a union of cosets of Y. If {U,} is a
sequence of open sets such that Y = [\n., U,, then, for each
positive integer n, there exists an open set U, in the quotient
group X = X/Y such that

Y c = Y(U,) c Uy,

where = is the projection from X onto X; (cf. 63.A). It follows
that Y = ;7= %(U,) and hence that {&} = M., Un; the
separability of X is now implied by Theorem F. |}

Theorem H. Every Haar measure in X is completion
regular.

Proof. It is sufficient to prove that if U is any bounded open
set, then there exists a Baire set E contained in U such that
U — E may be covered by a Baire set of measure zero. Given
U, we select the Baire set E (< U) so that u(E) is maximal; by
Theorem G there exists a compact invariant subgroup Y of X
such that E is a union of cosets of ¥ and such that the quotient
group X(= X/Y) is separable.

Let = be the projection from X onto X, and write
F = 7#7'7(U — E); we shall prove that F is a Baire set of meas-
ure zero. The fact that E is a union of cosets of Y implies that
7(U — E) = n(U) — w(E); since n(U) is an open set in a separa-
ble space, x(U) is a Baire set in X; (cf. 50.E). It follows from the
relation F = #7'x(U) — E that F is indeed a Baire set.

Since the Baire open sets of X form a base, corresponding to
each point x in U — E there is a Baire open set »(x) such that
xeV(x) c U. Since {w(¥(x)): x e U — E} is an open covering
of #(U — E), it follows from the separability of X that there
exists a sequence {x;} of points in U — E such that

(U — E) c Ui n(F(x)).
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Since 7(U — E) = =(U) — =(E), we have

#(U — E) c (Ui (¥ (xy))) — n(E) = Ui v(V(x;) — E).

It follows from these considerations that it is sufficient, in order
to complete the proof of the theorem, to prove that

p(r ' (x(V — E))) =0

for every Baire open set ¥ contained in U; we turn therefore to
the proof of this result. (Observe that the reasoning, used above
to show that #~'x(U — E) is a Baire set, may also be applied to
V in place of U.)

If 7 is a Baire open set contained in U, then it follows from the
maximal property of E that u(¥ — E) =0. If » is a Haar
measure in Y such that »(Y) = 1, and if we write 2 = pur~! and
g(x) =v(x2(V — E)NY), then (63.G) there exists a (non
negative) Baire measurable function § on X such that g = gr
and such that

0 = u” — E) = [gdn =

~fetuz[, 0 - B0V 20
- We have
TV -EYNY="7NnY)-TENY).

If xeV,theneexV NY and if x &' E, then x'ENY =0,
so that if x e V¥ — E, then x7(/ — E) N Y is a non empty open
subset of Y. It follows that if x e #~'x(V — E), so that n(x) =
7 (xo) for some xo in V' — E, then

g(x) = g(x(x)) = g(m(x0)) = g(x0) > O,
and therefore, by 25.D, u(x~x(V — E)) =0. |

Theorem 1. If X is an arbitrary (not necessarily o—compact)
locally compact topological group, and if p is a left invariant
Borel measure in X, then p is completion regular.
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Proof. Given any Borel set £ in X, there exists a o~compact
full subgroup Z of X such that E < Z. By Theorem H, u on Z
is completion regular and therefore there exist two sets 4 and B
in Z which are Baire subsets of Z and for which

AcEcB and u(B-—A) =0.

Since Z is both open and closed in X, 4 and B are also Baire
subsets of X. |
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§ 61. Integration by parts: [61, p. 102] and [70].

§62. (6):[36, p. 93].

§ 63. [4]; cf. also [73, pp. 42-45].

§64. [33].
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Absolute continuity, 124
for functions of a real variable,
181
for set functions, 97
Absolutely normal numbers, 206
Additive set functions, 30
on semirings, 31
Algebra of sets, 21
Almost everywhere, 86
Almost uniform convergence, 89
Approximation of sets in a g-ring
by sets in a ring, 56
Associated:
measure ring, 167
metric space, 168
Atom, 168
Average theorem, 261

