University of Technology Sydney School of Mathematical and Physical Sciences

Mathematical Statistics (37262) – Class 1 Preparation Work

1. Given realisations $u_1, u_2, ..., u_n$ of a uniform random variable $U \sim U[0,1]$, realisations $x_1, x_2, ..., x_n$ of a random variable X are generated by the following rule:

if
$$u_i < 0.1$$
 $x_i = -4$
if $0.1 \le u_i < 0.7$ $x_i = 0$
if $0.7 \le u_i < 0.85$ $x_i = 4$
if $u_i \ge 0.85$ $x_i = 7$

- i) Write down the probability mass function of the random variable X.
- ii) Given $\{u_1, u_2, ..., u_{10}\} = \{0.511, 0.008, 0.717, 0.333, 0.209, 0.200, 0.173, 0.990, 0.421, 0.571\}$

generate the values of $\{x_1, x_2, ..., x_{10}\}$.

- iii) Directly from the probability mass function, calculate E(X), the expected value of X.
- iv) Calculate \bar{X} , an estimate of the expected value of X using the ten simulated values from part ii).

2. Given a realisation, u_i , of a U[0,1] random variable, a realisation of a discrete random variable X, x_i , is generated by the following rule:

If
$$u_i < 0.3$$
 $x_i = 0$

If $0.3 \le u_i < 0.8$ $x_i = \left\lfloor \frac{1}{u_i} \right\rfloor$

If $u_i \ge 0.8$ $x_i = 7.5$

Note: $\left|\frac{1}{u_i}\right|$ denotes the floor function which, for any $\frac{1}{u_i} \in \mathbb{R}$, takes the value of the largest integer $\leq \frac{1}{u_i}$. For example, if $u_i = 0.748$, then $\frac{1}{u_i} \approx 1.337$ and hence $x_i = \left|\frac{1}{u_i}\right| = 1$.

- i) Write down the probability mass function of *X*.
- ii) Given realisations $\{u_1, u_2, ..., u_5\} = \{0.710, 0.119, 0.358, 0.883, 0.504\}$ of a U[0,1] variable, generate five realisations $\{x_1, x_2, ..., x_5\}$ of X.
- iii) Calculate \bar{X} , an estimate of the expected value of X from your five realisations $\{x_1, x_2, ..., x_5\}$.
- iv) Calculate the expected value of the random variable X, E(X) and show that $\bar{X} > E(X)$.