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Hence the posterior for A ~ Gamma(z X +a,n+p).

As both the prior and posterior are of the same family of variables (both

gamma), the prior is a conjugate prior.

ixi +a

The posterior mean is therefore - .
n+pg
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iii) The Metropolis-Hastings algorithm to generate 6,,6,,...,6,
One — Draw an independent realisation z, from the proposal

distribution.

Two — Calculate the acceptance probability . For step j (i.e. to generate

—i(yi—zp)z—zoe
. . e T
6,), thisisequal to A, =min{l————
- (y;-6;)°-206
i=1

e 2

Three — If the acceptance probability is 1, then set 6, = z, .

If the acceptance probability is <1 then draw an independent sample

u,from U ~U[0,]]. If u; <A then accept the proposal and set 6, =z, .
Ifu; > A, then do not accept the proposal and set 6, =96, ;.

Four — Repeat from step one until n samples have been drawn.

(Note that we never need to calculate the denominator in the pdf of the
posterior distribution, as the Metropolis-Hastings algorithm only needs the
ratio of the probability density of the proposed state to the probability density

of the current state.)



1
) f={g *<OF]

0 otherwise

1)) The likelihood of the sample x;,X,,...,X, is

oun-{ 333

(valid for all x. €[0,0] and zero otherwise)

Prior to any observations being made, the belief around the value of 6is
described a Pareto variable, 6 ~ Pareto(m,a).

a

am_ g [m,0)
Thatis, f(©)=4g= =~ <"’ for m>0,a>0.

0 otherwise

i) f(O] Xy Xy, X,) € (X, X0, X, |0) F(B) hence
f(9|x1,x2,...,xn)oc£%j am__ am

This is valid for 6 € [m,«) (i.e. 6> m) and all x, €[0,6] (i.e.

0 > max{x,, X,,...X, }

Putting these together gives 6 > max{m, x,, X,,...X,}.

ea+l = 9n+a+1 )

This is also a Pareto variable

a

am
F(O] X, X, X.) = | g 0 € [max{m, x,, x,,...x, }, )
0 otherwise

so the posterior distribution is a 6 ~ Pareto(m,a) variable where
m =max{m, x,,X,,...Xx,} and a =n+a.

iv) Both the prior distribution and posterior distribution are both Pareto
distributions, hence this is a conjugate prior for the likelihood function.