Baire:
contraction of a Borel measure,
229
functions, 223
measurable functions on a locally
compact space, 220
measure, 223
sets, 220
Base, 3
ate, 7
Bayes’ theorem, 195
Bernoulli’s theorem, 201
Boolean:
algebra, 166
algebra of sets, 21
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Boolean (Cont.):
ring, 22, 165
ring of sets, 19
o—algebra, 166
o—ring, 166
Borel-Cantelli lemma, 201
Borel:
measurable functions on a locally
compact space, 219
measurable functions on the real
line, 78
measure, 223
sets of a locally compact space,
219
sets of #»—dimensional Euclidean
space, 153
sets of the real line, 62
Bounded convergence theorem, 110
Bounded linear functional:
on £, 249
on £2, 178
Bounded sets:
in locally compact spaces, 4
in topological groups, 7
Bounded variation, 123

Cantor:
function, 83
set, 67
Cartesian product:
of measurable spaces, 140
of measure spaces, 145, 152,
157
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Cartesian product (Cont.):
of non o-finite measure spaces,
145
of sets, 137, 150
of topological spaces, 4
Cavalieri’s principle, 149
Center, §
Characteristic function, 15
Class, 10
Closed sets, 3
Closure, 3
Coefficient of correlation, 196
Collection, 10
Compact sets, 4
Complement, 16
Complete:
Boolean ring, 169
measure, 31
Completely regular spaces, §
Completion:
of a measure, 55
of a topological group, 8
regular measure, 230
Complex measure, 120
Conditional:
expectation, 209
probability, 195, 207
probability as a measure, 210
Content, 231
Continuity and additivity:
of infinite valued set functions,
40
of set functions on rings, 39
of set functions on semirings,
40
Continuity from above and below,
39
Continuous transformations, 5
Convergence:
a.e., 86
a.e. and in measure, 89, 90
in measure, 91
in the mean, 103
of a series of sets. 19

Convergence (Cont.):

of sequences of measures, 170
Convex metric spaces, 169
Convolution, 269
Coset, 6
Countably:

additive, 30

subadditive, 41
Cylinder, 29, 155

Decreasing sequences:
of partitions, 171,
of sets, 16
Dense:
sequences of partitions, 171
sets, 3
Density theorem, 268
Derivatives of set functions, 133
Difference:
of two sets, 17
set, 68
Dimension, 152
Discontinuity from above of regu-
lar outer measures, 53
Discrete topological space, 3
Disjoint, 15
sequences of sets, 38
Distance between integrable func-
tions, 98
Distribution function, 80
Domain, 161
Double integral, 146

Egoroff’s theorem, 88
on a set of infinite measure, 90
Elementary function, 86
Empty set, 10
Entire space, 9
Equal sets, 10
Equicontinuous, 108
Equivalent:
sequences of functions, 201
signed measures, 126
Essentially bounded functions, 86
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Essential supremum, 86 Identity, 6
Exhaustion, 76 Image, 161

Extended real number, 2
Extension of measures, 54
to larger o-rings, 71

Fatou’s lemma, 113
Finite:
and totally finite measure spaces,
73
intersection property, 4
measure, 31
Finitely:
additive, 30
subadditive, 41
Fubini’s theorem, 148
Eull:
sets, 52, 132
subgroups, 250
Fundamental:
in measure, 91
in the mean, 99
sequence, 87

Generated:
hereditary class, 41
invariant o-ring, 283
monotone class, 27
ring, 22
o-ring, 24

Graph, 143

Group, 6

Haar measure, 251
Hahn decomposition, 121
Hamel basis, 277
Hausdorff:

measure, 53

space, 4
Hereditary class, 41
Héalder’s inequality, 175
Homeomorphism, 5
Homomorphism, 6
Horizontal line, 131

Increasing sequence of sets, 16
Indefinite integral, 97
Independent:
functions, 192
sets, 191
Induced:
Borel measure, 234
inner content, 232
measure, 47
outer measure, 42, 233
Inequivalence of two definitions of
absolute continuity, 128
Inf, 12
Inferior limit, 16
Infimum, 1
Inner:
content, 232
measure, 58
regular content, 239
regular set, 224
Integrable:
functions, 102
simple functions, 95
Integral, 95, 102
Integration by parts, 269
Interior, 3
Intersection, 13
Into, 161
Invariant:
sets, 29
o-rings, 283
subgroups, 6
Inverse, 6
Inverse image, 76, 161
Isomorphism, 167
Iterated integral, 146

Jacobian, 164

J—cylinder, 155

Join, 14

Jordan decomposition, 123
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Kolmogoroff's inequality, 196

