University of Technology Sydney School of Mathematical and Physical Sciences

Mathematical Statistics (37262) – Class 11 Preparation Work

The number of calls a helpdesk receives each hour is modelled as an independent realisation of a *Poi*(λ) variable for some unknown λ > 0.
 Prior to the gathering of any observations, it is believed that the uncertainty around the value of λ can be described by a gamma distribution, λ ~ *Gamma*(α, β) for some α, β > 1.

That is,
$$f(\lambda) = \frac{\beta^{\alpha} \lambda^{(\alpha-1)} e^{-\beta \lambda}}{\Gamma(\alpha)}$$
.

Observations $x_1, x_2, ..., x_n$ of the number of calls in an hour are made for each of the first *n* hours of a day.

- i) Find the likelihood $L(x_1, x_2, ..., x_n | \lambda)$ of observing the dataset $x_1, x_2, ..., x_n$ for a given value of λ .
- ii) Find the posterior distribution for λ, describing the uncertainty around the parameter's value after the dataset has been observed.
 Show that the gamma distribution is a conjugate prior for observations from a Poisson distribution.
- iii) What is the mean of the posterior distribution?
- **Hint:** You may assume without proof that, for $\lambda \sim Gamma(\alpha, \beta)$, $E(\lambda) = \frac{\alpha}{\beta}$.

- 2. Samples are drawn from a normal random variable $N(\theta, 1)$ with known variance 1 but where the value of the mean $\theta > 0$ is not known.
 - i) Find the likelihood $L(y_1, y_2, ..., y_n | \theta)$ of observing the dataset $y_1, y_2, ..., y_n$ for a given value of θ .
 - ii) The prior belief about θ is that $\theta \sim \exp(10)$. Show that the posterior distribution of θ given observations $y_1, y_2, ..., y_n$ is given by

$$f(\theta | y_1, y_2, ..., y_n) = \frac{e^{-\sum_{i=1}^n (y_i - \theta)^2 - 20\theta}}{\int_0^\infty e^{-\sum_{i=1}^n (y_i - \theta)^2 - 20\theta}} d\theta$$

- iii) Explain how, given a symmetric proposal distribution and a fixed starting value θ_0 , the Metropolis-Hastings algorithm could be applied to simulate samples from the posterior distribution of θ . Clearly describe each step of the algorithm.
- 3. Independent samples $x_1, x_2, ..., x_n$ are drawn from a uniform random variable $X \sim U[0, \theta]$ where the value of $\theta > 0$ is not known.
 - i) Write down the probability density function of $X \sim U[0, \theta]$.
 - ii) Hence find the likelihood of the sample $x_1, x_2, ..., x_n$, $L(x_1, x_2, ..., x_n | \theta)$.

Prior to any observations being made, the belief around the value of θ is described a Pareto variable, $\theta \sim Pareto(m, \alpha)$.

That is, $f(\theta) = \begin{cases} \frac{\alpha m^{\alpha}}{\theta^{\alpha+1}} & \theta \in [m,\infty) \\ 0 & \text{otherwise} \end{cases}$ for $m > 0, \alpha > 0$.

- iii) Show that the posterior distribution describing the belief around the value of θ is also described by a Pareto variable.
- iv) Is the Pareto distribution a conjugate prior for this likelihood function? Justify your answer.

Hint: Think about the range of $X \sim U[0, \theta]$ when considering the likelihood function.