University of Technology Sydney School of Mathematical and Physical Sciences

Mathematical Statistics (37262) – Quiz 3 SOLUTIONS

Question 1.

i) The first moment is $m_1 = \frac{9.6 + 4.9 + 15.9 + 21.7 + 14.6}{5} = 13.34$. Setting this equal to $E(R) = \sigma \sqrt{\frac{\pi}{2}}$ gives $\hat{\sigma}_{MM} = 13.34 \sqrt{\frac{2}{\pi}}$

ii) Write down the likelihood function

$$L(\{r_1, r_2, r_3, r_4, r_5\} \mid \sigma) = \prod_{i=1}^{5} \frac{r_i}{\sigma^2} e^{-\frac{r_i^2}{2\sigma^2}} = \left(\frac{1}{\sigma^{10}}\right) e^{-\frac{\sum_{i=1}^{5} r_i^2}{2\sigma^2}} \prod_{i=1}^{5} r_i$$

For the sample $\{r_1, r_2, r_3, r_4, r_5\}$, we have that $\sum_{i=1}^5 r_i^2 = 1053.03$ and $\prod_{i=1}^5 r_i \approx 236961.1$.

5

iii)
$$\ell(\{r_1, r_2, r_3, r_4, r_5\} \mid \sigma) = \ln(L(\{r_1, r_2, r_3, r_4, r_5\} \mid \sigma))$$
$$\ell(\{r_1, r_2, r_3, r_4, r_5\} \mid \sigma) = \ln\left(\prod_{i=1}^5 r_i\right) - 10\ln(\sigma) - \frac{\sum_{i=1}^5 r_i^2}{2\sigma^2}$$
$$\approx 12.38 - 10\ln(\sigma) - \frac{1053.03}{2\sigma^2}.$$

iv)
$$\frac{\partial}{\partial \sigma} \ell(\{r_1, r_2, r_3, r_4, r_5\} \mid \sigma) = \frac{-10}{\sigma} + \frac{1053.03}{\sigma^3}.$$

v) Setting $\frac{-10}{\sigma} + \frac{1053.03}{\sigma^3} = 0$, we obtain $10\sigma^2 = 1053.03$ hence $\hat{\sigma}_{MLE} \approx \sqrt{105.303} \approx 10.26$.

(15 Marks)

Question 2.

In all cases, the acceptance probability from state y_i to y_p is

$$A_{i+1} = \min\left\{1, \frac{e^{-y_{\rho}^{2}} \left[3 + \sin(5y_{\rho}) + \sin(2y_{\rho}) + \sin(7y_{\rho})\right]}{e^{-y_{i}^{2}} \left[3 + \sin(5y_{i}) + \sin(2y_{i}) + \sin(7y_{i})\right]}\right\}$$

State	Proposal	Acceptance probability	$A_{j} > u_{10+j}$?	Accept move?
$y_0 = 0.400$	$y_{p} = 0.101$	$A_1 = \min\{1, 1.015\} = 1$	1>0.578	Yes
$y_1 = 0.101$	$y_p = 0.502$	$A_2 = \min\{1, 0.737\} = 0.737$	0.737 > 0.076	Yes
$y_2 = 0.502$	$y_{p} = 0.851$	$A_3 = \min\{1, 0.737\} = 0.425$	0.425 < 0.437	No
$y_3 = 0.502$	$y_p = 0.223$	$A_4 = \min\{1, 1.603\} = 1$	1>0.833	Yes
$y_4 = 0.223$	$y_{p} = 1.007$	$A_5 = \min\{1, 0.261\} = 0.261$	0.261 < 0.622	No
$y_5 = 0.223$	$y_p = 0.521$	$A_{_{6}} = \min\{1, 0.585\} = 0.585$	0.585 > 0.303	Yes
$y_6 = 0.521$				

(10 Marks)

Question 3.

i)
$$L(x_1, x_2, ..., x_n | p) = \prod_{i=1}^n (1-p)^{k_i-1} p = p^n (1-p)^{\sum_{i=1}^n (k_i-1)}$$

- ii) The first Heads was observed after two flips, hence $x_1 = 2$ The second Heads was observed one flip later, so $x_2 = 1$. We therefore have that $\{x_1, x_2, \dots, x_{10}\} = \{2, 1, 1, 3, 2, 1, 2, 1, 2, 1\}$.
- iii) $P \sim U[0,1]$ has density function $f(p) = \begin{cases} 1 & p \in [0,1] \\ 0 & \text{otherwise} \end{cases}$. As this is a constant (on the interval [0,1]), the posterior is simply 1 multiplied by the likelihood, i.e. is equal to the likelihood.

$$f(p \mid x_1, x_2, ..., x_n) = p^n (1-p)^{\sum_{i=1}^{n} (k_i-1)}$$

iv) The expectation of $P \sim U[0,1]$ is 0.5. The observed dataset shows 10 Heads and only 6 Tails, so the posterior distribution should have a larger expectation than 0.5 (somewhere between 0.5 and 10/16.)

V)
$$f(p|x_1, x_2, ..., x_n) \propto (p^{10}(1-p)^6) \left(\frac{\Gamma(6)}{\Gamma(3)\Gamma(3)}p^2(1-p)^2\right).$$

 $f(p|x_1, x_2, ..., x_n) \propto p^{12}(1-p)^8$. This is a *Beta*(13,9) variable. As using a Beta prior gives a Beta posterior, this is a conjugate prior.

vi) For the prior, $P \sim Beta(3,3)$, the expectation is $\frac{3}{3+3} = \frac{1}{2}$. For the posterior $P \mid X \sim Beta(13,9)$, the expectation is $\frac{13}{13+9} = \frac{13}{22}$.

(15 Marks)