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SOLUTIONS 
 
Question 1.  
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ii) The first sample moment is 
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The maximum likelihood estimator for p is the same as the estimator 
derived by the method of moments. 
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Question 2.  
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ii) 
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Question 3.  
 
i)  
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ii) For this second dataset,  3 12x x= . This linear dependence between the 

two predictors means that we cannot uniquely determine a coefficient for 

each. This will also give tX X  as a singular (non-invertible) matrix. 
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Question 4.  
 

 

i) 0.5i iy ε= + . The two y values (0 and 1) both observed at the two x 

values (0 and 1) hence the trendline will be horizontal (i.e. slope of 0). 
The intercept term will therefore be the mean of the observed ys i.e. 0.5 
here. 

 
ii) The sum of squares than the fitted model is exactly the same as the sum 

of squares around the mean hence SST SSE=  so the R-squared value 

is 0. 
 
 
iii) Any such three or more points which lie on a straight line would give an 

R-squared value of one. One such option would be  
 (0,0), (1,1), (2,2) and (3,3) . 
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