PEANO EXISTENCE THEOREM

BRIAN WHITE

Theorem 1. Suppose that U is an open subset of \mathbf{R}^N , that $x_0 \in U$, and that $F : U \to \mathbf{R}^N$ is continuous. Then there exists a $\delta > 0$ and a continuously differentiable function $x : [0, \delta] \to U$ such that

$$x(0) = x_0, and$$

 $x'(t) = F(x(t)) \text{ for } t \in [0, \delta].$

Proof. Case 1: $U = \mathbf{R}^N$ and F is bounded: $\sup_x |F(x)| \le M < \infty$. For $k \in \mathbf{N}$, define $x_k : [0, \infty) \to \mathbf{R}^N$ by

$$x_{k}(t) = \begin{cases} x_{0} + tF(x_{0}) & \text{for } 0 \le t \le \frac{1}{k}, \\ x(\frac{1}{k}) + (t - \frac{1}{k})F(x(\frac{1}{k})) & \text{for } \frac{1}{k} \le t \le \frac{2}{k}, \\ x(\frac{2}{k}) + (t - \frac{2}{k})F(x(\frac{2}{k})) & \text{for } \frac{2}{k} \le t \le \frac{3}{k}, \\ \dots \end{cases}$$

That is, we define x_k inductively on $\left[\frac{j}{k}, \frac{j+1}{k}\right]$ by

$$x_k(t) = x_k(\frac{j}{k}) + (t - \frac{j}{k})F(x_k(\frac{j}{k})) \quad \text{for } \frac{j}{k} \le t \le \frac{j+1}{k}.$$

We also define a piecewise-constant function $y_k: [0,\infty) \to \mathbf{R}^N$ by

(1)
$$y_k(t) = x_k(\frac{j}{k}) \quad \text{for } \frac{j}{k} \le t < \frac{j+1}{k}$$

For $t \in [0, \infty)$, let $\frac{j}{k} \leq t < \frac{j+1}{k}$. Then

$$x'_k(t) = F(x_k(\frac{j}{k})) = F(y_k(t))$$

by (1), so

(2)
$$x_k(t) = x_0 + \int_{s=0}^t F(y_k(s)) \, ds.$$

Claim 1. $|x_k(t) - x_k(\tau)| \le M |t - \tau|$.

Proof of Claim 1. By (2),

$$\begin{aligned} x_k(t) - x_k(\tau) &| = \left| \int_{s=\tau}^t F(y_k(s)) \, ds \right| \\ &\leq \int_{s=\tau}^t |F(y_k(s))| \, ds \\ &\leq \int_{\tau}^t M \, ds \\ &= M |t - \tau|. \end{aligned}$$

Claim 2. The $x_k(\cdot)$ are uniformly bounded on [0,1]:

$$\sup_{k} \sup_{t \in [0,1]} |x_k(t)| < \infty.$$

Proof of Claim 2. By Claim 1,

$$|x_k(t) - x_0| = |x_k(t) - x_k(0)|$$

$$\leq Mt$$

so

(3)
$$x_k([0,1]) \subset \overline{\mathbf{B}_M(x_0)},$$

and therefore

$$\sup_{t \in [0,1]} |x_k(t)| \le M + |x_0|.$$

According to the Arzela-Ascoli Theorem, Claims 1 and 2 imply that the sequence $x_k : [0,1] \to \mathbf{R}^N$ has a uniformly convergent subsequence $x_{k(i)} : [0,1] \to \mathbf{R}^N$. That is, there is a function $x : [0,1] \to \mathbf{R}^N$ such that

(4)
$$\sup_{t \in [0,1]} |x_{k(i)}(t) - x(t)| \to 0.$$

Since $x(\cdot)$ is a uniform limit of continuous functions, it is also continuous. Note that $x_k(t)$ and $y_k(t)$ are very close:

(5)
$$\begin{aligned} |x_k(t) - y_k(t)| &= |x_k(t) - x_k(\frac{j}{k})| \quad (\text{where } \frac{j}{k} \le t < \frac{j+1}{k}) \\ &\le M|t - \frac{j}{k}| \\ &\le \frac{M}{k}. \end{aligned}$$

Thus

$$\begin{aligned} |y_{k(i)}(t) - x(t)| &\leq |y_{k(i)}(t) - x_{k(i)}(t)| + |x_{k(i)}(t) - x(t)| \\ &\leq \frac{M}{k(i)} + |x_{k(i)}(t) - x(t)| \end{aligned}$$

 \mathbf{so}

(6)
$$\sup_{t \in [0,1]} |y_{k(i)}(t) - x(t)| \le \frac{M}{k(i)} + \sup_{t \in [0,1]} |x_{k(i)}(t) - x(t)| \to 0$$

by (4). That is, the $y_{k(i)}(\cdot)$ also converge uniformly to $x(\cdot)$ on [0, 1].

Claim 3. $F(y_{k(i)}(\cdot))$ converges uniformly to $F(x(\cdot))$ on [0,1].

Proof. Note that $y_{k(i)}([0,1]) \subset x_{k(i)}([0,1])$ so $y_{k(i)}([0,1]) \subset \overline{\mathbf{B}}_M(x_0)$ by (3).

Since F is continuous and $\overline{\mathbf{B}_M(x_0)}$ is compact, F is uniformly continuous on $\overline{\mathbf{B}_M(x_0)}$. Let $\epsilon > 0$. Then there is a $\delta > 0$ such that

$$p, q \in \overline{\mathbf{B}_M(x_0)}, |p-q| \le \delta \implies |F(p) - F(q)| < \epsilon.$$

By the uniform convergence $y_{k(i)}(\cdot) \to x(\cdot)$,

$$\sup_{t \in [0,1]} |y_{k(i)}(t) - x(t)| \le \delta$$

for all sufficiently large i. Thus

$$\sup_{t \in [0,1]} |F(y_{k(i)}(t) - F(x(t))| \le \epsilon$$

for all sufficiently large i. This proves Claim 3.

Recall (see (2)) that

$$x_{k(i)}(t) = x_0 + \int_{s=0}^t F(y_{k(i)}(s)) \, ds.$$

Letting $i \to \infty$ gives

$$x(t) = x_0 + \int_{s=0}^{t} F(x(s)) \, ds$$

by (4) and (3). Thus $x(0) = x_0$, and by differentiating, we see that

$$x'(t) = F(x(t)).$$

This completes the proof in Case 1.

Case 2: General $U \subset \mathbf{R}^N$ and continuous $F : U \to \mathbf{R}^N$. Let $\overline{\mathbf{B}_R(x_0)}$ be compact ball contained in U. For $x \in \mathbf{R}^N$, let $\Pi(x)$ be the point in $\overline{\mathbf{B}_R(x_0)}$ closest to x:

$$\Pi(x) = \begin{cases} x & \text{if } x \in \overline{\mathbf{B}_R(x_0)}, \text{ and} \\ x_0 + R \frac{x - x_0}{|x - x_0|} & \text{if not.} \end{cases}$$

Define $\widehat{F}: \mathbf{R}^N \to \mathbf{R}^N$ by

$$\widehat{F}(x) = F(\Pi(x)).$$

Then \widehat{F} is continuous and bounded, so by Case 1, there is a differentiable function

$$x:[0,1]\to \mathbf{R}^N$$

such that

$$x(0) = x_0,$$

$$x'(t)\widehat{F}(x(t)).$$

For some small $\delta > 0$, $x(t) \in \overline{\mathbf{B}_R(x_0)}$ for all $t \in [0, \delta]$. For such t,

$$x'(t) = \widehat{F}(x(t)) = F(x(t)).$$

3