Lattice of sets, 25
Lebesgue:
decomposition, 134
integral, 106
measurable function, 78
measurable set, 62
measure, 62, 153
—Stieltjes measure, 67
Left:
Haar measure, 252
invariance, 252
translation, 6
Lim inf, limit, lim sup, 16
Linear functional:
on £, 243
on £,, 178
Linearly independent sets, 277
Locally:
bounded, 8
compact, 4
Lower:
ordinate set, 142
variation, 122
Lusin’s theorem, 243

Mean:
convergence, 103
fundamental, 99
value theorem, 114
Measurability preserving trans-
formation, 164
Measurable:
cover, 50
function, 77
function of a measurable func-
tion, 83
group, 257
kernel, 59
rectangle, 140, 154
set, 73
set which is not a Borel set, 67,
83

Measurable (Cont.):
space, 73
transformation, 162
Measure, 30
algebra, 167
on intervals, 35
preserving transformation, 164
ring, 167
in metric spaces, 40
space, 73
Meet, 14
Metric:
outer measures, 48
spaces, 5
Minkowski’s inequality, 176
Modulo, 127
Monotone:
class, 27
class generated by a ring, 27
functions of a real variable, 179
sequences, 16
set functions, 37
Multiplication theorem, 195
Mutually singular, 126
p*-measurable sets, 44
p*-partition, 48
p—partition, 31

Negative:
part, 82
sets, 120
Neighborhood, 3
Non atomic, 168
Non coincidence of complete o-ring
and o-ring of p*-measurable
sets, 58
Non measurable sets, 69
Non product measures in product
spaces, 214
Non regular:
measures, 231
outer measures, 52, 53, 72
Non term by term integrability,
111, 112
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Non uniqueness of extension, 57
Normal class, 28

Normalized, 171

Normal numbers, 206

Norm, 171

One-point compactification, 4
One to one, 161
measurable transformation
which is not measurability
preserving, 165
Onto, 161
Open:
covering, 4
set, 3
transformation, 5
Outer:
measure, 42
measures on metric spaces, 48
regular sets, 224

Partition, 31, 47, 171
Point, 9
at infinity, 240
Positive:
linear functional, 243
measure, 166
part, 82
sets, 120
Principle of duality, 17
Probability measures and spaces,
191
Product:
measures, 145
of a sequence of measures, 157
of partitions, 32, 48
of transformations, 161
Projection, 6
Proper difference, 17
Purely atomic, 182

Quotient group, 6

Rademacher functions, 195
Radius, 5

Radon-Nikodym theorem, 128
counter examples to generaliza-
tions, 131
Range, 161
Rectangle, 137, 150, 154
Regular:
contents, 237
measures, 224
outer measures, 52
sets, 224
Relative:
complement, 17
topology, 3
Relatively invariant measure, 265
Residual set of measure zero, 66
Right:
Haar measure, 252
translation, 6
Ring:
generated by a lattice, 26
of sets, 19

Same distribution, 202
Section, 141
Semiclosed interval, 32
Semiring, 22
Separable:
measure space, 168
topological space, 3
Separated measurable group, 273
Set, 9
Set function, 30
Sides of a rectangle, 137
Signed measure, 118
o—algebra, 28
o-bounded, 4
g—compact, 4
o-finite measure, 31
which is infinite on every inter.
val, 183
o-ring, 24
Simple function, 84
Singular, 126
Space, 9
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Sphere, 5 Topological (Cont.):
Standard deviation, 196 space, 3
Stone’s theorem, 170 Topology:
Strong law of large numbers, 204, of a metric space, 5
205 of the real line, 3
Subadditive, 41 Totally finite and o-finite, 31
Subbase, 3 Total variation, 122
Subgroup, 6 Transfinite generation of o-rings,
Sum of regular outer measures, 53 26
Subpartition, 32, 48 Transformation, 161

Subspace, 3
Subtractive, 37 Uncorrelated, 196

Sup, 12 Uniform: )

absolute continuity, 100
continuity, 7
convergence a.e., 87

Superior limit, 16
Supremum, 1

Symmetric: .

difference, 18 Union, 11

neighborhood, 7 Upper:

ordinate set, 142

Tchebycheff’s inequality, 200 variation, 122
T};‘g:’ 74 Variance, 194

subér oups, 275, 276 Vertical line, 131
Three series theorem, 199 Weak law of large numbers, 201
Topological: Weil topology, 273

group, 6 Whole space, 9

group with different left and
right Haar measures, 256 Zero—one law, 201
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