

University of Technology Sydney

(This solution is not obvious. Needs eigenvector-eigenvalue methods, but provided here for completeness.)

The three possible equilibrium distributions

 $\Pi_{eq} = \begin{pmatrix} \pi_A & \pi_B & \pi_C & \pi_D & \pi_E & \pi_F & \pi_G \end{pmatrix}$ are:

- 1) $\Pi_{eq} = (0 \ 0 \ 0 \ 0 \ 1)$. This can be reached if the system begins in A, B, C or G.
- 2) $\Pi_{eq} = (0 \ 0 \ 0 \ 0 \ 1 \ 0)$. This can be reached if the system begins in A, B, C or F.
- 3) $\Pi_{eq} = (0 \ 0 \ 0 \ 0.5 \ 0.5 \ 0 \ 0)$. This can be reached if the system begins in A, B, C, D or E.

3.				
State	Proposal	Acceptance Probability	$A_{j} > U_{10+j}$?	Accept Move?
<i>x</i> ₀ = 2	$y_1 = \lfloor 5(0.410) \rfloor = 2$	$A_1 = \min\left\{1, \frac{P(X=2)}{P(X=2)}\right\} = 1$	1>0.370	Yes
x ₁ = 2	$y_2 = \lfloor 5(0.777) \rfloor$ $= 3$	$A_2 = \min\left\{1, \frac{P(X=3)}{P(X=2)}\right\} = \frac{(0.5)^3}{3(0.5)^3} = \frac{1}{3}$	$\frac{1}{3} < 0.400$	No
x ₂ = 2	$y_3 = \lfloor 5(0.050) \rfloor = 0$	$A_{3} = \min\left\{1, \frac{P(X=0)}{P(X=2)}\right\} = \frac{(0.5)^{3}}{3(0.5)^{3}} = \frac{1}{3}$	$\frac{1}{3} > 0.281$	Yes
<i>x</i> ₃ = 0	$y_4 = \lfloor 5(0.893) \rfloor = 4$	$A_4 = \min\left\{1, \frac{P(X=4)}{P(X=0)}\right\} = \frac{0}{(0.5)^3} = 0$	0 < 0.406	No
<i>x</i> ₄ = 0	$y_5 = \lfloor 5(0.912) \rfloor = 4$	$A_5 = \min\left\{1, \frac{P(X=4)}{P(X=0)}\right\} = \frac{0}{(0.5)^3} = 0$	0<0.722	No
<i>x</i> ₅ = 0	$y_6 = \lfloor 5(0.229) \rfloor = 1$	$A_6 = \min\left\{1, \frac{P(X=1)}{P(X=0)}\right\} = 1$	1>0.803	Yes
x ₆ = 1	$y_7 = \lfloor 5(0.226) \rfloor$ $= 1$	$A_7 = \min\left\{1, \frac{P(X=1)}{P(X=1)}\right\} = 1$	1>0.092	Yes
x ₇ = 1	$y_8 = \lfloor 5(0.529) \rfloor = 2$	$A_8 = \min\left\{1, \frac{P(X=2)}{P(X=1)}\right\} = 1$	1>0.433	Yes
x ₈ = 2	$y_8 = \lfloor 5(0.676) \rfloor$ $= 3$	$A_{8} = \min\left\{1, \frac{P(X=3)}{P(X=2)}\right\} = \frac{(0.5)^{3}}{3(0.5)^{3}} = \frac{1}{3}$	$\frac{1}{3} > 0.195$	Yes
x ₉ = 3	$y_{10} = \lfloor 5(0.987) \rfloor = 4$	$A_{\rm g} = \min\left\{1, \frac{P(X=4)}{P(X=3)}\right\} = \frac{0}{(0.5)^3} = 0$	0<0.118	No
x ₁₀ = 3				